首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The cells of the atrioventricular (AV) junction in the ferret heart were examined using light microscopy, a wax-model reconstruction and quantitative electron microscopy to determine their organization and characteristics. A series of subdivisions of the specialized tissues of the AV junction was apparent at both the light and electron microscopic levels. A transitional zone was observed interposed between the atrial muscle cells and the AV node. The AV node consisted of a coronary sinus portion, a superficial portion and a deep portion. The AV bundle had a segment above the anulus fibrosus, a segment which penetrated the right fibrous trigone, a non-branching segment below the anulus fibrosus and a branched segment. At the ultrastructural level the AV junctional conduction tissues had fewer irregularly oriented myofibrils than did working atrial myocardial cells. T-tubules, present in atrial muscle cells, were not observed in the modified muscle cells of the AV node and bundle. Conventional intercalated discs also were not observed between the cells of the AV node or the AV bundle. Atrial myocardial cells had the highest percentage of the plasma membrane occupied by desmosomes, fasciae adherentes and gap junctions. The AV bundle cells had the highest percentage of appositional surface membrane and a relatively large fraction of plasma membrane occupied by gap junctions. Cells of the superficial portion of the AV node had the smallest percentage of the plasma membrane composed of gap junctions, desmosomes or fasciae adherentes, as well as the smallest fraction of the cell membrane apposed to adjacent cells. The stereological data indicate that the most useful distinguishing characteristic between atrial muscle cells and conduction cells was that a smaller percentage of the conduction cell sarcoplasm was occupied by mitochondria and myofibrils. The most useful characteristics that could be used to differentiate between the regions of the AV junctional conduction tissues were the amounts and types of surface membrane specializations in the respective cell types.  相似文献   

3.
The sympathetic nervous system has important effects on the properties of the heart, including the conduction of the impulse. However, it is not known how this nervous system is distributed in the atrioventricular (AV) bundle, which together with the AV node constitutes the only conduction pathway between the atria and ventricles in normal hearts. Therefore, in the present study the adrenergic innervation in the bovine AV node/AV bundle was examined by use of the glyoxylic acid induced method for histofluorescence demonstration of catecholamines. Acetylcholinesterase (AChE) histochemistry was also used. It was found that the AChE-positive nerve fascicles in these regions partly contain sympathetic nerve fibres, that sympathetic nerve fibres occur in the proximity of some of the ganglionic cells that occur outside the AV node/AV bundle, that the arteries supplying AV bundle tissue as well as AV nodal tissue have perivascular plexuses of sympathetic nerve fibres, and that there is a substantial number of sympathetic nerve fibres outside Purkinje fibre bundle surfaces. The observations give new insight into the question of the distribution of the sympathetic nerves in the AV bundle in relation to the distribution of these nerves in the AV node. Possible functional implications of the observations are discussed.  相似文献   

4.
猫冠状动脉缺血与再灌注对房室传导的影响   总被引:11,自引:0,他引:11  
Chen SL  Feng SQ 《生理学报》1999,51(3):272-278
急性下壁心肌梗塞常引起房室传导功能障碍,然而这种障碍与心肌缺血的内在联系并不很清楚,本实验在去植物性神经传出纤维的猫上进行,通过模板匹配方法从His束电图检测A,H,V波并测量两心房间期(AA),心房波与His波间期(AH),His波与心室波间期(HV)和心房波与心室波间期(AV)。结果如下:结扎右冠状动脉后,20只动物的AH间期14只出现增加(A组)6只未出现增加(B组)对B组进行快速心房起博和  相似文献   

5.
The development of the atrioventricular node and bundle of His of embryonic chick hearts was studied by electrophysiological and morphological techniques. The dorsal wall of the AV canal and the interatrial septum were explored to determine if they contribute to the formation of the AV node and bundle of His. The resting membrane and action potentials of the interatrial septum cells were systematically analyzed and found to undergo progressive differentiation with development. The earliest identification of the AV node and upper bundle of His group of cells was achieved at 5 1/2-6 days of development by the electrical recording of their corresponding characteristic action potentials, from a circumscribed area located in the lowest and dorsal segment of the interatrial septum. The morphological and anatomical characterization of the cells was made following electrical recording and labelling with charcoal particles. The earlier AV node and bundle of His responses had similar characteristics to those of the adult heart. It is concluded that the AV node and upper bundle of His cells derive from the low interatrial septum. The possibility that AV canal cells contribute to this event was discarded. The functional relationship of the Av node and bundle of His with other cardiac tissues during the early development of the heart is discussed.  相似文献   

6.
Inducible Cre recombination is a powerful technology that allows for spatial and temporal modulation of gene expression in vivo. Diseases of the cardiac conduction system (CCS) pose a significant clinical burden but are not currently well understood at the molecular level. To enable inducible recombination in the murine CCS, we created a minK:CreERT(2) bacterial artificial chromosome (BAC) transgenic mouse line. Cre activity is present after tamoxifen administration in the atrioventricular (AV) node, AV bundle, and bundle branches of adult transgenic mice. We anticipate that by enabling inducible recombination specifically in the AV node, bundle, and bundle branches, minK:CreERT(2) BAC transgenic mice will prove useful in advancing our understanding of CCS disease and function.  相似文献   

7.
The sinoatrial (SA) and atrioventricular (AV) nodes are specialized centers of the heart conduction system and are composed of muscle cells with distinctive morphological and electrophysiological properties. We report here results of immunofluorescence and immunoperoxidase studies on the bovine heart showing that a large number of SA and AV nodal cells share a distinct type of myosin heavy chain (MHC) which is not found in other myocardial cells and can thus be used as a cell-type-specific marker. The antibody used in this study was raised against fetal skeletal myosin and reacted with fetal skeletal but not with adult skeletal MHCs. Both atrial and ventricular fibers, as well as fibers of the ventricular conduction tissue were unlabeled by this antibody. Specific reactivity was exclusively seen in most cells in the central portions of the SA and AV nodes and rare cells in perinodal areas. However, a number of nodal cells, particularly those located in the peripheral nodal regions, were unreactive with this antibody. The myosin composition of nodal tissues was also explored using two antibodies reacting specifically with alpha-MHC, the predominant atrial isoform, and beta-MHC, the predominant ventricular isoform. Most nodal cells were reactive for alpha-MHC and a number of them also for beta-MHC. Variation in reactivity with the two antibodies was also observed in perinodal areas: at these sites a population of large fibers reacted exclusively for beta-MHC. These findings point to the existence of muscle cell heterogeneity with respect to myosin composition both in nodal and perinodal tissues.  相似文献   

8.
A well-described population of cardiac neural crest (NC) cells migrates toward the arterial pole of the embryonic heart and differentiates into various cell types, including smooth muscle cells of the pharyngeal arch arteries (but not the coronary arteries), cardiac ganglionic cells, and mesenchymal cells of the aortopulmonary septum. Using a replication-incompetent retrovirus containing the reporter gene LacZ, administered to the migratory neural crest of chicken embryos, we demonstrated another population of cardiac neural crest cells that employs the venous pole as entrance to the heart. On the basis of our present data we cannot exclude the possibility that precursors of these cells might not only originate from the dorsal part of the posterior rhombencephalon, but also from the ventral part. These NC cells migrate to locations surrounding the prospective conduction system as well as to the atrioventricular (AV) cushions. Concerning the prospective conduction system, the tagged neural crest cells can be found in regions where the atrioventricular node area, the retroaortic root bundle, the bundle of His, the left and right bundle branches, and the right atrioventricular ring bundle are positioned. The last area connects the posteriorly located AV node area with the retroaortic root bundle, which receives its neural crest cells through the arterial pole in concert with the cells giving rise to the aortopulmonary septum. The NC cells most probably do not form the conduction system proper, as they enter an apoptotic pathway as determined by concomitant TUNEL detection. It is possible that the NC cells in the heart become anoikic and, as a consequence, fail to differentiate further and merely die. However, because of the perfect timing of the arrival of crest cells, their apoptosis, and a change in electrophysiological behavior of the heart, we postulate that neural crest cells play a role in the last phase of differentiation of the cardiac conduction system. Alternatively, the separation of the central conduction system from the surrounding working myocardium is mediated by apoptotic neural crest cells. As for the presence of NC cells in both the outflow tract and the AV cushions, followed by apoptosis, a function is assigned in the muscularization of both areas, resulting in proper septation of the outflow tract and of the AV region. Failure of normal neural crest development may not only play a role in cardiac outflow tract anomalies but also in inflow tract abnormalities, such as atrioventricular septal defects.  相似文献   

9.
More than half a century has passed since the concept of dual atrioventricular (AV) nodal pathways physiology was conceived. Dual AV nodal pathways have been shown to be responsible for many clinical arrhythmia syndromes, most notably AV nodal reentrant tachycardia. Although there has been a considerable amount of research on this topic, the subject of dual AV nodal pathways physiology remains heavily debated and discussed. Despite advances in understanding arrhythmia mechanisms and the widespread use of invasive electrophysiologic studies, there is still disagreement on the anatomy and physiology of the AV node that is the basis of discontinuous antegrade AV conduction. The purpose of this paper is to review the concept of dual AV nodal pathways physiology and its varied electrocardiographic manifestations.  相似文献   

10.
Previous histological studies showed that in addition to a sinus node, an atrioventricular (AV) node, an AV bundle, left and right bundle branches, birds also possess a right AV‐Purkinje ring that is located in the atrial sheet of the right muscular AV‐valve along all its base length. The functionality of the AV‐Purkinje ring is unknown. In this work, we studied the topology of pacemaker myocytes in the atrial side of the isolated chicken spontaneously contracting right muscular AV‐valve using the method of microelectrode mapping of action potentials. We show that AV‐cells having the ability to show pacemaking reside in the right muscular AV‐valve. Pacemaker action potentials were exclusively recorded close to the base of the valve along its whole length from dorsal to the ventral attachment to the interventricular septum. These action potentials have much slower rate of depolarization, lower amplitude, and higher diastolic depolarization than action potentials of Purkinje (conducting) cells. We conclude the right AV‐valve has a ring bundle of pacemaker cells (but not Purkinje cells) in the adult chicken heart. J. Morphol. 277:363–369, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

11.
Dual atrioventricular (AV) nodal pathway physiology is described as two different wave fronts that propagate from the atria to the His bundle: one with a longer effective refractory period [fast pathway (FP)] and a second with a shorter effective refractory period [slow pathway (SP)]. By using His electrogram alternance, we have developed a mathematical model of AV conduction that incorporates dual AV nodal pathway physiology. Experiments were performed on five rabbit atrial-AV nodal preparations to develop and test the presented model. His electrogram alternances from the inferior margin of the His bundle were used to identify fast and slow wave front propagations. The ability to predict AV conduction time and the interaction between FP and SP wave fronts have been analyzed during regular and irregular atrial rhythms (e.g., atrial fibrillation). In addition, the role of dual AV nodal pathway wave fronts in the generation of Wenckebach periodicities has been illustrated. Finally, AV node ablative modifications have been evaluated. The model accurately reproduced interactions between FP and SP during regular and irregular atrial pacing protocols. In all experiments, specificity and sensitivity higher than 85% were obtained in the prediction of the pathway responsible for conduction. It has been shown that, during atrial fibrillation, the SP ablation significantly increased the mean HH interval (204 ± 39 vs. 274 ± 50 ms, P < 0.05), whereas FP ablation did not produce significant slowing of ventricular rate. The presented mathematical model can help in understanding some of the intriguing AV node mechanisms and should be considered as a step forward in the studies of AV nodal conduction.  相似文献   

12.
Abstract The epicardium is embryologically formed by outgrowth of proepicardial cells over the naked heart tube. Epicardium-derived cells (EPDCs) migrate into the myocardium, contributing to myocardial architecture, valve development, and the coronary vasculature. Defective EPDC formation causes valve malformations, myocardial thinning, and coronary defects. In the atrioventricular (AV) valves and the fibrous heart skeleton isolating atrial from ventricular myocardium, EPDCs colocalize with periostin, a matrix molecule involved in remodeling. We investigated whether proepicardial outgrowth inhibition affected periostin expression and how this related to development of the AV valves and fibrous heart skeleton.
Periostin expression by epicardium and EPDCs was confirmed in vitro in primary cultures of human and quail EPDCs. Disturbing EPDC formation in quail embryos reduced periostin expression in the endocardial cushions and AV junction. Disturbed fibrous tissue development resulted in AV myocardial connections reflected by preexcitation electrocardiographic patterns.
We conclude that EPDCs are local producers of periostin. Disturbance of EPDC formation results in decreased cardiac periostin levels and hampers the development of fibrous tissue in AV junction and the developing AV valves. The resulting cardiac anomalies might link to Wolff–Parkinson White syndrome with persistent AV myocardial connections.  相似文献   

13.
This work develops a mathematical model for the atrioventricular (AV) node in the human heart, based on recordings of electrical activity in the atria (the upper chambers of the heart) and the ventricles (the lower chambers of the heart). Intracardiac recordings of the atrial and ventricular activities were recorded from one patient with atrial flutter and one with atrial fibrillation. During these arrhythmias, not all beats in the atria are conducted to the ventricles. Some are blocked (concealed). However, the blocked beats can affect the properties of the AV node. The activation times of the atrial events were regarded as inputs to a mathematical model of conduction in the AV node, including a representation of AV nodal concealment. The model output was compared to the recorded ventricular response to search for and identify the best possible parameter combinations of the model. Good agreement between the distribution of interbeat intervals in the model and data for durations of 5 min was achieved. A model of AV nodal behavior during atrial flutter and atrial fibrillation could potentially help to understand the relative roles of atrial input activity and intrinsic AV nodal properties in determining the ventricular response.  相似文献   

14.
Niu WZ  Gao YL  Liu P  Liu BY  Ye G 《生理学报》2000,52(3):259-262
本文目的在于深入研究降钙素基因相关肽(CGRP)对豚鼠冠状血流量以及心脏传导系统各部分的作用。采用Langendorff法灌流心脏,同步记录心脏表面电图和希氏束电活动。观察应用CGRP前后的冠脉流量、自主心率、在相同心房周期下的房室结(AH)及希浦系传导时间(HV)、心脏出现3:2文氏传导及2:1房室传导阻滞所需的最长起搏周期(PCL3:2,PCL2:1)。CGRP(3-30nmol/L)可显著增  相似文献   

15.
The previous observations of differences between different cardiac regions (ventricular myocardium, atrial myocardium, Purkinje fibre system) with respect to the maturation of the M-line region and the establishment of mature metabolic characteristics, have been extended. It was found that M-line maturation proceeds differently also between different regions of the conduction system. The M-line proteins, myomesin and MM-creatine kinase, were detected earlier, by means of immunohistochemistry, in the AV bundle and bundle branch cells than in the AV node cells. Also, a difference was observed in large foetuses. Striations in the AV node were less evident than in the AV bundle and the bundle branches in sections incubated with antibodies against myomesin as well as against MM-creatine kinase. Using enzyme histochemistry it was observed that the differences in metabolic properties between the AV node, the AV bundle and the bundle branches on the one hand, and the ordinary myocardium on the other, of adult hearts, are not established at the early stages. No clear difference in activity of succinate dehydrogenase was seen between the conduction tissues and the ordinary myocardium in the foetal hearts, while the conduction tissues showed a lower activity in the adult hearts. Furthermore, the pattern of activity of mitochondrial glycerol-3-phosphate dehydrogenase between the conduction tissues and the atrial and ventricular myocardium was quite different in early foetal stages compared with the adult stage.  相似文献   

16.
The osmium-ferrocyanide method for staining of the sarcoplasmic reticulum (SR) was used for a morphological investigation of the various components of the SR in the atrioventricular node and bundle (AVNB) cells of guinea pig hearts. On the basis of light microscopic observations, the AVNB tissue in guinea pig hearts can be divided into five regions: atrionodal junction, midnode, proximal bundle, distal bundle, and bundle branches. Electron microscopic observations revealed two types of junctional SR (j-SR) saccules in the cells from all the regions of AVNB tissue. One is similar to that seen in the working cardiac cells, i.e., flattened saccules with junctional granules. The second type is dilated and contains electron-dense granular material throughout its lumen. The flattened type is seen more often than the dilated type in atrionodal junctional cells and midnode cells, whereas the dilated type occurs more often in distal bundle cells and bundle branch cells. In most cells from the atrionodal junction and midnode regions, the j-SR saccules are apposed more often to sarcolemmal areas associated with nonspecialized regions of intercellular junctions than to other sarcolemmal areas. This distribution was not found in the distal bundle and bundle branch cells. Free SR tubules around the myofilament bundles are poorly developed in the midnode cells, generally in accord with the extent of development of myofibrils. Z-tubules are found in cells from all regions but are poorly developed in midnode cells. Corbular SR vesicles are found in cells from all the regions of AVNB tissues but are rare in midnode cells. Thus, each of the regions in the AVNB tissue has a different, characteristic distribution of SR components. Because of their possible relationship to the regulation of the intracellular concentrations of calcium, these differences in SR morphology may contribute to the diverse physiological properties of the different regions of the AV node and bundle.  相似文献   

17.
The aim of this study was to establish, using immunolabeling, whether the Kv1.5 K(+) channel is present in the pacemaker of the heart, the sinoatrial (SA) node. In the atrial muscle surrounding the SA node and in the SA node itself (from guinea pig and ferret), Western blotting analysis showed a major band of the expected molecular weight, approximately 64 kD. Confocal microscopy and immunofluorescence labeling showed Kv1.5 labeling clustered in atrial muscle but punctate in the SA node. In atrial muscle, Kv1.5 labeling was closely associated with labeling of Cx43 (gap junction protein) and DPI/II (desmosomal protein), whereas in SA node Kv1.5 labeling was closely associated with labeling of DPI/II but not labeling of Cx43 (absent in the SA node) or Cx45 (another gap junction protein present in the SA node). Electron microscopy and immunogold labeling showed that the Kv1.5 labeling in atrial muscle is preferentially associated with desmosomes rather than gap junctions.  相似文献   

18.
The statistical properties of RR interval sequences during cholinergic atrial fibrillation were studied in anesthetized dogs both in control conditions and after the selective injection of dromotropic agents into the atrioventricular (AV) node artery. It was observed that RR interval histogram configurations depended mainly on the mean heart rate, regardless of whether it was a control or a post-injection sequence. The sequences were found to vary from almost regular at fast rates to highly irregular at slow rates, covering all intermediate possibilities. Since the injections of dromotropic agents into the AV node artery were carried out during sinus rhythm between the episodes of fibrillation, their influences on the AV junction, as reflected both on the length of the PR interval during sinus rhythm and on the RR interval dispersion during fibrillation, could be compared. The dispersion of RR intervals was found to increase as the PR interval duration became longer. In addition, it was observed that the generally random character of the RR interval sequences during fibrillation was not affected by the injection of dromotropic agents into the AV node artery. These results were interpreted as an indication that, for a well-established atrial fibrillation, the degree of ventricular irregularity (dispersion of RR intervals) is related to the conductivity within the AV junction and that the random character of RR interval sequences is related to the atrial fibrillatory activity itself.  相似文献   

19.
A 74-year old was considered for atrioventricular (AV) nodal ablation in view of atrial fibrillation (AF) with poorly controlled ventricular rate despite being on amiodarone. Targeted AV nodal ablation was successfully performed after identifying the target site for ablation by reviewing an ultra high-density map of the His region produced by automatic electrogram annotation.Key words: His bundle, atrioventricular node, cardiac mapping, catheter ablation  相似文献   

20.
The electrophysiological properties of atrioventricular (AV) nodal dual pathways have traditionally been investigated with premature stimuli delivered with right atrial pacing. However, little is known about the functional characteristics of AV nodal inputs outside of this context. Superfused rabbit triangle of Koch preparations (n = 8) and Langendorff-perfused hearts (n = 10) were paced throughout the triangle of Koch and mapped electrically and optically for activation pattern, electrogram and optical action potential morphologies, stimulation thresholds, and stimulus-His (S-H) intervals. Optical mapping and changes in His electrogram morphology were used to confirm the activation pathway. Pacing stimuli >or=2 mm above the tricuspid valve caused fast-pathway activation of the AV node and His with a threshold of 2.4 +/- 1.6 mA. An area directly below the coronary sinus had high thresholds (8.6 +/- 1.4 mA) that also resulted in fast-pathway excitation (P < 0.001). S-H intervals (81 +/- 19 ms) for fast-pathway activation remained constant throughout the triangle of Koch, reflecting the AV delay. Stimuli applied <2 mm from the tricuspid valve resulted in slow pathway (SP) excitation or direct His excitation (4.4 +/- 2.2 mA threshold; P < 0.001 compared with fast pathway). For SP/His pacing, S-H intervals showed a strong dependence on the distance from the His electrode and were significantly lower than S-H intervals for fast-pathway activation. SP/His pacing also displayed characteristic changes in His electrogram morphology. In conclusion, optical maps and S-H intervals for SP/His activation suggest that AV conduction via SP bypasses the compact AV node via the lower nodal bundle, which may be utilized to achieve long-term ventricular synchronization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号