共查询到20条相似文献,搜索用时 15 毫秒
1.
The signal sequence suffices to direct export of outer membrane protein OmpA of Escherichia coli K-12. 总被引:8,自引:3,他引:5 下载免费PDF全文
We studied whether information required for export is present within the mature form of the Escherichia coli 325-residue outer membrane protein OmpA. We had previously analyzed overlapping internal deletions in the ompA gene, and the results allowed us to conclude that if such information exists it must be present repeatedly within the membrane part of the protein encompassing amino acid residues 1 to 177 (R. Freudl, H. Schwarz, M. Klose, N. R. Movva, and U. Henning, EMBO J. 4:3593-3598, 1985). A deletion which removed the codons for amino acid residues 1 to 229 of the OmpA protein was constructed. In this construct the signal sequence was fused to the periplasmic part of the protein. The resulting protein, designated Pro-OmpA delta 1-229, was processed, and the mature 95-residue protein accumulated in the periplasm. Hence, information required for export does not exist within the OmpA protein. 相似文献
2.
Bacteriophage receptor area of outer membrane protein OmpA of Escherichia coli K-12. 总被引:6,自引:2,他引:6 下载免费PDF全文
A number of T-even-like bacteriophages use the outer membrane protein OmpA of Escherichia coli as a receptor. We had previously analyzed a series of ompA mutants which are resistant to such phages and which still produce the OmpA protein (R. Morona, M. Klose, and U. Henning, J. Bacteriol. 159:570-578, 1984). Mutational alterations were found near or at residues 70, 110 and 154. Based on these and other results a model was proposed showing the amino-terminal half of the 325-residue protein crossing the outer membrane repeatedly and being cell surface exposed near residues 25, 70, 110, and 154. We characterized, by DNA sequence analysis, an additional 14 independently isolated phage-resistant ompA mutants which still synthesize the protein. Six of the mutants had alterations identical to the ones described before. The other eight mutants possessed seven new alterations: Ile-24----Asn, Gly-28----Val, deletion of Glu-68, Gly-70----Cys, Ser-108----Phe, Ser-108----Pro, and Gly-154----Asp (two isolates). Only the latter alteration resulted in a conjugation-deficient phenotype. The substitutions at Ile-24 and Gly-28 confirmed the expectation that this area of the protein also participates in its phage receptor region. It is unlikely that still other such sites of the protein are involved in the binding of phage, and it appears that the phage receptor area of the protein has now been characterized completely. 相似文献
3.
The 325-residue OmpA protein is one of the major outer membrane proteins of Escherichia coli K-12. A model, in which this protein crosses the membrane eight times in an antiparallel beta-sheet conformation and in which regions around amino acids 25, 70, 110 and 154 are exposed at the cell surface, had been proposed. Linkers were inserted into the ompA gene with the result that OmpA proteins, carrying non-OmpA sequences between residues 153 and 154 or 160 and 162, were synthesized. Intact cells possessing these proteins were treated with proteases. Insertion of 15 residues between residues 153 and 154 made the protein sensitive to proteinase K and the sizes of the two cleavage products were those expected following proteolysis at the area of the insertion. Addition of at least 17 residues between residues 160 and 162 left the protein completely refractory to protease action. Thus, the former area is cell surface exposed while the latter area appears not to be. The insertions did not cause a decrease in the concentration of the hybrid proteins as compared to that of the OmpA protein, and in neither case was synthesis of the protein deleterious to cell growth. It is suggested that this method may serve to carry peptides of practical interest to the cell surface and that it can be used to probe surface-located regions of other membrane proteins. 相似文献
4.
An outer membrane protein (OmpA) of Escherichia coli K-12 undergoes a conformational change during export 总被引:28,自引:0,他引:28
R Freudl H Schwarz Y D Stierhof K Gamon I Hindennach U Henning 《The Journal of biological chemistry》1986,261(24):11355-11361
Pulse-chase experiments were performed to follow the export of the Escherichia coli outer membrane protein OmpA. Besides the pro-OmpA protein, which carries a 21-residue signal sequence, three species of ompA gene products were distinguishable. One probably represented an incomplete nascent chain, another the mature protein in the outer membrane, and the third, designated imp-OmpA (immature processed), a protein which was already processed but apparently was still associated with the plasma membrane. The pro- and imp-OmpA proteins could be characterized more fully by using a strain overproducing the ompA gene products; pro- and imp-OmpA accumulated in large amounts. It could be shown that the imp- and pro-OmpA proteins differ markedly in conformation from the OmpA protein. The imp-OmpA, but not the pro-OmpA, underwent a conformational change and gained phage receptor activity upon addition of lipopolysaccharide. Utilizing a difference in detergent solubility between the two polypeptides and employing immunoelectron microscopy, it could be demonstrated that the pro-OmpA protein accumulated in the cytoplasm while the imp-OmpA was present in the periplasmic space. The results suggest that the pro-OmpA protein, bound to the plasma membrane, is processed, and the resulting imp-OmpA, still associated with the plasma membrane, recognizes the lipid A moiety of the lipopolysaccharide. The resulting conformational change may then force the protein into the outer membrane. 相似文献
5.
A lower size limit exists for export of fragments of an outer membrane protein (OmpA) of Escherichia coli K-12 总被引:5,自引:0,他引:5
The ompA gene codes for a 346 residue precursor of a 325 residue protein of the outer membrane of Escherichia coli K-12. Internally and/or COOH-terminally deleted genes were constructed that encode 123, 116, 88, 72 or 68 residue precursors. The former three were processed and localized to the periplasmic space; the latter two were not processed and remained cytosolic. These data suggest that the signal sequence has to interact with a component of the export apparatus (the Sec pathway) before translation is finished. Comparison of these results with others obtained for prokaryotic and eukaryotic systems shows that: (1) a very similar lower size limit exists for membrane translocation of the 147 residue chicken prelysozyme or the 229 residue bovine preprolactin; (2) precursors smaller than those reported here can be translocated in both systems; (3) the latter translocation, in contrast to, for example, the ompA gene products, does not depend on the cellular export machinery but most likely requires folding of the precursors into an export-competent conformation. In general, at least two quite different, not necessarily mutually exclusive, mechanisms for translocation of a protein across or assembly into a membrane appear to exist. 相似文献
6.
TolB protein of Escherichia coli K-12 interacts with the outer membrane peptidoglycan-associated proteins Pal, Lpp and OmpA 总被引:3,自引:3,他引:0
Thierry Clavel Pierre Germon Anne Vianney Raymond Portalier & Jean Claude Lazzaroni 《Molecular microbiology》1998,29(1):359-367
The Tol–Pal proteins of Escherichia coli are involved in maintaining outer membrane integrity. Transmembrane domains of TolQ, TolR and TolA interact in the cytoplasmic membrane, while TolB and Pal form a complex near the outer membrane. TolB and the central domain of TolA interact in vitro with the outer membrane porins. In this study, both genetic and biochemical analyses were carried out to analyse the links between TolB, Pal and other components of the cell envelope. It was shown that TolB could be cross-linked in vivo with Pal, OmpA and Lpp, while Pal was associated with TolB and OmpA. The isolation of pal and tolB mutants disrupting some interactions between these proteins represents a first approach to characterizing the residues contributing to the interactions. We propose that TolB and Pal are part of a multiprotein complex that links the peptidoglycan to the outer membrane. The Tol–Pal proteins might form transenvelope complexes that bring the two membranes into close proximity and help some outer membrane components to reach their final destination. 相似文献
7.
Roland Freudl Michael Klose Ulf Henning 《Journal of bioenergetics and biomembranes》1990,22(3):441-449
Results of studies, mostly using the outer membrane, 325 residue protein OmpA, are reviewed which concern its translocation across the plasma membrane and incorporation into the outer membrane ofEscherichia coli. For translocation, neither a unique export signal, acting in a positive fashion within the mature part of the precursor, nor a unique conformation of the precursor is required. Rather, the mature part of a secretory protein has to be export-compatible. Export-incompatibility can be caused by a stretch of 16 (but not 8 or 12) hydrophobic residues, too low a size of the polypeptide (smaller than 75 residue precursors), net positive charge at the N-terminus, or lack of a turn potential at the same site. It is not yet clear whether binding sites for chaperonins (SecB, trigger factor, GroEL) within OmpA are importantin vivo. The mechanism of sorting of outer membrane proteins is not yet understood. The membrane part of OmpA, encompassing residues 1 to about 170, it thought to traverse the membrane eight times in antiparallel -sheet conformation. At least the structure of the last -strand (residues 160–170) is of crucial importance for membrane assembly. It must be amphiphilic or hydrophobic, these properties must extend over at least nine residues, and it must not contain a proline residue at or near its center. Membrane incorporation of OmpA involves a conformational change of the protein and it could be that the last -strand initiates folding and assembly in the outer membrane. 相似文献
8.
9.
The structure of Satellite tobacco necrosis virus (STNV) has been determined to 3.0 Å resolution by X-ray crystallography. Electron density maps were obtained with phases based on one heavy-atom derivative and several cycles of phase refinement using the 60-fold non-crystallographic symmetry in the particle. A model for one protein subunit was built using a computer graphics display. The subunit is constructed mainly of a β-roll structure forming two β-sheets, each of four antiparallel strands. The N-termini of the subunits form bundles of three α-helices extending into the RNA region of the virus at the 3-fold axis. The topology of the polypeptide chain is the same as, and the conformation clearly similar to, that of the shell domains of the Tomato bushy stunt virus (TBSV) and Southern bean mosaic virus (SBMV) protein subunits. The subunit packing in the T = 1 STNV structure is, however, significantly different from the packing of these T = 3 viruses: parts of some of the structural elements facing the RNA in TBSV and SBMV are utilized for subunit-subunit contacts in STNV. No RNA structure is obvious in the present icosahedrally averaged electron density maps. The protein surface facing the RNA contains mainly hydrophilic residues, especially lysine and arginine. 相似文献
10.
A unique amino acid substitution in the outer membrane protein OmpA causes conjugation deficiency in Escherichia coli K-12 总被引:2,自引:0,他引:2
The outer membrane protein OmpA of E. coli K-12 can serve as a receptor for phages and is required for stabilizing mating aggregates during F'-mediated conjugation. Selection for resistance to OmpA-specific phages yields mutants with alterations in the protein at four cell surface exposed sites. It is shown that conjugation deficiency can be caused by apparently only one type of amino acid substitution at one of these sites, the replacement of glycine-154 by aspartic acid. This suggests that, in contrast to binding of phages, a ligand of the donor cell recognizes only a very small area of the protein. 相似文献
11.
Apparent bacteriophage-binding region of an Escherichia coli K-12 outer membrane protein. 总被引:1,自引:4,他引:1 下载免费PDF全文
The 325-residue OmpA protein is one of the major outer membrane proteins of Escherichia coli. It serves as the receptor for several T-even-like phages and is required for the action of certain colicins and for the stabilization of mating aggregates in conjugation. We have isolated two mutant alleles of the cloned ompA gene which produce a protein that no longer functions as a phage receptor. Bacteria possessing the mutant proteins were unable to bind the phages, either reversibly or irreversibly. However, both proteins still functioned in conjugation, and one of them conferred colicin L sensitivity. DNA sequence analysis showed that the phage-resistant, colicin-sensitive phenotype exhibited by one mutant was due to the amino acid substitution Gly leads to Arg at position 70. The second mutant, which contained a tandem duplication, encodes a larger product with 8 additional amino acid residues, 7 of which are a repeat of the sequence between residues 57 and 63. In contrast to the wild-type OmpA protein, this derivative was partially digested by pronase when intact cells were treated with the enzyme. The protease removed 64 NH2-terminal residues, thereby indicating that this part of the protein is exposed to the outside. It is argued that the phage receptor site is most likely situated around residues 60 to 70 of the OmpA protein and that the alterations characterized have directly affected this site. 相似文献
12.
Georg Ried Ralf Koebnik Ingrid Hindennach Bettina Mutschler Ulf Henning 《Molecular genetics and genomics : MGG》1994,243(2):127-135
The 325-residue outer membrane protein OmpA of Escherichia coli has been proposed to consist of a membrane-embedded moiety (residues 1 to about 170) and a C-terminal periplasmic region. The former is thought to comprise eight transmembrane segments in the form of antiparallel β-strands, forming an amphiphilic β connected by exposed turns. Several questions concerning this model were addressed. Thus no experimental evidence had been presented for the turns at the inner leaflet of the membrane and it was not known whether or not the periplasmic part of the polypeptide plays a role in the process of membrane incorporation. Oligonucleotides encoding trypsin cleavage sites were inserted at the predicted turn sites of the ompA gene and it was shown that the encoded proteins indeed become accessible to trypsin at the modified sites. Together with previous results, these data also show that the turns on both sides of the membrane do not possess specifically topogenic information. In two cases one of the two expected tryptic fragments was lost and could be detected at low concentration in only one case. Therefore, bilateral proteolytic digestion of outer membranes can cause loss of β-strands and does not necessarily produce a reliable picture of protein topology. When ompA genes were constructed coding for proteins ending at residue 228 or 274, the membrane assembly of these proteins was shown to be partially defective with about 20% of the proteins not being assembled. No such defect was observed when, following the introduction of a premature stop codon, a truncated protein was produced ending with residue 171. It is concluded that (1) the proposed β-barrel structure is essentially correct and (2) the periplasmic part of OmpA does not play an active role in, but can, when present in mutant form, interfere with membrane assembly. 相似文献
13.
Expression of mutant ompA genes, encoding the 325 residue Escherichia coli outer membrane protein OmpA, caused an inhibition of synthesis of the structurally unrelated outer membrane porins OmpC and OmpF and of wild-type OmpA, but not of the periplasmic beta-lactamase. There was no accumulation of precursors of the target proteins and the inhibitory mechanism operated at the level of translation. So far only alterations around residue 45 of OmpA have been found to affect this phenomenon. Linkers were inserted between the codons for residues 45 and 46. A correlation between size and sequence of the resulting proteins and presence or absence of the inhibitory effect was not found, indicating that the added residues acted indirectly by altering the conformation of other parts of the mutant OmpA. To be effective, the altered polypeptides had to be channelled into the export pathway. Internal deletions in effector proteins, preventing incorporation into the membrane, abolished effector activity. The results suggest the existence of a periplasmic component that binds to OmpA prior to membrane assembly; impaired release of this factor from mutant OmpA proteins may trigger inhibition of translation. The factor could be a See B-type protein, keeping outer membrane proteins in a form compatible with membrane assembly. 相似文献
14.
15.
16.
Cloning and expression in Escherichia coli K-12 of the genes for major outer membrane protein OmpA from Shigella dysenteriae, Enterobacter aerogenes, and Serratia marcescens. 总被引:7,自引:2,他引:7 下载免费PDF全文
The outer membranes of many gram-negative bacteria contain a major heat-modifiable protein which shows serological cross-reactivity with the OmpA protein of Escherichia coli K-12. Using the cloned gene for the E. coli K12 protein as a DNA-DNA hybridization probe, we were able to identify the corresponding genes from Shigella dysenteriae. Enterobacter aerogenes, and Serratia marcescens. These were cloned in a phage lambda vector, and their expression in E. coli K-12 was studied. All three OmpA proteins were fully produced and correctly exported to the outer membrane. In several cases, complete or partial restoration of known function of the E. coli K-12 protein was observed. 相似文献
17.
Evidence that the outer membrane protein gene nmpC of Escherichia coli K-12 lies within the defective qsr'' prophage. 总被引:1,自引:3,他引:1 下载免费PDF全文
Recombinants between phage lambda and the defective qsr' prophage of Escherichia coli K-12 were made in an nmpC (p+) mutant strain and in the nmpC+ parent. The outer membrane of strains lysogenic for recombinant qsr' phage derived from the nmpC (p+) strain contained a new protein identical in electrophoretic mobility to the NmpC porin and to the Lc porin encoded by phage PA-2. Lysogens of qsr' recombinants from the nmpC+ strain and lysogens of lambda p4, which carries the qsr' region, did not produce this protein. When observed by electron microscopy, the DNA acquired from the qsr' prophage showed homology with the region of the DNA molecule of phage PA-2 which contains the lc gene. Relative to that of the recombinant from the nmpC (p+) mutant, the DNA molecule of the recombinant from the nmpC+ parent contained an insertion near the lc gene. These results were supported by blot hybridization analysis of the E. coli chromosome with probes derived from the lc gene of phage PA-2. A sequence homologous to the lc gene was found at the nmpC locus, and the parental strains contained an insertion, tentatively identified as IS5B, located near the 3' end of the porin coding sequence. We conclude that the structural gene for the NmpC porin protein is located within the defective qsr' prophage at 12.5 min on the E. coli K-12 map and that this gene can be activated by loss of an insertion element. 相似文献
18.
Escherichia coli K-12 outer membrane protein (OmpA) as a bacteriophage receptor: analysis of mutant genes expressing altered proteins. 总被引:19,自引:8,他引:19 下载免费PDF全文
The outer membrane protein OmpA of Escherichia coli K-12 serves as a receptor for a number of T-even-like phages. We have isolated a series of ompA mutants which are resistant to such phages but which still produce the OmpA protein. None of the mutants was able to either irreversibly or reversibly bind the phage with which they had been selected. Also, the OmpA protein is required for the action of colicins K and L and for the stabilization of mating aggregates in conjugation. Conjugal proficiency was unaltered in all cases. Various degrees of colicin resistance was found; however, the resistance pattern did not correlate with the phage resistance pattern. DNA sequence analyses revealed that, in the mutants, the 325-residue OmpA protein had suffered the following alterations: Gly-65----Asp, Gly-65----Arg, Glu-68----Gly, Glu-68----Lys (two isolates), Gly-70----Asp (four isolates), Gly-70----Val, Ala-Asp-Thr-Lys-107----Ala-Lys (caused by a 6-base-pair deletion), Val-110----Asp, and Gly-154----Ser. These mutants exhibited a complex pattern of resistance-sensitivity to 14 different OmpA-specific phages, suggesting that they recognize different areas of the protein. In addition to the three clusters of mutational alterations around residues 68, 110, and 154, a site around residue 25 has been predicted to be involved in conjugation and in binding of a phage and a bacteriocin (R. Freudl, and S. T. Cole, Eur. J. Biochem, 134:497-502, 1983; G. Braun and S. T. Cole, Mol. Gen. Genet, in press). These four areas are regularly spaced, being about 40 residues apart from each other. A model is suggested in which the OmpA polypeptide repeatedly traverses the outer membrane in cross-beta structure, exposing the four areas to the outside. 相似文献
19.
Escherichia coli K-12 tolF mutants: alterations in protein composition of the outer membrane. 总被引:15,自引:7,他引:15 下载免费PDF全文
Outer membrane materials prepared from three independently isolated spontaneous Escherichia coli tolF mutants contained no detectable protein Ia. The loss of this protein was nearly completely compensated for by an increase in other major outer membrane proteins, Ib and II. Thus, the major outer membrane proteins accounted for 40% of the total cell envelope protein in both tol+ and tolF strains. No changes were found in the levels of inner membrane proteins prepared from tolF strains when compared with similar preparations from the tol+ strain. Phage-resistant mutants were selected starting with a tolF strain by using either phage TuIb or phage PA2. These phage-resistant tolF strains contained neither protein Ia nor protein Ib. The mutation leading to the loss of protein Ib in these strains is independent of the tolF mutation and is located near malP on the E. coli genetic map. 相似文献
20.
Cloned DNA fragment specifying major outer membrane protein a in Escherichia coli K-12. 总被引:5,自引:2,他引:5
Plasmid pMC44 is a recombinant plasmid that contains a 2-megadalton EcoRI fragment of Escherichia coli K-12 DNA joined to the cloning vehicle, pSC101. The polypeptides specified by plasmid pMC44 were identified and compared with those specified by pSC101 to determine those that are unique to pMC44. Three polypeptides specified by plasmid pMC44 were localized in the cell envelope fraction of minicells: a Sarkosyl-insoluble outer membrane polypeptide (designated M2), specified by the cloned 2-megadalton DNA fragment, and two Sarkosyl-soluble membrane polypeptides specified by the cloning plasmid pSC101. Bacteria containing plasmid pMC44 synthesized quantities of M2 approximately equal to the most abundant E. coli K-12 outer membrane protein. Evidence is presented that outer membrane polypeptide M2, specified by the recombinant plasmid pMC44, is the normal E. coli outer membrane protein designated protein a by Lugtenberg and 3b by Schnaitman. 相似文献