首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 3' --> 5' exonuclease activity of proofreading DNA polymerases requires two divalent metal ions, metal ions A and B. Mutational studies of the 3' --> 5' exonuclease active center of the bacteriophage T4 DNA polymerase indicate that residue Asp-324, which binds metal ion A, is the single most important residue for the hydrolysis reaction. In the absence of a nonenzymatic source of hydroxide ions, an alanine substitution for residue Asp-324 reduced exonuclease activity 10-100-fold more than alanine substitutions for the other metal-binding residues, Asp-112 and Asp-219. Thus, exonuclease activity is reduced 10(5)-fold for the D324A-DNA polymerase compared with the wild-type enzyme, while decreases of 10(3)- to 10(4)-fold are detected for the D219A- and D112A/E114A-DNA polymerases, respectively. Our results are consistent with the proposal that a water molecule, coordinated by metal ion A, forms a metal-hydroxide ion that is oriented to attack the phosphodiester bond at the site of cleavage. Residues Glu-114 and Lys-299 may assist the reaction by lowering the pK(a) of the metal ion-A coordinated water molecule, whereas residue Tyr-320 may help to reorient the DNA from the binding conformation to the catalytically active conformation.  相似文献   

2.
Homogeneous gene 5 protein of bacteriophage T7, a subunit of T7 DNA polymerase, catalyzes the stepwise hydrolysis of single-stranded DNA in a 3' leads to 5' direction to yield nucleoside 5'-monophosphates. The gene 5 protein itself does not hydrolyze duplex DNA. However, in the presence of Escherichia coli thioredoxin, the host-specified subunit of T7 DNA polymerase, duplex DNA is hydrolyzed in a 3' leads to 5' direction to yield nucleoside 5'-monophosphates. The apparent Km for thioredoxin in the reaction is 4.8 x 10(-8) M, a value similar to that for the apparent Km of thioredoxin in the complementation assay with gene 5 protein to restore T7 DNA polymerase activity. Both exonuclease activities require Mg2+ and a sulfhydryl reagent for optimal activity, and both activities are sensitive to salt concentration. Deoxyribonucleoside 5'-triphosphates inhibit hydrolysis by both exonuclease activities; hydrolysis of single-stranded DNA by the gene 5 protein is inhibited even in the absence of thioredoxin where there is less than 2% active T7 DNA polymerase. E. coli DNA binding protein (helix destabilizing protein) stimulates the hydrolysis of duplex DNA up to 9-fold under conditions where the hydrolysis of the single-stranded DNA is inhibited 4-fold.  相似文献   

3.
Porcine liver DNA polymerase gamma was shown previously to copurify with an associated 3' to 5' exonuclease activity (Kunkel, T. A., and Mosbaugh, D. W. (1989) Biochemistry 28, 988-995). The 3' to 5' exonuclease has now been characterized, and like the DNA polymerase activity, it has an absolute requirement for a divalent metal cation (Mg2+ or Mn2+), a relatively high NaCl and KCl optimum (150-200 mM), and an alkaline pH optimum between 7 and 10. The exonuclease has a 7.5-fold preference for single-stranded over double-stranded DNA, but it cannot excise 3'-terminal dideoxy-NMP residues from either substrate. Excision of 3'-terminally mismatched nucleotides was preferred approximately 5-fold over matched 3' termini, and the hydrolysis product from both was a deoxyribonucleoside 5'-monophosphate. The kinetics of 3'-terminal excision were measured at a single site on M13mp2 DNA for each of the 16 possible matched and mismatched primer.template combinations. As defined by the substrate specificity constant (Vmax/Km), each of the 12 mismatched substrates was preferred over the four matched substrates (A.T, T.A, C.G, G.C). Furthermore, the exonuclease could efficiently excise internally mismatched nucleotides up to 4 residues from the 3' end. DNA polymerase gamma was not found to possess detectable DNA primase, endonuclease, 5' to 3' exonuclease, RNase, or RNase H activities. The DNA polymerase and exonuclease activities exhibited dissimilar rates of heat inactivation and sensitivity to N-ethylmaleimide. After nondenaturing activity gel electrophoresis, the DNA polymerase and 3' to 5' exonuclease activities were partially resolved and detected in situ as separate species. A similar analysis on a denaturing activity gel identified catalytic polypeptides with molecular weights of 127,000, 60,000, and 32,000 which possessed only DNA polymerase gamma activity. Collectively, these results suggest that the polymerase and exonuclease activities reside in separate polypeptides, which could be derived from separate gene products or from proteolysis of a single gene product.  相似文献   

4.
Y T Hwang  B Y Liu  D M Coen    C B Hwang 《Journal of virology》1997,71(10):7791-7798
The herpes simplex virus DNA polymerase catalytic subunit, which has intrinsic polymerase and 3'-5' exonuclease activities, contains sequence motifs that are homologous to those important for 3'-5' exonuclease activity in other polymerases. The role of one such motif, Exo III, was examined in this study. Mutated polymerases containing either a single tyrosine-to-histidine change at residue 577 or this change plus an aspartic acid-to-alanine at residue 581 in the Exo III motif exhibited defective or undetectable exonuclease activity, respectively, yet retained substantial polymerase activity. Despite the defects in exonuclease activity, the mutant polymerases were able to support viral replication in transient complementation assays, albeit inefficiently. Viruses replicated via the action of these mutant polymerases exhibited substantially increased frequencies of mutants resistant to ganciclovir. Furthermore, when the Exo III mutations were incorporated into the viral genome, the resulting mutant viruses displayed only modestly defect in replication in Vero cells and exhibited substantially increased mutation frequencies. The results suggest that herpes simplex virus can replicate despite severely impaired exonuclease activity and that the 3'-5' exonuclease contributes substantially to the fidelity of viral DNA replication.  相似文献   

5.
6.
Xenopus laevis DNA polymerase gamma co-purifies with a tightly associated 3'----5' exonuclease. The purified enzyme lacks 5'----3' exonuclease and endonuclease activity. The ratio of the 3'----5' exonuclease activity to DNA polymerase gamma activity remains constant over the final three chromatographic procedures. In addition, these activities co-sediment under partially denaturing conditions in the presence of ethylene glycol. The associated 3'----5' exonuclease activity removes a terminally mismatched nucleotide more rapidly than a correctly base-paired 3'-terminal residue, as expected if this exonuclease has a proofreading function. The 3'----5' exonuclease has the ability to release a terminal phosphorothioated nucleotide, a property shared with T4 DNA polymerase, but not with Escherichia coli DNA polymerase I.  相似文献   

7.
The DNA polymerase encoded by bacteriophage T5 has been reported previously to be processive and to catalyze extensive strand displacement synthesis. The enzyme, purified from phage-infected cells, did not require accessory proteins for these activities. Although T5 DNA polymerase shares extensive sequence homology with Escherichia coli DNA polymerase I and T7 DNA polymerase, it contains unique regions of 130 and 71 residues at its N and C termini, respectively. We cloned the gene encoding wild-type T5 DNA polymerase and characterized the overproduced protein. We also examined the effect of N- and C-terminal deletions on processivity and strand displacement synthesis. T5 DNA polymerase lacking its N-terminal 30 residues resembled the wild-type enzyme albeit with a 2-fold reduction in polymerase activity. Deletion of 24 residues at the C terminus resulted in a 30-fold reduction in polymerase activity on primed circular DNA, had dramatically reduced processivity, and was unable to carry out strand displacement synthesis. Deletion of 63 residues at the C terminus resulted in a 20,000-fold reduction in polymerase activity. The 3' to 5' double-stranded DNA exonuclease activity associated with T5 DNA polymerase was reduced by a factor of 5 in the polymerase truncated at the N terminus but was stimulated by a factor of 7 in the polymerase truncated at the C terminus. We propose a model in which the C terminus increases the affinity of the DNA for the polymerase active site, thus increasing processivity and decreasing the accessibility of the DNA to the exonuclease active site.  相似文献   

8.
A crystal structure of the bacteriophage T7 gene 5 protein/Escherichia coli thioredoxin complex reveals a region in the exonuclease domain (residues 144-157) that is not present in other members of the E. coli DNA polymerase I family. To examine the role of this region, a genetically altered enzyme that lacked residues 144-157 (T7 polymerase (pol) Delta144-157) was purified and characterized biochemically. The polymerase activity and processivity of T7 pol Delta144-157 on primed M13 DNA are similar to that of wild-type T7 DNA polymerase implying that these residues are not important for DNA synthesis. The ability of T7 pol Delta144-157 to catalyze the hydrolysis of a phosphodiester bond, as judged from the rate of hydrolysis of a p-nitrophenyl ester of thymidine monophosphate, also remains unaffected. However, the 3'-5' exonuclease activity on polynucleotide substrates is drastically reduced; exonuclease activity on single-stranded DNA is 10-fold lower and that on double-stranded DNA is 20-fold lower as compared with wild-type T7 DNA polymerase. Taken together, our results suggest that residues 144-157 of gene 5 protein, although not crucial for polymerase activity, are important for DNA binding during hydrolysis of polynucleotides.  相似文献   

9.
B G Que  K M Downey  A G So 《Biochemistry》1978,17(9):1603-1606
The 3' to 5' exonuclease activity of Escherichia coli DNA polymerase I can be selectively inhibited by nucleoside 5'-monophosphates, wherease the DNA polymerase activity is not inhibited. The results of kinetic studies show that nucleotides containing a free 3'-hydroxy group and a 5'-phosphoryl group are competitive inhibitors of the 3' to 5' exonuclease. Previous studies by Huberman and Kornberg [Huberman, J., and Kornberg, A. (1970), J. Biol. Chem. 245, 5326] have demonstrated a binding site for nucleoside 5'-monophosphates on DNA polymerase I. The Kdissoc values for nucleoside 5'-monophosphates determined in that study are comparable to the Ki values determined in the present study, suggesting that the specific binding site for nucleoside 5'-monophosphates represents the inhibitor site of the 3' to 5' exonuclease activity. We propose that (1) the binding site for nucleoside 5'-monophosphates on DNA polymerase I may represent the product site of the 3' to 5' exonuclease activity. (2) the primer terminus site for the 3' to 5' exonuclease activity is distinct from the primer terminus site for the polymerase activity, and (3) nucleoside 5'-monophosphates bind at the primer terminus site for the 3' to 5' exonuclease activity.  相似文献   

10.
A Diaz  M E Pons  S A Lacks    P Lopez 《Journal of bacteriology》1992,174(6):2014-2024
The Streptococcus pneumoniae polA gene was altered at various positions by deletions and insertions. The polypeptides encoded by these mutant polA genes were identified in S. pneumoniae. Three of them were enzymatically active. One was a fused protein containing the first 11 amino acid residues of gene 10 from coliphage T7 and the carboxyl-terminal two-thirds of pneumococcal DNA polymerase I; it possessed only polymerase activity. The other two enzymatically active proteins, which contained 620 and 351 amino acid residues from the amino terminus, respectively, lacked polymerase activity and showed only exonuclease activity. These two polymerase-deficient proteins and the wild-type protein were hyperproduced in Escherichia coli and purified. In contrast to the DNA polymerase I of Escherichia coli but similar to the corresponding enzyme of Thermus aquaticus, the pneumococcal enzyme appeared to lack 3'-to-5' exonuclease activity. The 5'-to-3' exonuclease domain was located in the amino-terminal region of the wild-type pneumococcal protein. This exonuclease activity excised deoxyribonucleoside 5'-monophosphate from both double- and single-stranded DNAs. It degraded oligonucleotide substrates to a decameric final product.  相似文献   

11.
Processivity of DNA exonucleases.   总被引:5,自引:0,他引:5  
A homopolymer system has been developed to examine the digestion strategies of DNA exonucleases. Escherichia coli exonuclease I and lambda-exonuclease, are processive enzymes. However, T7 exonuclease, spleen exonuclease, E. coli exonuclease III, the 3' leads to 5'-exonuclease of T4 DNA polymerase, and both the 3' leads to 5' and the 5' leads to 3' activity of E. coli DNA polymerase I dissociate frequently from the substrate during the course of digestion. Regions of duplex DNA are a dissociation signal for exonuclease I.  相似文献   

12.
M Simon  L Giot    G Faye 《The EMBO journal》1991,10(8):2165-2170
In Saccharomyces cerevisiae, DNA polymerase delta (POLIII), the product of the CDC2 (POL3) gene, possesses, in its N-terminal half, the well conserved 3-domain 3' to 5' exonuclease site. Strains selectively mutagenized in this site display a mutator phenotype detected as a drastically increased spontaneous forward mutation rate to canavanine resistance or as an elevated reversion rate to lysine prototrophy. Assays on a partially purified extract of the mutant giving the largest mutator effect indicate that the 3' to 5' exonuclease activity is reduced below the detection limit whereas the DNA polymerizing activity has wild-type level. Therefore, our results provide experimental support for the hypothesis that the exonucleolytic proofreading activity associated with DNA polymerase delta resides on the DNA polymerase delta subunit and enhances the fidelity of DNA replication in yeast.  相似文献   

13.
In this report we present the alignment of one of the most conserved segments (Exo III) of the 3'-5' exonuclease domain in 39 DNA polymerase sequences, including prokaryotic and eukaryotic enzymes. Site-directed substitutions of the two most conserved residues, which form the Exo III motif Tyr-(X)3-Asp of phi 29 DNA polymerase, did not affect single-stranded DNA binding, DNA polymerization, processivity or protein-primed initiation. In contrast, substitution of the highly conserved Tyr residue by Phe or Cys decreased the 3'-5' exonuclease activity to 7.5 and 4.1%, respectively, of the wild-type activity. Change of the highly conserved Asp residue into Ala resulted in almost complete inactivation (0.1%) of the 3'-5' exonuclease. In accordance with the contribution of the 3'-5' exonuclease to the fidelity of DNA replication, the three mutations in the Exo III motif (Y165F, Y165C and D169A) produced enzymes with an increased frequency of misinsertion and extension of DNA polymerization errors. Surprisingly, the three mutations in the Exo III motif strongly decreased (80- to 220-fold) the ability to replicate phi 29 DNA, this behaviour being due to a defect in the strand displacement activity, an intrinsic property of phi 29 DNA polymerase required for this process. Taking these results into account, we propose that the strand displacement activity of phi 29 DNA polymerase resides in the N-terminal domain, probably overlapping with the 3'-5' exonuclease active site.  相似文献   

14.
Bacteriophage T7-induced DNA polymerase has been isolated by a procedure suitable for large scale use and which yields near homogeneous enzyme. In addition to previously described DNA polymerase activity and 3' to 5' exonucleolytic activity on single stranded DNA (Grippo, P., and Richardson, C. C. (1971) J. Biol. Chem. 246, 6867-6873), the enzyme also possesses a highly active exonuclease which hydrolyzes duplex substrates with 3' to 5' directionality. The native polymerase has been dissociated using 6 M guanidine HCl and resolved into biologically active subunits: T7 gene 5 protein and Escherichia coli thioredoxin. The phage-specified subunit obtained by this procedure is deficient in DNA polymerase and double strand exonuclease activities, with deficiencies in these activities being apparent at the level of a single turnover. However, it possesses near normal levels of a single strand hydrolytic activity which is identical to that associated with the native polymerase with respect to substrate specificity and suppression of hydrolysis by low levels of deoxyribonucleoside 5'-triphosphates. Thioredoxin forms a molecular complex with the T7 gene 5 protein, and addition of the host protein restores restores DNA polymerase and double strand exonuclease activities to near normal levels.  相似文献   

15.
Thermus aquaticus DNA polymerase was shown to contain an associated 5' to 3' exonuclease activity. Both polymerase and exonuclease activities cosedimented with a molecular weight of 72,000 during sucrose gradient centrifugation. Using a novel in situ activity gel procedure to simultaneously detect these two activities, we observed both DNA polymerase and exonuclease in a single band following either nondenaturing or denaturing polyacrylamide gel electrophoresis: therefore, DNA polymerase and exonuclease activities reside in the same polypeptide. As determined by SDS-polyacrylamide gel electrophoresis this enzyme has an apparent molecular weight of 92,000. The exonuclease requires a divalent cation (MgCl2 or MnCl2), has a pH optimum of 9.0 and excises primarily deoxyribonucleoside 5'-monophosphate from double-stranded DNA. Neither heat denatured DNA nor the free oligonucleotide (24-mer) were efficient substrates for exonuclease activity. The rate of hydrolysis of a 5'-phosphorylated oligonucleotide (24-mer) annealed to M13mp2 DNA was about twofold faster than the same substrate containing a 5'-hydroxylated residue. Hydrolysis of a 5'-terminal residue from a nick was preferred threefold over the same 5'-end of duplex DNA. The 5' to 3' exonuclease activity appeared to function coordinately with the DNA polymerase to facilitate a nick translational DNA synthesis reaction.  相似文献   

16.
The MIP1 gene which encodes yeast mitochondrial DNA polymerase possesses in its N-terminal region the three motifs (Exo1, Exo2 and Exo3) which characterize the 3'-5' exonucleolytic domain of many DNA polymerases. By site directed mutagenesis we have substituted alanine or glycine residues for conserved aspartate residues in each consensus sequence. Yeast mutants were therefore generated that are capable of replicating mitochondrial DNA (mtDNA) and exhibit a mutator phenotype, as estimated by the several hundred-fold increase in the frequency of spontaneous mitochondrial erythromycin resistant mutants. By overexpressing the mtDNA polymerase from the GAL1 promoter as a major 140 kDa polypeptide, we showed that the wild-type enzyme possesses a mismatch-specific 3'-5' exonuclease activity. This activity was decreased by approximately 500-fold in the mutant D347A; in contrast, the extent of DNA synthesis was only slightly decreased. The wild-type mtDNA polymerase efficiently catalyses elongation of singly-primed M13 DNA to the full-length product. However, the mutant preferentially accumulates low molecular weight products. These data were extended to the two other mutators D171G and D230A. Glycine substitution for the Cys344 residue which is present in the Exo3 site of several polymerases generates a mutant with a slightly higher mtDNA mutation rate and a slightly lower 3'-5' exonucleolytic activity. We conclude that proofreading is an important determinant of accuracy in the replication of yeast mtDNA.  相似文献   

17.
The Klenow fragment of Escherichia coli DNA polymerase I houses catalytic centers for both polymerase and 3'-5' exonuclease activities that are separated by about 35 A. Upon the incorporation of a mismatched nucleotide, the primer terminus is transferred from the polymerase site to an exonuclease site designed for excision of the mismatched nucleotides. The structural comparison of the binary complexes of DNA polymerases in the polymerase and the exonuclease modes, together with a molecular modeling of the template strand overhang in Klenow fragment, indicated its binding in the region spanning residues 821-824. Since these residues are conserved in the "A" family DNA polymerases, we have designated this region as the RRRY motif. The alanine substitution of individual amino acid residues of this motif did not change the polymerase activity; however, the 3'-5' exonuclease activity was reduced 2-29-fold, depending upon the site of mutation. The R821A and R822A/Y824A mutant enzymes showed maximum cleavage defect with single-stranded DNA, mainly due to a large decrease in the ssDNA binding affinity of these enzymes. Mismatch removal by these enzymes was only moderately affected. However, data from the exonuclease-polymerase balance assays with mismatched template-primer suggest that the mutant enzymes are defective in switching mismatched primer from the polymerase to the exonuclease site. Thus, the RRRY motif provides a binding track for substrate ssDNA and for nonsubstrate single-stranded template overhang, in a polarity-dependent manner. This binding then facilitates cleavage of the substrate at the exonuclease site.  相似文献   

18.
DNA polymerase I (pol I) from Escherichia coli has three well-defined activities: DNA polymerase, 3'-5' exonuclease, and 5'-3' exonuclease. We have raised monoclonal antibodies to pol I which selectively neutralize each of these three activities, thus supporting the model of separate active sites for each activity, heretofore exclusively demonstrated with proteolytic fragments of pol I. Antibodies from each class could bind pol I in the presence of antibodies of another class, indicating the existence of significant spatial separation between each of the three sites. In addition, several of the neutralizing antibodies were able to distinguish particular activities of the 5'-3' exonuclease. One of them, for example, inhibited the RNase H activity but not the DNase activity. Two other antibodies could, in addition to inhibiting the polymerase and the 3'-5' exonuclease, either stimulate or inhibit the 5'-3' exonuclease depending upon the assay conditions, particularly the ionic strength.  相似文献   

19.
Three different mutations were introduced in the polA gene of Streptococcus pneumoniae by chromosomal transformation. One mutant gene encodes a truncated protein that possesses 5' to 3' exonuclease but has lost polymerase activity. This mutation does not affect cell viability. Other mutated forms of polA that encode proteins with only polymerase activity or with no enzymatic activity could not substitute for the wild-type polA gene in the chromosome unless the 5' to 3' exonuclease domain was encoded elsewhere in the chromosome. Thus, it appears that the 5' to 3' exonuclease activity of the DNA polymerase I is essential for cell viability in S. pneumoniae. Absence of the polymerase domain of DNA polymerase I slightly diminished the ability of S. pneumoniae to repair DNA lesions after ultraviolet irradiation. However, the polymerase domain of the pneumococcal DNA polymerase I gave almost complete complementation of the polA5 mutation in Escherichia coli with respect to resistance to ultraviolet irradiation.  相似文献   

20.
The role of exonuclease activity in trans-lesion DNA replication with Escherichia coli DNA polymerase III holoenzyme was investigated. RecA protein inhibited the 3'----5' exonuclease activity of the polymerase 2-fold when assayed in the absence of replication and had no effect on turnover of dNTPs into dNMPs. In contrast, single-stranded DNA-binding protein, which had no effect on the exonuclease activity in the absence of replication, showed a pronounced 7-fold suppression of the 3'----5' exonuclease activity during replication. The excision of incorporated dNMP alpha S residues from DNA by the 3'----5' exonuclease activity of DNA polymerase III holoenzyme was inhibited 10-20-fold; still no increase in bypass of pyrimidine photodimers was observed. Thus, in agreement with our previous results in which the exonuclease activity was inhibited at the protein level (Livneh, Z. (1986) J. Biol. Chem. 261, 9526-9533), inhibition at the DNA level also did not increase bypass of photodimers. Fractionation of the replication mixture after termination of DNA synthesis on a Bio-Gel A-5m column under conditions which favor polymerase-DNA binding yielded a termination complex which could perform turnover of dNTPs into dNMPs. Adding challenge-primed single-stranded DNA to the complex yielded a burst of DNA synthesis which was promoted most likely by DNA polymerase III holoenzyme molecules transferred from the termination complex to the challenge DNA thus demonstrating the instability of the polymerase-DNA association. Addition of a fresh sample of DNA polymerase III holoenzyme to purified termination products, which consist primarily of partially replicated molecules with nascent chains terminated at UV lesions, did not result in any net DNA synthesis as expected. However, reactivation of lesion-terminated primers was achieved by pretreatment with a 3'----5' exonuclease which excised 200 nucleotides or more, generating new 3'-OH termini located away from the UV lesions. When these exonuclease-treated products were subjected to a second round of replication, an increased level of DNA synthesis was observed including additional bypass of photodimers. These results suggest the possibility that 3'----5' exonuclease processing might be required at least transiently during one of the stages of trans-lesion DNA replication, which is believed to be the mechanism of SOS-targeted mutagenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号