首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transient receptor potential (Trp) channels have been implicated in mediating store- and receptor-activated Ca2+ influx. Different properties of this influx in various cell types may stem from the assembly of these Trp proteins into homo- or heterotetramers or association with other regulatory proteins. We examined the properties of endogenous capacitative Ca2+ entry in PHM1 immortalized human myometrial cells that express endogenous hTrpCs 1, 3, 4, 6, and 7 mRNA and in primary human myocytes. In PHM1 cells, activation of the oxytocin receptor or depletion of intracellular Ca2+ stores with the endoplasmic reticulum calcium pump-inhibitor thapsigargin induced capacitative Ca2+ entry, which was inhibited both by SKF 96365 and gadolinium (Gd3+). Whereas unstimulated cells did not exhibit Sr2+ entry, oxytocin and thapsigargin enhanced Sr2+ entry that was also inhibited by SKF 96365 and Gd3+. In contrast, Ba2+, a poor substrate for Ca2+ pumps, accumulated in these cells in the absence of the capacitative entry stimulus and also after oxytocin and thapsigargin treatment. Both types of entry were markedly decreased by SKF 96365 and Gd3+. The membrane-permeant derivative of diacylglycerol, 1-oleoyl-2-acetyl-sn-glycerol (OAG), elicited oscillatory increases in PHM1 intracellular Ca2+ that were dependent on extracellular Ca2+. These properties were also observed in primary human myocytes. Overexpression of hTrpC3 in PHM1 cells enhanced thapsigargin-, oxytocin-, and OAG-induced Ca2+ entry. These data are consistent with the expression of endogenous hTrpC activity in myometrium. Capacitative Ca2+ entry can potentially contribute to Ca2+ dynamics controlling uterine smooth muscle contractile activity.  相似文献   

2.
The molecular basis of capacitative (or store-operated) Ca2+ entry is still subject to debate. The transient receptor potential proteins have been hypothesized to be structural components of store-operated Ca2+ channels and recent evidence suggests that Trp3 and its closely related homolog Trp6 are gated by the N-terminal region of the inositol 1,4,5-triphosphate receptors (InsP3R). In this study, we report the existence of two isoforms of the human Trp4 protein, referred to as alpha-hTrp4 and beta-hTrp4. The shorter variant beta-hTrp4 is generated through alternative splicing and lacks the C-terminal amino acids G785-S868. Using a yeast two-hybrid assay and glutathione-S-transferase-pulldown experiments, we found that the C-terminus of alpha-hTrp4, but not of beta-hTrp4, associates in vitro with the C-terminal domain of the InsP(3) receptors type 1, 2 and 3. Thus, we describe a novel interaction between Trp proteins and InsP3R and we provide evidence suggesting that the formation of hTrp4-InsP3R complexes may be regulated by alternative splicing.  相似文献   

3.
4.
Physical interaction between transient receptor potential (Trp) channels and inositol 1,4,5-trisphosphate receptors (IP(3)Rs) has been presented as a candidate mechanism for the activation of store-mediated Ca(2+) entry. The role of a human homologue of Drosophila transient receptor potential channel, hTrp1, in the conduction of store-mediated Ca(2+) entry was examined in human platelets. Incubation of platelets with a specific antibody, which recognizes the extracellular amino acid sequence 557-571 of hTrp1, inhibited both store depletion-induced Ca(2+) and Mn(2+) entry in a concentration-dependent manner. Stimulation of platelets with the physiological agonist thrombin activated coupling between the IP(3) receptor type II and endogenously expressed hTrp1. This event was reversed by refilling of the internal Ca(2+) stores but maintained after removal of the agonist if the stores were not allowed to refill. Inhibition of IP(3) recycling using Li(+) or inhibition of IP(3)Rs with xestospongin C or treatment with jasplakinolide, to stabilize the cortical actin filament network, abolished thrombin-induced coupling between hTrp1 and IP(3)R type II. Incubation with the anti-hTrp1 antibody inhibited thrombin-evoked Ca(2+) entry without affecting Ca(2+) release from intracellular stores. These results provide evidence for the involvement of hTrp1 in the activation of store-mediated Ca(2+) entry by coupling to IP(3)R type II in normal human cells.  相似文献   

5.
Stimulation of G-protein coupled membrane receptors linked to phospholipase C results in production of the second messengers diacylglycerol and inositol-1,4,5-trisphosphate (IP3). IP3 releases Ca2+ from the endoplasmic reticulum, which triggers increased Ca2+ influx across the plasma membrane, so-called capacitative calcium entry. DAG can also activate plasma membrane calcium-permeable channels but the mechanism is still not fully understood. In the pregnant human myometrial cell line PHM1 and in primary myometrial cells, 1-oleoyl-2-acetyl-sn-glycerol (OAG), a membrane-permeant analogue of diacylglycerol, induced variable oscillatory patterns of intracellular free Ca2+. Similar behavior was seen with Sr2+ entry. The Ca2+ oscillations were not blocked by a broad spectrum of protein kinase C inhibitors, including chelerytrine, bisindolylmaleimide I and calphostin C, and were enhanced and prolonged by RHC-80267, an inhibitor of diacylglycerol lipase. The OAG-induced oscillatory response was not dependent on Ca2+ release from the endoplasmic reticulum but required extracellular Ca2+. Our results indicate that diacylglycerol directly activates cation channels in PHM1 and primary myometrial cells and promotes intracellular Ca2+ oscillations by actions independent of intracellular Ca2+ -ATPase activity and protein kinase C involvement.  相似文献   

6.
Trp1 has been proposed as a component of the store-operated Ca(2+) entry (SOC) channel. However, neither the molecular mechanism of SOC nor the role of Trp in this process is yet understood. We have examined possible molecular interactions involved in the regulation of SOC and Trp1 and report here for the first time that Trp1 is assembled in signaling complex associated with caveolin-scaffolding lipid raft domains. Endogenous hTrp1 and caveolin-1 were present in low density fractions of Triton X-100-extracted human submandibular gland cell membranes. Depletion of plasma membrane cholesterol increased Triton X-100 solubility of Trp1 and inhibited carbachol-stimulated Ca(2+) signaling. Importantly, thapsigargin stimulated Ca(2+) influx, but not internal Ca(2+) release, and inositol 1,4,5-triphosphate (IP(3))-stimulated I(soc) were also attenuated. Furthermore, both anti-Trp1 and anti-caveolin-1 antibodies co-immunoprecipitated hTrp1, caveolin-1, Galpha(q/11), and IP(3) receptor-type 3 (IP(3)R3). These results demonstrate that caveolar microdomains provide a scaffold for (i) assembly of key Ca(2+) signaling proteins into a complex and (ii) coordination of the molecular interactions leading to the activation of SOC. Importantly, we have shown that Trp1 is also localized in this microdomain where it interacts with one or more components of this complex, including IP(3)R3. This finding is potentially important in elucidating the physiological function of Trp.  相似文献   

7.
The present study was conducted on human Jurkat T-cell lines in order to elucidate the role of phospholipase A2 in capacitative calcium entry. We have employed thapsigargin (TG) that induces increases in [Ca2+]i by emptying the calcium pool of endoplasmic reticulum, followed by capacitative calcium entry. We designed a Ca2+ free/Ca2+ reintroduction (CFCR) protocol for the experiments, conducted in Ca2+-free medium. By employing CFCR protocol, we observed that addition of exogenous arachidonic acid (AA) stimulated TG-induced capacitative calcium influx. The liberation of endogenous AA and its autocrine action seems to be implicated during TG-induced capacitative calcium influx: TG potentiates the induction of constitutively expressed mRNA of four PLA2 isoforms (type 1B, IV, V, VI), the inhibitors of the three PLA2 isotypes (type 1B, V, VI) inhibit TG-induced release of [3H]AA into the extracellular medium, and finally, these PLA2 inhibitors do curtail TG-stimulated capacitative calcium entry in these cells. These results suggest that stimulation of three isoforms of PLA2 by thapsigargin liberates free AA that, in turn, induces capacitative calcium influx in human T-cells.  相似文献   

8.
Transient receptor potential protein 1 (Trp1) has been proposed as a component of the store-operated Ca(2+) entry (SOCE) channel. However, the exact mechanism by which Trp1 is regulated by store depletion is not known. Here, we examined the role of the Trp1 C-terminal domain in SOCE by expressing hTrp1alpha lacking amino acids 664-793 (DeltaTrp1alpha) or full-length hTrp1alpha in the HSG (human submandibular gland) cell line. Both carbachol (CCh) and thapsigargin (Tg) activated sustained Ca(2+) influx in control (nontransfected), DeltaTrp1alpha-, and Trp1alpha-expressing cells. Sustained [Ca(2+)](i), following stimulation with either Tg or CCh in DeltaTrp1alpha-expressing cells, was about 1.5-2-fold higher than in Trp1alpha-expressing cells and 4-fold higher than in control cells. Importantly, (i) basal Ca(2+) influx and (ii) Tg- or CCh-stimulated internal Ca(2+) release were similar in all the cells. A similar increase in Tg-stimulated Ca(2+) influx was seen in cells expressing Delta2Trp1alpha, lacking the C-terminal domain amino acid 649-793, which includes the EWKFAR sequence. Further, both inositol 1,4,5-trisphosphate receptor-3 and caveolin-1 were immunoprecipitated with DeltaTrp1alpha and Trp1alpha. In aggregate, these data suggest that (i) the EWKFAR sequence does not contribute significantly to the Trp1-associated increase in SOCE, and (ii) the Trp1 C-terminal region, amino acids 664-793, is involved in the modulation of SOCE.  相似文献   

9.
Capacitative Ca(2+) entry is essential for refilling intracellular Ca(2+) stores and is thought to be regulated primarily by inositol 1, 4,5-trisphosphate (IP(3))-sensitive stores in nonexcitable cells. In nonexcitable A549 cells, the application of caffeine or ryanodine induces Ca(2+) release in the absence of extracellular Ca(2+) similar to that induced by thapsigargin (Tg), and Ca(2+) entry occurs upon the readdition of extracellular Ca(2+). The channels thus activated are also permeable to Mn(2+). The channels responsible for this effect appear to be activated by the depletion of caffeine/ryanodine-sensitive stores per se, as evidenced by the activation even in the absence of increased intracellular Ca(2+) concentration. Tg pretreatment abrogates the response to caffeine/ryanodine, whereas Tg application subsequent to caffeine/ryanodine treatment induces further Ca(2+) release. The response to caffeine/ryanodine is also abolished by initial ATP application, whereas ATP added subsequent to caffeine/ryanodine induces additional Ca(2+) release. RT-PCR analyses showed the expression of a type 1 ryanodine receptor, two human homologues of transient receptor potential protein (hTrp1 and hTrp6), as well as all three types of the IP(3) receptor. These results suggest that in A549 cells, (i) capacitative Ca(2+) entry can also be regulated by caffeine/ryanodine-sensitive stores, and (ii) the RyR-gated stores interact functionally with those sensitive to IP(3), probably via Ca(2+)-induced Ca(2+) release.  相似文献   

10.
A Huber  P Sander  A Gobert  M Bhner  R Hermann    R Paulsen 《The EMBO journal》1996,15(24):7036-7045
The transient receptor potential protein (Trp) is a putative capacitative Ca2+ entry channel present in fly photoreceptors, which use the inositol 1,4,5-trisphosphate (InsP3) signaling pathway for phototransduction. By immunoprecipitation studies, we find that Trp is associated into a multiprotein complex with the norpA-encoded phospholipase C, an eye-specific protein kinase C (InaC) and with the InaD protein (InaD). InaD is a putative substrate of InaC and contains two PDZ repeats, putative protein-protein interaction domains. These proteins are present in the photoreceptor membrane at about equimolar ratios. The Trp homolog analyzed here is isolated together with NorpA, InaC and InaD from blowfly (Calliphora) photoreceptors. Compared to Drosophila Trp, the Calliphora Trp homolog displays 77% amino acid identity. The highest sequence conservation is found in the region that contains the putative transmembrane domains S1-S6 (91% amino acid identity). As investigated by immunogold labeling with specific antibodies directed against Trp and InaD, the Trp signaling complex is located in the microvillar membranes of the photoreceptor cells. The spatial distribution of the signaling complex argues against a direct conformational coupling of Trp to an InsP3 receptor supposed to be present in the membrane of internal photoreceptor Ca2+ stores. It is suggested that the organization of signal transducing proteins into a multiprotein complex provides the structural basis for an efficient and fast activation and regulation of Ca2+ entry through the Trp channel.  相似文献   

11.
12.
Intracellular Ca2+ signalling evoked by Ca2+ mobilizing agonists, like angiotensin II in the adrenal gland, involves the activation of inositol(1,4,5)trisphosphate(InsP3)-mediated Ca2+ release from internal stores followed by activation of a Ca2+ influx termed capacitative calcium entry. Here we report the amino acid sequence of a functional capacitative Ca2+ entry (CCE) channel that supports inward Ca2+ currents in the range of the cell resting potential. The expressed CCE channel opens upon depletion of Ca2+ stores by InsP3 or thapsigargin, suggesting that the newly identified channel supports the CCE coupled to InsP3 signalling.  相似文献   

13.
Trp12, a novel Trp related protein from kidney   总被引:12,自引:0,他引:12  
  相似文献   

14.
Zhou JG  Qiu QY  Zhang Z  Liu YJ  Guan YY 《Life sciences》2006,78(14):1558-1563
It is generally thought that receptor-operated Ca2+ entry is related to store-operated or capacitative Ca2+ entry mechanism. Recent evidence suggests that non-capacitative Ca2+ entry pathways are also involved in receptor activated Ca2+ influx in many different kinds of cells. In this study, we studied whether alpha1-adrenoreceptor (alpha1-AR)-activated Ca2+ entry is coupled to both capacitative and non-capacitative pathways in A10 vascular smooth muscle cells by fura-2 fluorescence probe and conventional whole-cell patch clamp techniques. We found that both thapsigargin (TG) and phenylephrine (Phe) induced transient increase in cytoplasmic Ca2+ concentration ([Ca2+]i) in Ca2+-free medium, and subsequent addition of Ca2+ evoked a sustained [Ca2+]i rise. When the membrane potential was held at -60 mV, both TG and Phe activated inward currents, which were inhibited by GdCl3(Gd3+), 0Na+/0Ca2+ solution and 1-{beta[3-(4-mehtoxyphenyl)propoxy]-4-methoxypheneth-yl}-1H- imidazole hydro-chloride (SK&F96365), but not by nifedipine. When Ca2+ store was depleted by TG in Ca2+-free solution, Phe failed to further evoke [Ca2+]i rise. However, when capacitative Ca2+ entry was activated by TG in the medium containing Ca2+, 10 microM Phe further increased [Ca2+]i. At the same concentration, TG activated an inward cation current, subsequent addition of Phe also further induced an inward cation current. Furthermore, the amplitudes of [Ca2+]i increase and current density induced by Phe in the presence of TG were less than that induced by Phe alone. Our results suggest that both capacitative and non-capacitative Ca2+ entry pathways are involved in Ca2+ influx induced by activation of alpha1-AR in A10 vascular smooth muscle cells.  相似文献   

15.
The role of Trp3 in cellular regulation of Ca(2+) entry by NO was studied in human embryonic kidney (HEK) 293 cells. In vector-transfected HEK293 cells (controls), thapsigargin (TG)-induced (capacitative Ca(2+) entry (CCE)-mediated) intracellular Ca(2+) signals and Mn(2+) entry were markedly suppressed by the NO donor 2-(N,N-diethylamino)diazenolate-2-oxide sodium salt (3 microm) or by authentic NO (100 microm). In cells overexpressing Trp3 (T3-9), TG-induced intracellular Ca(2+) signals exhibited an amplitude similar to that of controls but lacked sensitivity to inhibition by NO. Consistently, NO inhibited TG-induced Mn(2+) entry in controls but not in T3-9 cells. Moreover, CCE-mediated Mn(2+) entry into T3-9 cells exhibited a striking sensitivity to inhibition by extracellular Ca(2+), which was not detectable in controls. Suppression of mitochondrial Ca(2+) handling with the uncouplers carbonyl cyanide m-chlorophenyl hydrazone (300 nm) or antimycin A(1) (-AA(1)) mimicked the inhibitory effect of NO on CCE in controls but barely affected CCE in T3-9 cells. T3-9 cells exhibited enhanced carbachol-stimulated Ca(2+) entry and clearly detectable cation currents through Trp3 cation channels. NO as well as carbonyl cyanide m-chlorophenyl hydrazone slightly promoted carbachol-induced Ca(2+) entry into T3-9 cells. Simultaneous measurement of cytoplasmic Ca(2+) and membrane currents revealed that Trp3 cation currents are inhibited during Ca(2+) entry-induced elevation of cytoplasmic Ca(2+), and that this negative feedback regulation is blunted by NO. Our results demonstrate that overexpression of Trp3 generates phospholipase C-regulated cation channels, which exhibit regulatory properties different from those of endogenous CCE channels. Moreover, we show for the first time that Trp3 expression determines biophysical properties as well as regulation of CCE channels by NO and mitochondrial Ca(2+) handling. Thus, we propose Trp3 as a subunit of CCE channels.  相似文献   

16.
G H Brough  S Wu  D Cioffi  T M Moore  M Li  N Dean  T Stevens 《FASEB journal》2001,15(10):1727-1738
Heterologous expression of the transient receptor potential-1 gene product (Trp1) encodes for a Ca2+ entry pathway, though it is unclear whether endogenous Trp1 contributes to a selective store-operated Ca2+ entry current. We examined the role of Trp1 in regulating both store-operated Ca2+ entry and a store-operated Ca2+ entry current, I(SOC), in A549 and endothelial cells. Twenty different 'chimeric' 2'-O-(2-methoxy)ethylphosphothioate antisense oligonucleotides were transfected separately using cationic lipids and screened for their ability to inhibit Trp1 mRNA. Two hypersensitive regions were identified, one at the 5' end of the coding region and the second in the 3' untranslated region beginning six nucleotides downstream of the stop codon. Antisense oligonucleotides stably decreased Trp1 at concentrations ranging from 10 to 300 nM, for up to 72 h. Thapsigargin increased global cytosolic Ca2+ and activated a I(SOC), which was small (-35 pA @ -80 mV), reversed near +40 mV, inhibited by 50 microM La3+, and exhibited anomalous mole fraction dependence. Inhibition of Trp1 reduced the global cytosolic Ca(2+) response to thapsigargin by 25% and similarly reduced I(SOC) by 50%. These data collectively support a role for endogenously expressed Trp1 in regulating a Ca2+-selective current activated upon Ca2+ store depletion.  相似文献   

17.
The role of intracellular Ca2+ stores and capacitative Ca2+ entry on EGF-induced cell proliferation was investigated in mouse mammary epithelial cells. We have previously demonstrated that EGF enhances Ca2+ mobilization (release of Ca2+ from intracellular Ca2+ stores) and capacitative Ca2+ entry correlated with cell proliferation in mouse mammary epithelial cells. To confirm their role on EGF-induced cell cycle progression, we studied the effects of 2,5-di-tert-butylhydroquinone (DBHQ), a reversible inhibitor of the Ca2+ pump of intracellular Ca2+ stores, and SK&F 96365, a blocker of capacitative Ca2+ entry, on mitotic activity induced by EGF. Mitotic activity was examined using an antibody to PCNA for immunocytochemistry. SK&F 96365 inhibited capacitative Ca2+ entry in a dose-dependent manner (I50: 1-5 microM). SK&F 96365 also inhibited EGF-induced cell proliferation in the same range of concentration (I50: 1-5 microM). DBHQ suppressed [Ca2+]i response to UTP and thus depleted completely Ca2+ stores at 5 microM. DBHQ also inhibited EGF-induced cell proliferation at an I50 value of approximately 10 microM. The removal of these inhibitors from the culture medium increased the reduced mitotic activity reversibly. Using a fluorescent assay of DNA binding of ethidium bromide, no dead cells were detected in any of the cultures. These results indicate that the inhibitory effects of SK&F 96365 and DBHQ on cell proliferation were due to the inhibition of capacitative Ca2+ entry and Ca2+ mobilization suggesting the importance of capacitative Ca2+ entry and Ca2+ mobilization in the control of EGF-induced cell cycle progression in mouse mammary epithelial cells.  相似文献   

18.
The presence of the capacitative Ca(2+) entry mechanism was investigated in porcine oocytes. In vitro-matured oocytes were treated with thapsigargin in Ca(2+)-free medium for 3 h to deplete intracellular calcium stores. After restoring extracellular calcium, a large calcium influx was measured by using the calcium indicator dye fura-2, indicating capacitative Ca(2+) entry. A similar divalent cation influx could also be detected with the Mn(2+)-quench technique after inositol 1,4,5-triphosphate-induced Ca(2+) release. In both cases, lanthanum, the Ca(2+) permeable channel inhibitor, completely blocked the influx caused by store depletion. Heterologous expression of Drosophila trp in porcine oocytes enhanced the thapsigargin-induced Ca(2+) influx. Polymerase chain reaction cloning using primers that were designed based on mouse and human trp sequences revealed that porcine oocytes contain a trp homologue. As in other cell types, the capacitative Ca(2+) entry mechanism might help in refilling the intracellular stores after the release of Ca(2+) from the stores. Further investigation is needed to determine whether the trp channel serves as the capacitative Ca(2+) entry pathway in porcine oocytes or is simply activated by the endogenous capacitative Ca(2+) entry mechanism and thus contributes to Ca(2+) influx.  相似文献   

19.
20.
Peroxisome proliferator activated receptor-gamma (PPAR-gamma) is abundantly expressed in atherosclerotic lesions and is implicated in atherogenesis. The existence of three splice variants, PPAR-gamma 1, PPAR-gamma 2, and PPAR-gamma 3 has been established. Using monocyte-derived macrophages from cynomolgus monkeys, we demonstrate here the identification of two new PPAR-gamma exons, exon C and exon D, which splice together with already established exons A1, A2, and B in the 5(') terminal region to generate four novel PPAR-gamma subtypes, PPAR-gamma 4, -gamma 5, -gamma 6, and -gamma 7. PPAR-gamma 4 and gamma 5 were detected only in macrophages whereas gamma 6 and gamma 7 were expressed both in macrophages and adipose tissues. None of these novel isoforms were detected in muscle, kidney, and spleen from monkeys. We found sequences identical to exons C and D in the human genome database. These and all PPAR-gamma exons known to date are encoded by a single gene, located from region 10498 K to 10384 K on human chromosome 3. We cloned and expressed PPAR-gamma 1, PPAR-gamma 4, and PPAR-gamma 5 proteins in yeast using the expression vector pPICZB. As expected, all recombinant proteins showed a molecular weight of approximately 50 kDa. We also investigated the effect of a high-fat diet on the level of macrophage PPAR-gamma expression in monkeys. RT-PCR showed a significant increase in total PPAR-gamma and ABCA1 mRNA levels in macrophages of fat-fed monkeys (n=7) compared to those maintained on a normal diet (n=2). However, none of the novel isoforms seemed to be induced by fat-feeding. We used tetracycline-responsive expression vectors to obtain moderate expression of PPAR-gamma 4 and -gamma 5 in CHO cells. In these cells, expression of PPAR-gamma 5 but not -gamma 4 repressed the expression of ABCA1. Neither isoform modulated the expression of lipoprotein lipase. Our results suggest that individual PPAR-gamma isoforms may be responsible for unique tissue-specific biological effects and that PPAR-gamma 4 and -gamma 5 may modulate macrophage function and atherogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号