首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new molecule, type XIV collagen, with domains homologous to type IX and XII collagens has been recently discovered in pepsin extracts of fetal bovine tissues (Dublet, B., and van der Rest, M. (1991) J. Biol. Chem. 266, 6853-6858). In the present study, we describe the purification and the characterization of the intact native form of this newly discovered collagen. By using only two chromatographic steps we were able to obtain pure type XIV collagen. Furthermore, minor modifications of the protocol allowed us to perform the simultaneous large scale purification of type XII and type XIV collagens from the same tissue. Intact type XIV collagen migrates on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) as two bands of 220 and 290 kDa (reducing conditions). After collagenase treatment, a single band of 190 kDa is observed, which represents the large non-collagenous domain of the molecule (NC3). Rotary shadowing electron micrographs of intact type XIV collagen show a cross-shaped structure formed by a thin tail attached through a central globule to three identical "fingers." These properties are similar to those previously described for intact chicken type XII collagen (Dublet, B., Oh, S., Sugrue, S. P., Gordon, M. K., Gerecke, D. R., Olsen, B. R., and van der Rest, M. (1989) J. Biol. Chem. 264, 13150-13156), but the two molecules are different gene products and have charge and glycosylation differences. Finally, we show that the three chains of purified type XIV collagen have an apparent molecular mass of approximately 220 kDa and are not cross-linked to each other by bonds other than disulfide bridges. The same observation was made for type XII collagen. In both cases, the 290-kDa migrating band in SDS-PAGE is due to incomplete denaturation in electrophoresis sample buffer in the absence of urea.  相似文献   

2.
Three overlapping cDNAs encoding alpha 1 (XII) collagen have been isolated and sequenced. The DNAs define five sequence domains within the chain. Three domains are nontriple-helical; two are relatively short triple-helical regions. The amino acid sequences of tryptic peptides derived from 16- and 10-kDa pepsin-resistant fragments isolated from tendon extracts are in full agreement with the deduced sequences of the triple-helical regions. Two of the five sequence domains in alpha 1 (XII), one triple-helical and one nontriple-helical, show a high degree of similarity to regions in type IX collagen chains. In addition, examination of seven exons in the alpha 1 (XII) gene shows that the gene is, in part, similar to the structure of type IX collagen genes. Therefore, collagen types IX and XII are partially homologous. The alpha 1 (XII) sequence data predict an asymmetric structure for type XII collagen molecules, fully consistent with the rotary shadowing images. These images show a triple-helical 75-nm tail attached through a central globule to three finger-like structures, each 60 nm long (Dublet, B., Oh, S., Sugrue, S. P., Gordon, M. K., Gerecke, D. R., Olsen, B. R., and van der Rest, M. (1989) J. Biol. Chem. 264, 13150-13156).  相似文献   

3.
Immunoidentification of type XII collagen in embryonic tissues   总被引:5,自引:3,他引:2       下载免费PDF全文
We have generated a monoclonal antibody against a synthetic peptide whose sequence was derived from the nucleotide sequence of a cDNA encoding alpha 1(XII) collagen. The antibody, 75d7, has been used to identify the alpha 1(XII) chain on immunoblots of SDS-PAGE tendon extracts as a 220-kD polypeptide, under reducing conditions. Amino-terminal amino acid sequence analysis of an immunopurified cyanogen bromide fragment of type XII collagen from embryonic chick tendons gave a single sequence identical to that predicted from the cDNA, thus confirming that the antibody recognizes the type XII protein. Immunofluorescence studies with the antibody demonstrate that type XII collagen is localized in type I-containing dense connective tissue structures such as tendons, ligaments, perichondrium, and periosteum. With these data, taken together with previous results showing that a portion of the sequence domains of type XII collagen is similar to domains of type IX, a nonfibrillar collagen associated with cross-striated fibrils in cartilage, we suggest that types IX and XII collagens are members of a distinct class of extracellular matrix proteins found in association with quarter-staggered collagen fibrils.  相似文献   

4.
The structurally related type XII-like collagen molecules TL-A and TL-B were recently identified in fetal bovine epiphyseal cartilage and subsequently shown to be collagen types XII and XIV, respectively. By indirect immunofluorescent staining of cartilage using monoclonal antibodies to the NC3 domains of each molecule, it was shown that type XII collagen was present predominantly around cartilage canals, the articular surface, subperichondrial margins, and the perichondrium, was less so in the remaining cartilage matrix, and was absent from the growth plate region. In the permanent cartilage of trachea, type XII stained somewhat more intensely in the margins beneath the loose connective tissue. Type XIV collagen localized more uniformly throughout the articular cartilage and was also absent from the growth plate region, whereas in tracheal cartilage, its distribution was similar to type XII. We have characterized the structure of these cartilage molecules and compared them with those from fetal bovine skin. Extraction of cartilage with 1 M NaCl and differential NaCl precipitation yields a fraction enriched for these two collagens. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting with monoclonal antibodies to the large amino-terminal non-triple-helical domain, NC3, revealed the presence in cartilage of two forms of type XII collagen: type XIIB, the molecule previously identified in chick and bovine tissues, and type XIIA, a much larger form equivalent to the molecule recently identified in WISH-transformed epithelial cell culture medium (Lunstrum, G. P., McDonough, A. M., Marinkovich, M. P., Keene, D. R., Morris, N. P., and Burgeson, R. E. (1992) J. Biol. Chem. 267, 20087-20092). Digestion with bacterial collagenase shows that the increased mass is present in the NC3A domain. Additional purification by velocity sedimentation and observation of rotary-shadowed images demonstrates molecules with extended non-triple-helical arms approximately 80 nm in length analogous to the WISH cell molecules. Electrophoretic mobilities of bands corresponding to type XIIA, but not type XIIB, are sensitive to chondroitinase ABC, indicating that type XIIA is a chondroitin sulfate proteoglycan and that modification occurs predominantly within the NC3A domain distal to NC3B. Neither type XIIB from skin nor type XIIA from WISH cells are chondroitinase-sensitive. By similar analysis, a portion of the type XIV collagen chains in cartilage was also sensitive to chondroitinase digestion. Chondroitin sulfate is apparently not located on its NC3 domain. As in skin, collagen types XII and XIV have subtly different distributions within cartilage and type XII may have a tissue-specific structure.  相似文献   

5.
In order to characterize a larger form of disulfide-bonded cartilage collagen, explants of 17-day embryonic chick sterna were cultured in the presence of [3H] proline. Radioactive collagen chains and fragments that were synthesized and secreted into the culture medium were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography. After limited pepsin digestion of the medium, two discrete disulfide-bonded collagen fragments were detected with Mr = 210,000 and 153,000. These fragments contained 28 and 17.5%, respectively, of the radioactivity in the alpha 1(II)-chains. The smaller fragment (called M) produced three components upon reduction (Mr = 104,000, 51,000, and 31,000) and seemed to represent the previously reported collagens, HMW and M1. The larger fragment (called N) has not been previously described and gave rise to three components upon reduction (Mr = 140,000, 69,000, and 49,000). Prolonged pepsin treatment resulted in the gradual decrease of N with a corresponding increase of M, suggesting the conversion of N to M. CNBr peptide mapping demonstrated that all M-derived peptides were present in N and that N contained extra peptides that account for its larger size. These observations suggest that N represents a larger more intact form of cartilage-derived disulfide-bonded collagen.  相似文献   

6.
Previously undescribed disulfide-bonded collagenous pepsin-derived fragments have been isolated from fetal calf tendon and skin. One fragment, 10.5 kDa after reduction, was shown to be similar but distinct to the COL1 domain of the recently characterized type XII collagen (64% primary structure identity). The similarity includes important features such as size, location of the cysteine residues, and nature and position of an imperfection of the triple helix. From fetal calf skin, two approximately 34-kDa disulfide-bonded trimeric fragments were isolated in the unreduced form. Amino acid sequencing showed that one fragment contained solely the COL1 domain of type XII collagen while the other one only contained the COL1 domain of the new chain. Like type XII collagen, the new chain is therefore part of a homotrimeric molecule and should thus be considered as a distinct collagen type. We propose to call the molecule from which this fragment is derived, type XIV collagen, with a chain composition (alpha 1 (XIV]3. The presence of a domain similar to the COL1 domain of collagens types IX and XII suggests that type XIV collagen belongs to the group of fibril-associated collagens with interrupted triple helices (FACIT). Two other fragments, 13.5 and 17 kDa after reduction, were also purified. They were shown to contain the same triple helical domain with different pepsin cleavage sites at the amino terminus. Several tryptic peptides were sequenced, and the derived sequences could be aligned with the COL2 domain of type XII collagen or with flanking sequences in the NC2 and NC3 domains (61% sequence identity). These fragments are very likely to be also derived from type XIV collagen.  相似文献   

7.
An enzymatic activity, capable of removing the COOH-terminal extensions of type I chick procollagen, has been demonstrated in embryonic chick tendons and in cultured tendon fibroblasts utilizing two new methods of analysis. The protease was purified by a combination of ultrafiltration concanavalin A affinity chromatography and gel filtration. The isolated protein has an apparent Mr of 43,000 by gel filtration and sodium dodecyl sulfate gel electrophoresis. The enzyme shows a major pH optimum at 4.2 and is susceptible to inhibitors such as pepstatin and leupeptin; it therefore seems related to the cathepsins. The possibility that this enzyme plays a role in the limited proteolytic processing of procollagen is discussed.  相似文献   

8.
Type X collagen was extracted with 1 M NaCl and 10 mM dithiothreitol at neutral pH from fetal human growth plate cartilage and purified to homogeneity by gel filtration and anion-exchange chromatography. The purified protein migrates in SDS/polyacrylamide gels with an apparent Mr of 66,000 under reducing conditions, and as a high-Mr oligomer under non-reducing conditions. Purified collagenase digests most of the molecule; pepsin digestion at 4 degrees C decreases the Mr of the monomer to 53,000. A rabbit antiserum was raised against purified human type X collagen; the IgG fraction was specific for this collagen by criteria of ELISA and immunoblotting after absorption with collagen types I, II, VI, IX and XI. Immunohistological studies localized type X collagen exclusively in the zone of hypertrophic and calcifying cartilage.  相似文献   

9.
Purification and protein sequence analysis of rat liver prolactin receptor   总被引:4,自引:0,他引:4  
Prolactin receptors were purified from rat liver membranes by single-step immunoaffinity chromatography using a specific monoclonal antibody to the rat liver prolactin receptor. Scatchard analysis of 125I-human growth hormone binding to the purified receptor revealed two classes of specific binding sites with Ka = 18.5 x 10(9) and 1.2 x 10(9) M-1. Considering that both classes of binding sites are responsible for high affinity prolactin binding, the partially purified receptor preparation had a binding activity of 1.69 nmol/mg protein, representing 1000-fold purification over microsomal receptors with a recovery of 52%. From three separate purifications, 6 mg of partially purified prolactin receptor were obtained with a purity of approximately 4 to 6.5%. Thus, the use of monoclonal antibody for affinity chromatography resulted in a large improvement of prolactin receptor purification compared to previous hormone affinity chromatography (300-fold purification, 15% recovery). The purified receptor was run on preparative sodium dodecyl sulfate polyacrylamide gel electrophoresis, and a homogeneous preparation of prolactin receptor was obtained by electroelution from gel slices corresponding to Mr 38,000-43,000. Immunoblot analysis using a radiolabeled monoclonal antibody revealed two separate but closely located bands of Mr 42,000 and 40,000 in microsomal, partially purified, and electroeluted preparations. The homogeneous receptor protein was extensively digested with L-1-tosylamido-2-phenylethyl chloromethyl ketone trypsin, and 10 internal amino acid sequences of the rat liver prolactin receptor were determined by gas-phase sequence analysis. Oligonucleotide probes were prepared against two of these internal sequences, and a prolactin receptor cDNA was isolated from a rat liver library using one of these probes (Boutin, J. M., Jolicoeur, C., Okamura, H., Gagnon, J., Edery, M., Shirota, M., Banville, D., Dusanter-Fourt, I., Djiane, J., and Kelly, P. A. (1988) Cell 53, 69-77). The amino acid sequence deduced from the cDNA reveals three potential sites of N-linked glycosylation, two of which were confirmed during protein sequencing. The prolactin receptor was characterized by affinity labeling with 125I-human growth hormone. Cross-linking of microsomes revealed a single band for the hormone-receptor complex with Mr 62,000. On the other hand, cross-linking of Triton X-100-solubilized or partially purified receptor with labeled hormone resulted in the appearance of two bands with Mr 62,000 and 102,000, suggesting the existence of a subunit structure of the prolactin receptor, or alternatively, the existence of two types of prolactin receptor.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
An alpha-macroglobulin (alpha 2M), which is a dimer consisting of two non-disulfide-bonded subunits, was identified and purified from frog plasma by Ni2+ chelate affinity chromatography. This frog "half-molecule" alpha-macroglobulin migrated as an alpha 2-globulin in cellulose-acetate electrophoresis rather than as the previously described frog alpha 1M, which exists as a tetramer formed by the noncovalent association of disulfide-bonded pairs. A molecular weight of approximately 380 000 was obtained by gel-filtration high-pressure liquid chromatography, and in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) the protein migrated as a single band of Mr approximately 180 000 before and after reduction. No evidence was obtained for association of this protein to a higher molecular weight species. After the preparation was heated, additional bands were obtained in SDS-PAGE with Mr approximately 60 000 and 12 000. The additional bands were not obtained after heating methylamine-treated preparations. The circular dichroic spectrum of frog alpha 2M exhibits negative ellipticity over the region 205-250 nm with a minimum at 216 nm. After reaction with proteinase, a decrease in the absolute mean residue rotation was obtained. Amino acid analysis demonstrated that frog alpha 2M and alpha 1M are similar in composition to avian and mammalian alpha-macroglobulins; however, there are sufficient differences in the composition of these two amphibian alpha-macroglobulins to support the conclusion that they are distinct proteins. Frog alpha 2M bound approximately 0.5 mol of trypsin/mol of inhibitor. This binding was abolished by pretreatment with methylamine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
《The Journal of cell biology》1995,130(4):1005-1014
Collagen XII has a short collagenous tail and a very large, three-armed NC3 domains consisting primarily of fibronectin type III repeats. Differential splicing within this domain gives rise to a large (320 kD) and a small (220 kD) subunit; the large but not the small can carry glycosaminoglycan. To investigate whether collagen XII variants have distinct expression patterns and functions, we generated antibody and cDNA probes specific for the alternatively spliced domain. We report here that the large variant has a more restricted expression in embryonic tissue than the small. For example, whereas the small variant is widespread in the dermis, the large is limited to the base of feather buds. Distinct proportions of mRNA for the two variants were detected depending on the tissue. Monoclonal antibodies allowed us to separate collagen XII variants, and to show that homo- and heterotrimers exist. Collagen XII variants differ in ligand binding. Small subunits interact weakly with heparin via their COOH-terminal domain. Large subunits have additional, stronger heparin-binding site(s) in their NH2-terminal extra domain. In vivo, both large and small collagen XII are associated with interstitial collagen. Here we show biochemically and ultrastructurally that collagen XII can be incorporated into collagen I fibrils when it is present during, but not after, fibril formation. Removal of the collagenous domain of collagen XII reduces its coprecipitation with collagen I. Our results indicate that collagen XII is specifically associated with fibrillar collagen, and that the large variant has binding sites for extracellular ligands not present in the small variant.  相似文献   

12.
The receptor for nerve growth factor (NGF) was purified from Triton X-100 extracts of sympathetic ganglia membranes by affinity chromatography on NGF-Sepharose. Elution of purified receptor was accomplished at pH 5 in the presence of 1 M NaCl. Sodium dodecyl sulfate gel electrophoresis of the purified iodinated receptor showed three major bands at Mr = 126,000, Mr = 105,000, and Mr = 81,000. Affinity labeling of the purified receptor using 125I-NGF and the photoreactive agent N-hydroxysuccinimidyl-p-azidobenzoate resulted in two major cross-linked complexes corresponding to Mr = 135,000 and Mr = 110,000. This labeling pattern is similar to that observed with sympathetic ganglia membranes (Massague, J., Guillette, B. J., Czech, M. P., Morgan, C. J., and Bradshaw, R. A. (1981) J. Biol. Chem. 256, 9419-9424) and indicates that these two forms do not arise from the cross-linking procedure. Reaction of the photoaffinity labeled NGF receptors with increasing amounts of trypsin resulted in a progressive decrease in the high molecular weight complex with a concomitant increase in the low molecular weight form. When the larger complex was isolated by electroelution from a sodium dodecyl sulfate gel and treated with trypsin, a species corresponding to Mr = 100,000 was generated. These observations are best explained by a precursor-product relationship for the two NGF receptor species of sympathetic neurons.  相似文献   

13.
A large, alternate form of type XII collagen has been identified in cultures of the human epidermoid cell line WISH. This form, designated XIIA, is comprised of alpha chains that are approximately 90 kDa larger than the 220-kDa alpha chain previously characterized in extracts of fetal chicken and bovine tissues. Results from both collagenase digestion and rotary shadow analysis of partially purified material show that the increase is due to a larger NC3 domain. While both the large (XIIA) and the small (XIIB) forms of type XII collagen are identified in pulse-chase radiolabeling of fetal bovine skin explant culture, they are not related in a precursor-product fashion. Inhibition studies with alpha, alpha'-dipyridyl indicate that proper folding of the collagen helix is required for complete assembly and secretion of type XIIA in WISH cell culture. The 310-kDa alpha 1A chain is likely to represent the bovine equivalent of a second translation product, estimated to be 340 kDa, predicted from analysis of one complete chick cDNA sequence. Additionally, the amino-terminal amino acid sequence of the 220-kDa bovine alpha 1B chain was determined. This sequence is very near a potential alternate splice site predicted from analysis of chicken type XII cDNA.  相似文献   

14.
Human neutrophils contain a neutral metalloproteinase which degrades denatured collagens and potentiates the action of interstitial collagenase. This gelatinase is rapidly secreted from neutrophils stimulated with phorbol myristate acetate. The secreted enzyme has been purified by a combination of chromatography on DEAE-cellulose and gelatin-Sepharose. The purified enzyme was latent and had a specific activity of 24,000 units. Estimated molecular weight obtained by gel filtration was 150,000-180,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme showed three bands with relative molecular weights of 225,000, 130,000, and 92,000. Electrophoresis in the presence of a reducing agent revealed a single band of Mr = 92,000. All the proteins seen on the unreduced gel were found to contain proteolytic activity against gelatin and native type V collagen. Polyclonal antibodies were prepared against the Mr = 130,000 and 92,000 proteins. When analyzed by immunoblotting, both antibodies recognized all three proteins. Furthermore, the identical three proteins were identified by the antibodies when crude culture medium was immunoblotted. The purified enzyme was inhibited by EDTA and 1,10-phenanthroline but not by serine or thiol proteinase inhibitors, suggesting that the enzyme is a metalloendoproteinase. The enzyme had little or no activity against common protein substrates such as bovine serum albumin or casein. Native type I collagen was not cleaved under conditions where native type V collagen was extensively degraded.  相似文献   

15.
Acetylcholinesterase (EC 3.1.1.7) purified by affinity chromatography from 1.0 m ionic strength extracts of electric organ from the eel Electrophorus electricus consists of a mixture of 18 and 14 S enzyme forms. When examined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate without exposure to disulfide reducing agents, these purified preparations show two major high molecular weight bands (>300,000), labeled oligomers A and B, in addition to a major band corresponding to catalytic subunit dimers (150,000 Mr). All these major bands reflect intersubunit disulfide bonding. The 18 and 14 S forms in purified preparations were separated by extensive sucrose gradient centrifugation. Gel analyses of the isolated 18 and 14 S pools indicated that the larger oligomer A derives from the 18 S pool, while oligomer B is found primarily in the 14 S pool. These observations support a previous model for 18 S acetylcholinesterase (T. L. Rosenberry and J. M. Richardson (1977) Biochemistry, in press) which considers this molecule to consist of one oligomer A unit, composed of three pairs of catalytic subunits disulfide-bonded to a collagen-like tail structure, and three catalytic subunit dimers. Proteolytic cleavage of the tail structure in the 18 S form can occur to release an 11 S enzyme tetramer containing a residual tail fragment and to leave a 14 S form. We propose this 14 S form to consist of one oligomer B unit, composed of two pairs of catalytic subunits disulfide-bonded to the remaining tail structure, and two catalytic subunit dimers.  相似文献   

16.
Two 140 kDa collagenous glycoproteins were isolated from 5 M guanidinium chloride extracts of human uterine leiomyoma by two-dimensional preparative gel electrophoresis. The glycoproteins represented the major concanavalin A binding fraction of the extract and were also present in adult human skin. On two-dimensional gel electrophoresis the glycoproteins appeared as elongated spots, indicating variations of their isoelectric points from 5 to 6. These glycoproteins were disulfide-bonded components of high molecular mass protein and, after reduction, became sensitive to collagenase treatment that generated peptides corresponding in size to those of the noncollagenous domains of type VI collagen. Antisera raised against these purified glycoproteins reacted with either pepsin-derived alpha 1(VI) or pepsin-derived alpha 2(VI) chains but not with alpha 3(VI) chain of human type VI collagen. Reciprocally, these glycoproteins reacted with monoclonal antibodies against type VI collagen. These results indicate that the glycoproteins represent the integral alpha 1 and alpha 2 chains of type VI collagen. The globular domains of alpha 1(VI) and alpha 2(VI) chains remaining after collagenase treatment appeared on two-dimensional gel electrophoresis as elongated spots, suggesting that the noncollagenous portions determine the well known microheterogeneity of the molecule. The differences in isoelectric points between and within alpha chains may facilitate the formation of microfibrillar network.  相似文献   

17.
Periosteal-derived cells of young chicks have been reported to possess the potential to undergo terminal differentiation into osteogenic or chondrogenic phenotypes under high cell density culture conditions. In this culture, the temporal and spatial distribution of type XII collagen was immunocytochemically assessed using a monoclonal antibody. These high-density plated cells first formed a multilayer of fibroblast-like cells, in which type I and XII collagen were evenly distributed throughout the full thickness of the culture. With time, the top portion of the culture differentiated into bone tissue, while cells below this top layer differentiated into hypertrophic chondrocytes. In this transition, type XII collagen was temporally and spatially colocalized primarily with type I collagen: the top portion of bone layer was positive for both type I and XII collagens, whereas their staining intensity in the bottom portion decreased with time in culture. Using this antibody, type XII collagen was also found in developing embryonic chick tibiotarsus. These observations, taken together, suggest that type XII collagen production is a characteristic property of bone-forming cells.  相似文献   

18.
An azide- and vanadate-insensitive, N-ethylmaleimide-sensitive ATPase has been partially purified from a fraction enriched with potassium transporting goblet cell apical membranes of Manduca sexta larval midgut. The properties of the membrane-bound ATPase activity were identical to those of the ATPase activity of highly purified goblet cell apical membranes (Wieczorek, H., Wolfersberger, M. G., Cioffi, M., and Harvey, W. R. (1986) Biochim. Biophys. Acta 857, 271-281). 90% of the azide- and vanadate-insensitive ATPase activity was solubilized by C12E10, leaving 90% of the contaminating azide-sensitive mitochondrial ATPase activity in the pellet after centrifugation at 100,000 x g for 1 h. After discontinuous sucrose gradient centrifugation of the supernatant at 220,000 x g for 1 h nearly all of the azide- and vanadate-insensitive ATPase activity was found in the 30% sucrose fraction without contaminating azide- or vanadate-sensitive ATPase activity. Two prominent bands with relative molecular masses (Mr) of about 600,000 and 900,000, both displaying azide-insensitive and N-ethylmaleimide-sensitive ATPase activity, were found in native microgradient polyacrylamide gel electrophoresis of the 30% sucrose fraction. The two bands could not be separated by anion exchange chromatography. Denaturation of both bands resulted in the same polypeptide pattern (five major bands with Mr 70,000, 57,000, 46,000, 29,000 and 17,000) in sodium dodecylsulfate-polyacrylamide gel electrophoresis, indicating that they represented oligomers of the same protein unit. Substrate and inhibitor specificities of the partially purified ATPase were similar to those of the membrane-bound ATPase activity, whereas salt selectivity differed partly. Altogether, structural and functional properties of the ATPase strongly resemble those of vacuolar-type ATPases.  相似文献   

19.
Fetal epithelioid cells, isolated from human amniotic fluid, synthesize and secrete a type IV-like procollagen characterized by a unique pattern of cyanogen bromide (CNBr)-produced peptides. The procollagen is disulfide-bonded and, after reduction, migrates on sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a doublet between collagen beta components and pro-alpha 1(I) chains. No conversion of the procollagen to collagen or to procollagen intermediates is observed in cell culture. The procollagen was purified by salt fractionation and ion exchange chromatography; its amino acid composition resembles that of collagenous proteins extracted from basement membranes, with a high 3- and 4-hydroxyproline and hydroxylysine content and low levels of alanine and arginine. The major products obtained after limited proteolytic digestion of the protein retain interchain disulfide bonds and, after reduction, migrate on sodium dodecyl sulfate-polyacrylamide gel electrophoresis near intact pro-alpha 1(I) chains. The procollagen is secreted efficiently by amniotic fluid cells despite almost complete inhibition of peptidyl hydroxylation but, unlike type I procollagen, the secreted underhydroxylated chains lack interchain disulfide bonds. Since these cells also secrete fibronectin and elaborate an extensive extracellular matrix, the system should prove useful in the study of cell-matrix interactions.  相似文献   

20.
Flexor tendons function as energy storage and shock absorption structures in the tarsometatarso‐phalangeal joint (TMTPJ) of ostrich feet during high‐speed and heavy‐load locomotion. In this study, mechanisms underlying the energy storage and shock absorption of three flexor tendons of the third toe were studied using histology and scanning electron microscopy (SEM). Macroscopic and microscopic structures of the flexor tendons in different positions of TMTPJ were analyzed. Histological slices showed collagen fiber bundles of all flexor tendons in the middle TMTPJ were arranged in a linear‐type, but in the proximal and distal TMTPJ, a wavy‐type arrangement was found in the tendon of the M. flexor digitorum longus and tendon of the M. flexor perforans et perforatus digiti III, while no regular‐type was found in the tendon of the M. flexor perforatus digiti III. SEM showed that the collagen fiber bundles of flexor tendons were arranged in a hierarchically staggered way (horizontally linear‐type and vertically linear‐type). Linear‐type and wavy‐type both existed in the proximal TMTPJ for the collagen fiber bundles of the tendon of the M. flexor perforatus digiti III, but only the linear‐type was found in the distal TMTPJ. A number of fibrils were distributed among the collagen fiber bundles, which were likely effective in connection, force transmission and other functions. The morphology and arrangement of collagen fiber bundles were closely related to the tendon functions. We present interpretations of the biological functions in different positions and types of the tendons in the TMTPJ of the ostrich feet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号