首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Survival in the frozen state depends on biochemical adaptations that deal with multiple stresses on cells including long-term ischaemia and tissue dehydration. We investigated whether the AMP-activated protein kinase (AMPK) could play a regulatory role in the metabolic re-sculpting that occurs during freezing. AMPK activity and the phosphorylation state of translation factors were measured in liver and skeletal muscle of wood frogs (Rana sylvatica) subjected to anoxia, dehydration, freezing, and thawing after freezing. AMPK activity was increased 2-fold in livers of frozen frogs compared with the controls whereas in skeletal muscle, AMPK activity increased 2.5-, 4.5- and 3-fold in dehydrated, frozen and frozen/thawed animals, respectively. Immunoblotting with phospho-specific antibodies revealed an increase in the phosphorylation state of eukaryotic elongation factor-2 at the inactivating Thr56 site in livers from frozen frogs and in skeletal muscles of anoxic frogs. No change in phosphorylation state of eukaryotic initiation factor-2alpha at the inactivating Ser51 site was seen in the tissues under any of the stress conditions. Surprisingly, ribosomal protein S6 phosphorylation was increased 2-fold in livers from frozen frogs and 10-fold in skeletal muscle from frozen/thawed animals. However, no change in translation capacity was detected in cell-free translation assays with skeletal muscle extracts under any of the experimental conditions. The changes in phosphorylation state of translation factors are discussed in relation to the control of protein synthesis and stress-induced AMPK activation.  相似文献   

2.
This study was undertaken to interrogate cancer cell survival during long-term hypoxic stress. Two systems with relevance to carcinogenesis were employed: Fully transformed BJ cells and a renal carcinoma cell line (786-0). The dynamic of AMPK activity was consistent with a prosurvival role during chronic hypoxia. This was further supported by the effects of AMPK agonists and antagonists (AICAR and compound C). Expression of a dominant-negative AMPK alpha resulted in a decreased ATP level and significantly compromised survival in hypoxia. Dose-dependent prosurvival effects of rapamycin were consistent with mTOR inhibition being a critical downstream mediator of AMPK in persistent low oxygen.  相似文献   

3.

Background

AMP-dependent protein kinase (AMPK) and peroxisome proliferator-activated receptor (PPAR) α facilitate fatty acid oxidation. We have shown that treatment of hepatoma cells with ethanol or feeding ethanol-containing diets to mice inhibited both PPARα and AMPK activity. Importantly, WY-14,643 reversed the development of fatty liver in alcohol-fed mice. Whether WY-14,643, a PPARα agonist, has any effects on AMPK is not known. The aim of this study was to investigate the effect of WY-14,643 on AMPK activity.

Methods

The effect of WY-14,643 on AMPK phosphorylation and activity were examined in rat hepatoma cells (H4IIEC3). The effect of WY-14,643 on upstream kinases of AMPK, PKC-ζ/LKB1, intracellular AMP:ATP ratio, oxidative stress, and AMPK gene expression were studied.

Results

Treatment of the H4IIEC3 cells with WY-14,643 for 24 h led to 60% increase in the phosphorylation of AMPK. The effect of WY-14,643 on AMPK phosphorylation is PKC-ζ/LKB1 independent. WY-14,643 did not alter the levels of intracellular AMP:ATP ratio and it did not increase the levels of reactive oxygen species at 24-h of treatment. WY-14,643-induced AMPK α subunit expression by 2- to 2.5-fold, but there was no change in AMPKα subunit protein at 24 h. The effect of WY-14,643 on AMPK phosphorylation did not altered by the presence of an NADPH oxidase inhibitor.

Conclusions

WY-14,643 induced AMPKα subunit phosphorylation and the activity of the enzyme. This was associated with induction of AMPKα1 and α2 mRNA, but the mechanism for this activation is uncertain.  相似文献   

4.
Rat hindlimb muscles constitutively express the inducible heat shock protein 72 (Hsp70), apparently in proportion to the slow myosin content. Since it remains controversial whether chronic Hsp70 expression reflects the overimposed stress, we investigated Hsp70 cellular distribution in fast muscles of the posterior rat hindlimb after (1) mild exercise training (up to 30 m/min treadmill run for 1 h/day), which induces a remodeling in fast fiber composition, or (2) prolonged exposure to normobaric hypoxia (10%O2), which does not affect fiber-type composition. Both conditions increased significantly protein Hsp70 levels in the skeletal muscle. Immunohistochemistry showed the labeling for Hsp70 in subsets of both slow/type 1 and fast/type 2A myofibers of control, sedentary, and normoxic rats. Endurance training increased about threefold the percentage of Hsp70-positive myofibers (P<0.001), and changed the distribution of Hsp70 immunoreactivity, which involved a larger subset of both type 2A and intermediate type 2A/2X myofibers (P<0.001) and vascular smooth muscle cells. Hypoxia induced Hsp70 immunoreactivity in smooth muscle cells of veins and did not increase the percentage of Hsp70-positive myofibers; however, sustained exposure to hypoxia affected the distribution of Hsp70 immunoreactivity, which appeared detectable in a very small subset of type 2A fibers, whereas it concentrated in type 1 myofibers (P<0.05) together with the labeling for heme-oxygenase isoform 1, a marker of oxidative stress. Therefore, the chronic induction of Hsp70 expression in rat skeletal muscles is not obligatory related to the slow fiber phenotype but reveals the occurrence of a stress response.  相似文献   

5.
The role of adenosine monophosphate activated protein kinase (AMPK) in regulating multiple myeloma (MM) cell growth is not yet clear. In this study, we show that the AMPK activators 5-aminoimidazole-4-carboxamide riboside (AICAr) and D942 inhibit cell growth in MM cell lines. AICAr also induced an S-phase cell cycle arrest in all four tested cell lines and led to phosphorylation and thus activation of AMPK. Furthermore, the inhibition of a nucleoside transporter by nitrobenzyl-thio-9-beta-d-ribofuranosylpurine (NBTI), inhibition of the adenosine kinase by iodotubericidine and inhibition of AMPK by AMPKI Compound C reversed AICAr effects, indicating that the cellular effects of AICAr were mediated by AMPK. Activation of AMPK inhibited basal extracellular signal-regulated kinase (ERK), mammalian target of rapamycin (mTOR) and P70S6 kinase (P70S6K) as well as AKT phosphorylation, and blocked IL-6, IGF-1, and HS-5 stromal cell conditioned medium-induced increase of cell growth. Troglitazone, which has previously been shown to activate AMPK, similarly inhibited MM cell growth, activated AMPK, and decreased ERK and P70S6K phosphorylation. Our results suggest that activation of AMPK inhibits MM cell growth despite stimulation with IL-6, IGF-1, or HS-5 stromal cell conditioned medium and represents a potential new target in the therapy of MM.  相似文献   

6.
Activation of the cyclic AMP-dependent protein kinase in intact lymphosarcoma cells can be promoted by epinephrine. The lymphosarcoma protein kinase is approximately 90% Isozyme I. Using the synthetic peptide PK-1 (LeuArgArgAlaSerLeuGly) as substrate for the kinase, the cyclic AMP-dependent protein kinase activity was 95% of the total protein phosphotransferase activity in the cell extract. In control cells the optimum extraction buffer for preventing enzyme subunit dissociation or reassociation contained buffer (2(N-morpholino)ethanesulfonic acid), EDTA, 2-mercaptoethanol, and charcoal. The absence of charcoal or the presence of 0.14 m KCl in the buffer promoted enzyme dissociation in the extract. The phosphodiesterase inhibitor 1-methyl-3-isobutylxanthine had no effect. In extracts from epinephrine-treated cells or extracts to which purified catalytic subunit of the cyclic AMP-dependent protein kinase was added, recovery of the total protein kinase activity was 25% of that predicted in experiments with control cells. Recovery of enzyme activity increased to 80–95% of the predicted value when 0.14 m KCl was included in the extraction buffer. Methods involving a two-buffer extraction procedure are presented as the optimum protocol for determining in vivo activation of the cyclic AMP-dependent protein kinase, Isozyme I. Using these methods, epinephrine (1 μm) dissociated the cyclic AMP-dependent protein kinase essentially 100% in intact lymphosarcoma cells. The dissociation was apparently maintained for up to 60 min. Approximately 10–15% of the dissociated enzyme may be specifically associated with particulate cell fractions. Collectively the data emphasize the experimental difficulty inherent in determination of the extent of in vivo dissociation of the cyclic AMP-dependent protein kinase.  相似文献   

7.
Vasoactive intestinal peptide stimulated cyclic AMP-dependent protein kinase activity in human blood mononuclear cells. The simultaneous presence of a phosphodiesterase inhibitor was required to elicit maximal activation. The apprent Ka value of half the maximal stimulation was about 60 pmol. Secretin exhibited a 170-times lower potency. Other peptides such as glucagon or insulin had no effect event at 1 μM.  相似文献   

8.
Stress proteins (heat shock proteins, HSPs) have been proposed as general biomarkers for environmental monitoring. In the present study, we evaluated the environmental stress-burden on the aquatic midge Chironomus yoshimatsui using hsp70 expression. Larvae collected from streams receiving polluted runoff (field strain) were resistant to the organophosphorus insecticide, fenitrothion (F), and the synthetic pyrethroid, ethofenprox (E), whereas a strain originally collected from an unpolluted area (susceptible strain) showed low resistance to insecticide exposure. To examine the expression of an HSP70 gene in C. yoshimatsui, an hsp70 cDNA probe was prepared using RNA obtained from the field strain larvae and used for Northern blot analyses. The expression of this HSP70 gene in larvae collected from two field sites in May about 1 week after insecticide spraying in the fields was 2.3 (p = 0.018) to 3.3 fold higher than that in the susceptible strain and was also 4.6 and 1.4 (p = 0.033) fold higher than those collected in November 3 months after the cessation of insecticide spraying. In order to identify potential inducers of the HSP70 gene of the field strain, larvae of the susceptible strain were exposed to F or E for 24 h and hsp70 mRNA levels determined. Exposures to F at 0.4 microg/L and E at 1.1 microg/L increased hsp70 mRNA levels 2.7 (p = 0.049) and 4.4 (p = 0.043) fold over controls, respectively. These results suggest that larvae collected from polluted areas are burdened by environmental stressors and the tested insecticides are potential inducers of HSP70. The results also support the suggestion that HSP70 gene expression is a sensitive indicator of low level (nonlethal) exposures to certain insecticides.  相似文献   

9.
Brain selective kinase 2 (BRSK2) has been identified as a member of AMPK related kinases. LKB1 can phosphorylate the Thr174 of BRSK2, increasing its activity >50-fold. In this study, we identified cAMP-dependent protein kinase A (PKA) as another upstream kinase of BRSK2, which can phosphorylate BRSK2 at Thr260. The association between these two proteins was confirmed by GST pull-down. Furthermore, our study indicated that the kinase activity of BRSK2 can be increased through phosphorylation by PKA.  相似文献   

10.
The innervation of the frog subcommissural organ was studied by light-microscopic and ultrastructural immunocytochemistry using antisera against serotonin, noradrenaline, dopamine, gamma-aminobutyric acid (GABA), glutamic acid decarboxylase, different GABA receptor subunits and bovine Reissner's fibre material (AFRU). In the proximity of the organ, serotonin- and noradrenaline-containing fibres were rare whereas dopamine-immunoreactive fibres were more numerous. Many GABA- and glutamic acid decarboxylase-containing nerve fibres were found at the basal portion of the ependymal cells of the subcommissural organ. Under the electron microscope, these GABA-immunolabelled nerve endings appeared to establish axoglandular synapses with secretory ependymal cells of the subcommissural organ. In addition, the secretory ependymal cells expressed high amounts of the beta2-subunit of the GABA(A) receptor. Since GABA-immunoreactive neurons were present in the frog pineal organ proper and apparently contributed axons to the pineal tract, we suggest that at least part of the GABAergic fibres innervating the frog subcommissural organ could originate from the pineal organ.  相似文献   

11.
Lipase activation requiring cyclic-3′,5′-adenosine monophosphate and ATP was demonstrated in crude fractions of human adipose tissue homogenates. Activation was totally blocked by addition of the specific protein kinase inhibitor. Levels of endogenous protein kinase were adequate to support clear-cut activation but in partially purified preparations addition of exogenous (rabbit muscle) kinase further enhanced activation. When tissue was treated with epinephrine prior to homogenization the degree of activation in partially purified fractions was distinctly reduced. The mechanism of activation of hormone-sensitive lipase in human adipose tissue is thus shown, like that in rat adipose tissue, to be linked to a cyclic AMP-dependent protein kinase.  相似文献   

12.
All living systems respond to a variety of stress conditions by inducing the synthesis of stress or heat shock proteins (HSPs), which transiently protect cells. HSP synthesis was preceded by an increase in intracellular free calcium concentration [(Ca(2+))i]. In this study, we show that Ca(2+) ionophore, ionomycin, induced an immediate increase in intracellular free Ca(2+) and examined how this increase affects heat shock response in rat hepatoma cell line H4II-E-C3. Results indicate that incubating H4II-E-C3 cells with 0.3 microM ionomycin at 37 degrees C for 15 min results in the induction of HSP 70 in both Ca(2+)-containing and Ca(2+)-free medium. Associated with this increase in free Ca(2+) is an in vivo change in membrane organization and activation of signaling molecules like ERKS and SAPKs/JNK. In Ca(2+) containing medium HSP 70 induction mediated by HSF-HSE interaction was faster upon ionomycin treatment as compared to heat shock. Our results show that ionomycin, at sub lethal concentration, increases intracellular free Ca(2+) concentration, activates SAPK/JNK and HSF-HSE interaction, and induces HSP 70 synthesis.  相似文献   

13.
Rat liver cyclic AMP-dependent protein kinase catalytic subunit (cAK), assayed using the synthetic peptide substrate, LRRASLG, is inhibited by a range of plant-derived flavonoids. In general, maximal inhibitory effectiveness (IC50 values 1 to 2 microM) requires 2,3-unsaturation and polyhydroxylation involving at least two of the three flavonoid rings. 3-Hydroxyflavone (IC50 value 4 microM), 3,5,7,2',4'-pentahydroxyflavone (IC50 = 10 microM) and 5,7,4'-trihydroxyflavone (IC50 = 7 microM) represent somewhat less active variations from this pattern. Flavonoid O-methylation or O-glycosylation greatly decreases inhibitory effectiveness, as does 2,3-saturation. Various flavonoid-related compounds, notably gossypol (IC50 = 10 microM), also inhibit cAK. Flavonoids and related compounds are in general much better inhibitors of cAK than of avian Ca(2+)-calmodulin-dependent myosin light chain kinase or of plant Ca(2+)-dependent protein kinase. Tricetin (IC50 = 1 microM) inhibits cAK in a fashion that is non-competitive with respect to both peptide substrate and ATP (Ki value 0.7 microM). When histone III-S is used as a substrate, inhibition of cAK requires much higher flavonoid concentrations.  相似文献   

14.
A single dose of growth hormone (10 mg/kg, i.p.) was injected into male weanling rats (50--60 g), and the temporal changes in cyclic AMP concentration, protein kinase activation, and ornithine decarboxylase activation were measured in the liver and adrenal gland. The level of cyclic AMP did not change significantly from control values in either liver or adrenal following growth hormone administration. Cyclic AMP-dependent protein kinase(s); however, was markedly activated in liver and adrenal within 30 min. Protein kinase remained activated for more than 4 hr in the liver, while activation of protein kinase in the adrenal returned to control value within 2 hr. Ornithine decarboxylase activity was elevated 20-fold in liver within 4 hr of injection and was increased 7- to 8-fold in be adrenal within l hr. These observations are discussed with regard to the generality of the role of cyclic AMP as the second messenger for target-specifici trophic hormone action and the significance of protein kinase activiation as an index of the cyclic nucleotide involvement in the growth response.  相似文献   

15.
16.
17.
Carbofuran is a pesticide, which is used throughout the world as a nematicide and an acaricide. This pesticide integrates into living organisms through aquatic ecosystem. In earlier report, we had demonstrated that cytochrome P4501A was induced in cultured catfish hepatocytes in response to carbofuran, which might be responsible for the detoxification of this pesticide. As the underlying signaling mechanism associated with induction and regulation of cytochrome P4501A has not yet been well defined, we therefore in the present study have investigated to identify the regulatory network of cytochrome P4501A in catfish liver or cultured hepatocytes by targeting several key signaling molecules such as phosphatidyl inositol (PI) or protein kinase C (PKC), which are critical molecules for many important pathways. PKC and heat shock protein70 (HSP70) have been shown to be induced in response to carbofuran in catfish hepatocytes. Results also indicate that induction of CYP1A is modulated by HSP70 and PKC in fish hepatocytes. Thus our data shed light on the regulation of EROD activity, which has been used as a bio-monitoring tool for measuring aquatic pollution.  相似文献   

18.
Hypoxia, mainly caused by eutrophication, is a common and growing problem on marine soft bottoms. Echinoderms are known for their ability to regenerate tissue after wounding but hypoxia has a negative influence on regeneration and also on reproduction in echinoderms. We have investigated the cellular and molecular responses to wounding stress and hypoxia in the sea star Asterias rubens by using the total coelomocyte count (TCC) and the expression of heat shock proteins (HSPs). As early as 1 h after wounding, sea stars under hypoxic conditions show significantly increased TCC and, after 6 h, cell numbers increase approximately two-fold. After a 3-h hypoxia exposure of wounded animals, Western blot analysis reveals highly elevated coelomocyte cytoplasmic HSP70 expression. Non-wounded sea stars exposed to hypoxia and wounded animals kept in normoxia show enhanced HSP70 expression only after 24 h. Immunocytochemical analysis has not demonstrated any translocation of HSP70 from the cytoplasm to the nucleus. We conclude that both wounding and hypoxia elicit a stress response in sea stars and that the combined stress produces synergistic effects that may inhibit the initial processes of wound healing and regeneration.  相似文献   

19.
Incubation of a hepatocyte particulate fraction with ATP and the isolated catalytic unit of cyclic AMP-dependent protein kinase (A-kinase) selectively activated the high-affinity 'dense-vesicle' cycle AMP phosphodiesterase. Such activation only occurred if the membranes had been pre-treated with Mg2+. Mg2+ pre-treatment appeared to function by stimulating endogenous phosphatases and did not affect phosphodiesterase activity. Using the antiserum DV4, which specifically immunoprecipitated the 51 and 57 kDa components of the 'dense-vesicle' phosphodiesterase from a detergent-solubilized membrane extract, we isolated a 32P-labelled phosphoprotein from 32P-labelled hepatocytes. MgCl2 treatment of such labelled membranes removed 32P from the immunoprecipitated protein. Incubation of the Mg2+-pre-treated membranes with [32P]ATP and A-kinase led to the time-dependent incorporation of label into the 'dense-vesicle' phosphodiesterase, as detected by specific immunoprecipitation with the antiserum DV4. The time-dependences of phosphodiesterase activation and incorporation of label were similar. It is suggested (i) that phosphorylation of the 'dense-vesicle' phosphodiesterase by A-kinase leads to its activation, and that such a process accounts for the ability of glucagon and other hormones, which increase intracellular cyclic AMP concentrations, to activate this enzyme, and (ii) that an as yet unidentified kinase can phosphorylate this enzyme without causing any significant change in enzyme activity but which prevents activation and phosphorylation of the phosphodiesterase by A-kinase.  相似文献   

20.
Purified lamb thymus high-mobility-group (HMG) proteins 1, 2, and 17 have been investigated as potential substrates for the Ca2+-phospholipid-dependent protein kinase and the cAMP-dependent protein kinase. HMG proteins 1, 2, and 17 are phosphorylated by the Ca2+-phospholipid-dependent protein kinase; the reactions are totally Ca2+ and lipid dependent and are not inhibited by the inhibitor protein of the cAMP-dependent protein kinase. HMG 17 is phosphorylated predominantly in a single seryl residue, Ser 24 in the sequence Gln-Arg-Arg-Ser 24-Ala-Arg-Leu-Ser 28-Ala-Lys, with the second seryl moiety, Ser 28, modified to a markedly lesser degree. HMGs 1 and 2 are also phosphorylated in only seryl residues but with each there are multiple phosphorylation sites. HMG 17, but not HMG 1 or 2, is also phosphorylated by the cAMP-dependent protein kinase with the site phosphorylated being the minor of the two phosphorylated by the Ca2+-phospholipid-dependent protein kinase; the Km for phosphorylation by the cAMP-dependent enzyme is 50-fold higher than that by the Ca2+-phospholipid-dependent enzyme. HMG 17 is an equally effective substrate for the Ca2+-phospholipid-dependent protein kinase either as the pure protein or bound to nucleosomes. Preliminary evidence has indicated that lamb thymus HMG 14 is also a substrate for the Ca2+-phospholipid-dependent enzyme. It is phosphorylated with a Km similar to that of HMG 17 (4-6 microM), and a comparison of tryptic peptides suggests that it is phosphorylated in a site that is homologous with Ser 24 of HMG 17 and distinct from the sites phosphorylated by the cAMP-dependent protein kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号