首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Levels of phenotypic and genotypic diversity among seven Megasphaera elsdenii strains recovered from rumen contents of cattle, sheep and lambs were determined by a combination of antibiotic-resistance analysis and PCR fingerprint techniques targeted both to the ribosomal RNA operon (ARDRA, RISA) and the whole genome (ERIC-PCR, RAPD-PCR). Despite exhibiting different antibiotic resistance profiles, the tested strains represent genetically nearly identical isolates. Close genetic relatedness was found among M. elsdenii isolates that originated from vastly different habitats worldwide, as revealed by the comparison of 16S rDNA sequences.  相似文献   

2.
Antibiogram patterns and chromosomal DNA typing were used to compare 151 non-typhoidal Salmonella spp. (NTS) isolated from patients and 78 from animals, environmental or food specimens obtained within or near the homes of patients with invasive salmonellosis. The majority of NTS from humans (137; 90.7%) were Salmonella enterica serotype Typhimurium (S. Typhimurium) and S. Enteritidis. Chicken specimens and feeds produced (24; 52.2%) S. Enteritidis, while S. Agona was the predominant (20; 77%) serovar among pigs and dairy cows. The majority (97; 64.2%) of NTS from humans were multidrug resistant, while NTS from cows, pigs, beef carcass swabs and sewers were fully susceptible to all antibiotics tested. Pulsed-field gel electrophoresis patterns of XbaI-digested genomic DNA of NTS from the humans and the chickens were different. However, S. Enteritidis from chickens, and S. Braenderup and S. Agona from cows and pigs were clustered together in one group. There was no significant relatedness between NTS isolates from humans and those from animals, food or the environment in close contact to humans.  相似文献   

3.
Human infections with non-typhoidal Salmonella (NTS) serovars are increasingly becoming a threat to human health globally. While all motile Salmonellae have zoonotic potential, Salmonella Enteritidis and Salmonella Typhimurium are most commonly associated with human disease, for which poultry are a major source. Despite the increasing number of human NTS infections, the epidemiology of NTS in poultry in India has not been fully understood. Hence, as a first step, we carried out epidemiological analysis to establish the incidence of NTS in poultry to evaluate the risk to human health. A total of 1215 samples (including poultry meat, tissues, egg and environmental samples) were collected from 154 commercial layer farms from southern India and screened for NTS. Following identification by cultural and biochemical methods, Salmonella isolates were further characterized by multiplex PCR, allele-specific PCR, enterobacterial repetitive intergenic consensus (ERIC) PCR and pulse field gel electrophoresis (PFGE). In the present study, 21/1215 (1.73 %) samples tested positive for NTS. We found 12/392 (3.06 %) of tissue samples, 7/460 (1.52 %) of poultry products, and 2/363 (0.55 %) of environmental samples tested positive for NTS. All the Salmonella isolates were resistant to oxytetracycline, which is routinely used as poultry feed additive. The multiplex PCR results allowed 16/21 isolates to be classified as S. Typhimurium, and five isolates as S. Enteritidis. Of the five S. Enteritidis isolates, four were identified as group D Salmonella by allele-specific PCR. All of the isolates produced different banding patterns in ERIC PCR. Of the thirteen macro restriction profiles (MRPs) obtained by PFGE, MRP 6 was predominant which included 6 (21 %) isolates. In conclusion, the findings of the study revealed higher incidence of contamination of NTS Salmonella in poultry tissue and animal protein sources used for poultry. The results of the study warrants further investigation on different type of animal feed sources, food market chains, processing plants, live bird markets etc., to evaluate the risk factors, transmission and effective control measures of human Salmonella infection from poultry products.  相似文献   

4.
Salmonella enterica serovar Heidelberg is among the most detected serovars in swine and poultry, ranks among the top five serotypes associated with human salmonellosis and is disproportionately associated with invasive infections and mortality in humans. Salmonella are known to carry plasmids associated with antimicrobial resistance and virulence. To identify plasmid-associated genes in multidrug resistant S. enterica serovar Heidelberg, antimicrobial resistance plasmids from five isolates were sequenced using the 454 LifeSciences pyrosequencing technology. Four of the isolates contained incompatibility group (Inc) A/C multidrug resistance plasmids harboring at least eight antimicrobial resistance genes. Each of these strains also carried a second resistance plasmid including two IncFIB, an IncHI2 and a plasmid lacking an identified Inc group. The fifth isolate contained an IncI1 plasmid, encoding resistance to gentamicin, streptomycin and sulfonamides. Some of the IncA/C plasmids lacked the full concert of transfer genes and yet were able to be conjugally transferred, likely due to the transfer genes carried on the companion plasmids in the strains. Several non-IncA/C resistance plasmids also carried putative virulence genes. When the sequences were compared to previously sequenced plasmids, it was found that while all plasmids demonstrated some similarity to other plasmids, they were unique, often due to differences in mobile genetic elements in the plasmids. Our study suggests that Salmonella Heidelberg isolates harbor plasmids that co-select for antimicrobial resistance and virulence, along with genes that can mediate the transfer of plasmids within and among other bacterial isolates. Prevalence of such plasmids can complicate efforts to control the spread of S. enterica serovar Heidelberg in food animal and human populations.  相似文献   

5.
The multiple antibiotic resistance operon (marRAB) is a member of the multidrug resistance (mdr) systems. Similar to other mdr systems, this operon when induced encodes resistance to structurally and functionally unrelated antibiotics. marRAB has been shown to be conserved in the family Enterobacteriaceae, but within the genus Salmonella certain species appeared to be lacking this operon. To investigate how conserved the marRAB operon was in Salmonella, 30 veterinary isolates were examined by PCR, Southern blot, and dot blot analysis. Using DNA primers based on the marRAB operon of S. typhimurium, a predicted 2.3-kb amplicon resulted after PCR in 16 of the 30 organisms. The 2.3-kb DNA band from S. enteritidis was cloned and sequenced and shown to possess 99% sequence homology to marRAB from S. typhimurium. Using a labeled marRAB gene probe from S. enteritidis, Southern blot and dot blot analysis confirmed the presence of the operon in all 30 Salmonella species examined. Furthermore, when these isolates were induced with low levels of either tetracycline or chloramphenicol, increased antimicrobial resistance was observed to structurally and functionally unrelated antibiotics. Thus, the widespread occurrence of the marRAB locus in this genus prescribes judicious use of antimicrobials to avoid induction of a mdr phenotype.  相似文献   

6.
On centisome 7, Salmonella spp. contain a large region not present in the corresponding region of Escherichia coli. This region is flanked by sequences with significant homology to the E. coli tRNA gene aspV and the hypothetical E. coli open reading frame yafV. The locus consists of a mosaic of differentially acquired inserts forming a dynamic cs7 region of horizontally transferred inserts. Salmonella enterica subspecies I, responsible for most Salmonella infections in warm-blooded animals, carries a fimbrial gene cluster (saf) in this region as well as a regulatory gene (sinR). These genes are flanked by inverted repeats and are inserted in another laterally transferred region present in most members of Salmonella spp. encoding a putative invasin (pagN ). S. enterica subspecies I serovar Typhi, the Salmonella serovar that causes the most severe form of human salmonellosis, contains an additional insert of at least 8 kb in the sinR-pagN intergenic region harbouring a novel fimbrial operon (tcf ) similar to the coo operon encoding the CS1 fimbrial adhesin expressed by human-specific enterotoxigenic E. coli. It is suggested that the multiple insertions of fimbrial genes that have occurred in the cs7 region have contributed to phylogenetic diversity and host adaptation of Salmonella spp.  相似文献   

7.
Human infection with non-typhoidal Salmonella serovars (NTS) infrequently causes invasive systemic disease and bacteremia. To understand better the nature of invasive NTS (iNTS), we studied the gene content and the pathogenicity of bacteremic strains from twelve serovars (Typhimurium, Enteritidis, Choleraesuis, Dublin, Virchow, Newport, Bredeney, Heidelberg, Montevideo, Schwarzengrund, 9,12:l,v:- and Hadar). Comparative genomic hybridization using a Salmonella enterica microarray revealed a core of 3233 genes present in all of the iNTS strains, which include the Salmonella pathogenicity islands 1–5, 9, 13, 14; five fimbrial operons (bcf, csg, stb, sth, sti); three colonization factors (misL, bapA, sinH); and the invasion gene, pagN. In the iNTS variable genome, we identified 16 novel genomic islets; various NTS virulence factors; and six typhoid-associated virulence genes (tcfA, cdtB, hlyE, taiA, STY1413, STY1360), displaying a wider distribution among NTS than was previously known. Characterization of the bacteremic strains in C3H/HeN mice showed clear differences in disease manifestation. Previously unreported characterization of serovars Schwarzengrund, 9,12:l,v:-, Bredeney and Virchow in the mouse model showed low ability to elicit systemic disease, but a profound and elongated shedding of serovars Schwarzengrund and 9,12:l,v:- (as well as Enteritidis and Heidelberg) due to chronic infection of the mouse. Phenotypic comparison in macrophages and epithelial cell lines demonstrated a remarkable intra-serovar variation, but also showed that S. Typhimurium bacteremic strains tend to present lower intracellular growth than gastroenteritis isolates. Collectively, our data demonstrated a common core of virulence genes, which might be required for invasive salmonellosis, but also an impressive degree of genetic and phenotypic heterogeneity, highlighting that bacteremia is a complex phenotype, which cannot be attributed merely to an enhanced invasion or intracellular growth of a particular strain.  相似文献   

8.
There are few reports on the genomic organization of 5S rDNA in fish species. To characterize the 5S rDNA nucleotide sequence and chromosomal localization in the Neotropical fishes of the genus Brycon, 5S rDNA copies from seven species were generated by PCR. The nucleotide sequences of the coding region (5S rRNA gene) and the nontranscribed spacer (NTS) were determined, revealing that the 5S rRNA genes were highly conserved, while the NTSs were widely variable among the species analyzed. Moreover, two classes of NTS were detected in each species, characterized by base substitutions and insertions-deletions. Using fluorescence in situ hybridization (FISH), two 5S rDNA chromosome loci that could be related to the two 5S rDNA NTS classes were observed in at least one of the species studied. 5S rDNA sequencing and chromosomal localization permitted the characterization of Brycon spp. and suggest a higher similarity among some of them. The data obtained indicate that the 5S rDNA can be an useful genetic marker for species identification and evolutionary studies.  相似文献   

9.
E F Boyd  D L Hartl 《Genetics》1998,149(3):1183-1190
The spv operon is common to all Salmonella virulence plasmids. DNA hybridization analysis indicates that the spv region is limited in distribution to serovars of Salmonella enterica subspecies I, II, IIIa, IV, and VII and is absent from Salmonella bongori isolates. Among strains of subspecies II, IIIa, and VII, all isolates examined contained sequences that hybridized with the spv region. However, among isolates of subspecies I, DNA sequences capable of hybridizing with the spv region were found in some isolates of certain serovars. Furthermore, in isolates of subspecies I, the virulence plasmid was found in the same set of isolates as an F-related plasmid, as determined by the presence of the spv region of the virulence plasmid and the finO, traD, and repA sequences of the F-plasmid. The concordance of the virulence plasmid and all three F-plasmid sequences in subspecies I serovar Choleraesuis, Paratyphi, and Typhimurium is most easily explained if the spv region is carried in an F-related plasmid in these isolates. In contrast, among S. enterica subspecies II, IIIa, IV, and VII, the isolates that contain spv sequences did not hybridize with an F-related plasmid or any other identifiable plasmid. With the use of pulse-field gel electrophoresis, the spv region in subspecies II, IIIa, and VII was found to be encoded on the chromosome. Analysis of the phylogenetic distribution of spv among Salmonella isolates and comparative nucleotide sequence analysis of spvA and spvC suggests that the spv region was acquired very recently, after speciation of the salmonellae.  相似文献   

10.
Salmonella enterica serovar Heidelberg strains are frequently associated with food-borne illness, with recent isolates showing higher rates of resistance to multiple antimicrobial agents. One hundred eighty S. enterica serovar Heidelberg isolates, collected from turkey-associated production and processing sources, were tested for antimicrobial susceptibility and compared by pulsed-field gel electrophoresis (PFGE) and plasmid profile analysis. The potential for the transfer of resistance between strains was studied by conjugation experiments. PFGE analysis using XbaI digestion identified eight clusters (based on 90% similarity), with the largest containing 71% of the isolates. Forty-two percent of the isolates were resistant to at least 1 of the 15 antimicrobial agents tested, and 4% of the isolates were resistant to 8 or more antimicrobial agents. Resistances to streptomycin (32%), tetracycline (30%), and kanamycin (24%) were most commonly detected. Interestingly, the XbaI PFGE profiles of selective multidrug-resistant strains (n = 22) of S. enterica serovar Heidelberg from turkey-associated sources were indistinguishable from the predominant profile (JF6X01.0022) detected in isolates associated with human infections. These isolates were further differentiated into seven distinct profiles following digestion with the BlnI enzyme, with the largest cluster comprising 15 isolates from veterinary diagnostic and turkey processing environments. Conjugation experiments indicated that resistance to multiple antimicrobial agents was transferable among strains with diverse PFGE profiles.  相似文献   

11.
The genome of the Bacillus subtilis 168-type strain contains 10 ribosomal RNA (rRNA) operons. In the intergenic spacer region (ISR) between the 16S and 23S rRNA genes, five rRNA operons, rrnI-H-G and rrnJ-W, lack a trinucleotide signature region. Precise determination of molecular weight (MW), using electrospray mass spectrometry (MS), of the polymerase chain reaction (PCR) products from a segment of the ISR from the 168-type strain and B. subtilis 168-like strain 23071 demonstrated 114 and 111 basepair (bp) PCR products (due to the presence or absence of the insert in the operons) as predicted from sequence. However, PCR of the ISR segment for five other B. subtilis 168 isolates generated only a 114 bp PCR product, suggesting the presence of the trinucleotide signature region in all rRNA operons for these strains. Additional genetic variability between the seven B. subtilis 168 isolates was demonstrated by restriction fragment length polymorphism (RFLP) of the rRNA operons, with three distinct patterns found upon Southern blot analysis. The 168-type strain and three others (23066, 23067, and 23071) exhibited the same Southern pattern. Thus, operon deletion is not responsible for the absence of a 111 bp product on MS analysis for strains 23066 and 23067. Restriction analysis confirmed the presence of the trinucleotide signature region in the ISR of all rRNA operons for five B. subtilis 168 isolates; sequencing of rrnW/H from a representative strain also upheld this finding. These results help provide a better understanding of variations in sequence, operon number and chromosomal organization, both within a genome and among isolates of B. subtilis subgroup 168. It is also hypothesized that the presence of the trinucleotide insert in certain rRNA operons may play a role in rRNA maturation and protein synthesis.  相似文献   

12.
ABSTRACT: BACKGROUND: Bacteremia due to Salmonella spp. is a life-threatening condition and is commonly associated with immune compromise. A 2009 observational study estimated risk factors for the ten most common non-typhoidal Salmonella (NTS) serovars isolated from Thai patients between 2002-2007. In this study, 60.8% of Salmonella enterica serovar Enteritidis isolates (n = 1517) were recovered from blood specimens and infection with Salmonella serovar Enteritidis was a statistically significant risk factor for bacteremia when compared to other NTS serovars. Based on this information, we characterized a subset of isolates collected in 2008 to determine if specific clones were recovered from blood or stool specimens at a higher rate. Twenty blood isolates and 20 stool isolates were selected for antimicrobial resistance testing (MIC), phage typing, PFGE, and MLVA. Result Eight antibiogrammes, seven MLVA types, 14 XbaI/BlnI PFGE pattern combinations, and 11 phage types were observed indicating considerable diversity among the 40 isolates characterized. Composite analysis based on PFGE and MLVA data revealed 22 genotypes. Seven of the genotypes containing two or more isolates were from both stool and blood specimens originating from various months and zones. Additionally, those genotypes were all further discriminated by phage type and/or antibiogramme. Ninety percent of the isolates were ciprofloxacin resistant. CONCLUSIONS: The increased percentage of bloodstream infections as described in the 2009 observational study could not be attributed to a single clone. Future efforts should focus on assessing the immune status of bacteriaemic patients and identifying prevention and control measures, including attribution studies characterizing non-clinical (animal, food, and environmental) isolates.  相似文献   

13.
Cucurbit yellow vine disease (CYVD) is caused by disease-associated Serratia marcescens strains that have phenotypes significantly different from those of nonphytopathogenic strains. To identify the genetic differences responsible for pathogenicity-related phenotypes, we used a suppressive subtractive hybridization (SSH) strategy. S. marcescens strain Z01-A, isolated from CYVD-affected zucchini, was used as the tester, whereas rice endophytic S. marcescens strain R02-A (IRBG 502) was used as the driver. SSH revealed 48 sequences, ranging from 200 to 700 bp, that were present in Z01-A but absent in R02-A. Sequence analysis showed that a large proportion of these sequences resembled genes involved in synthesis of surface structures. By construction of a fosmid library, followed by colony hybridization, selection, and DNA sequencing, a phage gene cluster and a genome island containing a fimbrial-gene cluster were identified. Arrayed dot hybridization showed that the conservation of subtracted sequences among CYVD pathogenic and nonpathogenic S. marcescens strains varied. Thirty-four sequences were present only in pathogenic strains. Primers were designed based on one Z01-A-specific sequence, A79, and used in a multiplex PCR to discriminate between S. marcescens strains causing CYVD and those from other ecological niches.  相似文献   

14.
5S rDNA sequences have proven to be valuable as genetic markers to distinguish closely related species and also in the understanding of the dynamic of repetitive sequences in the genomes. In the aim to contribute to the knowledge of the evolutionary history of Leporinus (Anostomidae) and also to contribute to the understanding of the 5S rDNA sequences organization in the fish genome, analyses of 5S rDNA sequences were conducted in seven species of this genus. The 5S rRNA gene sequence was highly conserved among Leporinus species, whereas NTS exhibit high levels of variations related to insertions, deletions, microrepeats, and base substitutions. The phylogenetic analysis of the 5S rDNA sequences clustered the species into two clades that are in agreement with cytogenetic and morphological data.  相似文献   

15.
In this study we used and evaluated three rapid molecular typing methods for the identification of three frequent, clinically significant Salmonella serovars on the basis of the ease, simplicity and reproducibility of the chosen methods. We determined the genetic diversity among several isolates of Salmonella enteritidis, S. typhimiurium and S. virchow, and compared them with other enterobacteria by using the repetitive extragenic palindromic (REP) sequences, the enterobacterial repetitive intergenic consensus (ERIC) sequences, and the 16S-23S rDNA intergenic spacer region (ITS 1). The objective was to evaluate their potential application to discriminate among members of the species Salmonella enterica subspecies enterica using the genetic diversity of the group found by genomic fingerprinting. The three different serovars of Salmonella studied gave reproducible and distinguishable profiles using whichever of the above mentioned polymerase chain reaction (PCR) methods assayed. The conserved patterns in each serovar allowed for easy differentiation from other serovars of Salmonella.  相似文献   

16.
BackgroundNontyphoidal Salmonellae (NTS) cause a large burden of invasive and gastrointestinal disease among young children in sub-Saharan Africa. No vaccine is currently available. Previous reports indicate the importance of the O-antigen of Salmonella lipopolysaccharide for virulence and resistance to antibody-mediated killing. We hypothesised that isolates with more O-antigen have increased resistance to antibody-mediated killing and are more likely to be invasive than gastrointestinal.Conclusion/SignificanceKenyan S. Typhimurium and Enteritidis clinical isolates are susceptible to antibody-mediated killing, with degree of susceptibility varying with level of O-antigen for S. Typhimurium. This supports the development of an antibody-inducing vaccine against NTS for Africa. No clear differences were found in the phenotype of isolates from blood and stool, suggesting that the same isolates can cause invasive disease and gastroenteritis. Genome studies are required to understand whether invasive and gastrointestinal isolates differ at the genotypic level.  相似文献   

17.
We describe the development and application of a Pooled Suppression Subtractive Hybridization (PSSH) method to describe differences between the genomic content of a pool of clinical Staphylococcus aureus isolates and a sequenced reference strain. In comparative bacterial genomics, Suppression Subtractive Hybridization (SSH) is normally utilized to compare genomic features or expression profiles of one strain versus another, which limits its ability to analyze communities of isolates. However, a PSSH approach theoretically enables the user to characterize the entirety of gene content unique to a related group of isolates in a single reaction. These unique fragments may then be linked to individual isolates through standard PCR. This method was applied to examine the genomic diversity found in pools of S.aureus isolates associated with complicated bacteremia infections leading to endocarditis and osteomyelitis. Across four pools of 10 isolates each, four hundred and twenty seven fragments not found in or significantly divergent from the S. aureus NCTC 8325 reference genome were detected. These fragments could be linked to individual strains within its pool by PCR. This is the first use of PSSH to examine the S. aureus pangenome. We propose that PSSH is a powerful tool for researchers interested in rapidly comparing the genomic content of multiple unstudied isolates.  相似文献   

18.
摘要:【目的】从鸡白痢沙门菌C79-13中克隆ipaJ基因,体外表达该蛋白后进行免疫原性分析。【方法】鸡白痢沙门菌C79-13与肠炎沙门菌50041进行抑制差减杂交后获得的片段PEA2、PE31和PE44与猪霍乱沙门菌C500疫苗株pSFD10质粒上ipaJ基因高度同源,拼接后获得了鸡白痢沙门菌完整的ipaJ基因序列。从鸡白痢沙门菌中克隆出ipaJ基因并将其构建到原核表达载体pET-30a(+)上,Western-blot检测体外表达蛋白的免疫原性,同时检测了该基因在鸡白痢沙门菌分离株中的分布。【结果】从鸡白痢沙门菌中克隆了大小为840 bp的ipaJ基因序列,并获得了体外原核表达的大小为37 kDa融合蛋白。该蛋白可与鸡白痢沙门菌阳性血清反应。PCR结果显示该基因广泛存在于鸡白痢沙门菌菌株中。 【结论】本文首次报道和克隆了鸡白痢沙门菌ipaJ基因,并证明了IpaJ蛋白具有免疫原性。  相似文献   

19.
C Martins  P M Galetti 《Génome》2001,44(5):903-910
To address understanding the organization of the 5S rRNA multigene family in the fish genome, the nucleotide sequence and organization array of 5S rDNA were investigated in the genus Leporinus, a representative freshwater fish group of South American fauna. PCR, subgenomic library screening, genomic blotting, fluorescence in situ hybridization, and DNA sequencing were employed in this study. Two arrays of 5S rDNA were identified for all species investigated, one consisting of monomeric repeat units of around 200 bp and another one with monomers of 900 bp. These 5S rDNA arrays were characterized by distinct NTS sequences (designated NTS-I and NTS-II for the 200- and 900-bp monomers, respectively); however, their coding sequences were nearly identical. The 5S rRNA genes were clustered in two chromosome loci, a major one corresponding to the NTS-I sites and a minor one corresponding to the NTS-II sites. The NTS-I sequence was variable among Leporinus spp., whereas the NTS-II was conserved among them and even in the related genus Schizodon. The distinct 5S rDNA arrays might characterize two 5S rRNA gene subfamilies that have been evolving independently in the genome.  相似文献   

20.
【目的】本文旨在探索SEF14菌毛特异性表达于D-群沙门氏菌,特别是肠炎沙门氏菌以及都柏林沙门氏菌的原因。【方法】应用PCR扩增以及序列测定检测了18株鸡白痢沙门氏菌,11株肠炎沙门氏菌以及1株都柏林沙门氏菌标准株中sefA,sefD和sefR基因序列,并分析比对其序列变异。【结果】以11株肠炎沙门氏菌以及1株都柏林沙门氏菌染色体DNA为模板能成功扩增sefA,sefD以及sefR基因;从18株鸡白痢沙门氏菌中均能成功扩增sefA基因,但只有分离于1980年之前的7株分离菌能成功扩增sefD和sefR基因,而另11株1980年后分离菌PCR扩增sefD和sefR基因却无任何产物。比对PCR扩增产物测序结果发现,11株肠炎沙门氏菌以及1株都柏林沙门氏菌株中sefA,sefD以及sefR基因序列和已发表的序列(GenBank登录号为L11008,U07129和AF233854)100%同源;7株鸡白痢沙门氏菌sefD基因测序结果表明,在196位点处发生碱基缺失,造成移码突变,提前于氨基酸残基71位点处产生终止密码子。优化菌毛表达条件,体外抽提和纯化菌毛并进一步试验证明:肠炎沙门氏菌以及都柏林沙门氏菌体外能很好表达SEF14菌毛,但鸡白痢沙门氏菌在相同培养条件下却无任何表达迹象。【结论】SEF14菌毛操纵子亚单位基因sefA,sefD以及调节基因sefR在不同沙门氏菌中的变异情况可能是SEF14菌毛局限性表达的原因之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号