首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An efficient oxidative stress response (OSR) is important for the facultative pathogenic yeast Candida albicans to survive within the human host. We used a large scale 2-D protein gel electrophoresis approach to analyze the stress response mechanisms of C. albicans after treatment with hydrogen peroxide and the thiol oxidizing agent, diamide. Quantitation of in vivo protein synthesis after pulse labeling of the proteins with radioactive L-[35S]-methionine resulted in characteristic proteome signatures for hydrogen peroxide and diamide with significant overlap of 21 up-regulated proteins for both stressors. Among the induced proteins were enzymes with known antioxidant functions like catalase or thioredoxin reductase and a set of oxidoreductases. 2-D gel analysis of mutants in the CAP1 gene revealed that the synthesis of 12 proteins is controlled by the oxidative stress regulator Cap1p. Stressing its importance for the C. albicans OSR, all 12 proteins were also induced after oxidative challenge by hydrogen peroxide or diamide.  相似文献   

2.
We imaged pores on the surface of the cell wall of three different industrial strains of Saccharomyces cerevisiae using atomic force microscopy. The pores could be enlarged using 10 mM diamide, an SH residue oxidant that attacks surface proteins. We found that two strains showed signs of oxidative damage via changes in density and diameter of the surface pores. We found that the German strain was resistant to diamide induced oxidative damage, even when the concentration of the oxidant was increased to 50 mM. The normal pore size found on the cell walls of American strains had diameters of about 200nm. Under conditions of oxidative stress the diameters changed to 400nm. This method may prove to be a useful rapid screening process (45-60 min) to determine which strains are oxidative resistant, as well as being able to screen for groups of yeast that are sensitive to oxidative stress. This rapid screening tool may have direct applications in molecular biology (transference of the genes to inside of living cells) and biotechnology (biotransformations reactions to produce chiral synthons in organic chemistry.  相似文献   

3.
Monobromobimane labels red cell membrane protein thiol groups; bands exhibit fluorescence after sodium dodecyl sulfate acrylamide gel electrophoresis and correspond to almost all of those staining with Coomassie blue. The response of membrane protein thiol groups to oxidative challenge and the dynamics of recovery of the thiol groups may be followed. Diminished labeling is found after oxidation with diamide, with both intrachain and interchain disulfide bond formation demonstrated by sodium dodecyl sulfate acrylamide gel electrophoresis. Regeneration of thiol groups under physiological conditions (incubation with glucose) after a moderate degree of diamide oxidation is shown to be complete (with respect to thiol group content and degree and distribution of bimane label) in normal human red blood cell membranes. Even after oxidation of almost half of the membrane protein thiol groups (maximum degree of oxidation achieved), regeneration of thiol groups is almost complete; a minor fraction resides in the form of disulfide-linked high molecular weight proteins (demonstrated by the electrophoretic profile) which may be reduced completely with dithiothreitol.Bimane fluorescent labeling provides a convenient and sensitive method for following membrane thiol group status under physiological conditions.  相似文献   

4.
The high resolution 2-D protein gel electrophoresis technique combined with MALDI-TOF MS and a recently developed fluorescence-based thiol modification assay were used to investigate the cellular response of Staphylococcus aureus to oxidative stress. Addition of hydrogen peroxide, diamide, and the superoxide generating agent paraquat to exponentially growing cells revealed complex changes in the protein expression pattern. In particular, proteins involved in detoxification, repair systems, and intermediary metabolism were found to be up-regulated. Interestingly, there is only a small overlap of proteins induced by all these stressors. Exposure to hydrogen peroxide mediated a significant increase of DNA repair enzymes, whereas treatment with diamide affected proteins involved in protein repair and degradation. The activity of proteins under oxidative stress conditions can be modulated by oxidation of thiol groups. In growing cells, protein thiols were found to be mainly present in the reduced state. Diamide mediated a strong increase of reversibly oxidized thiols in a variety of metabolic enzymes. By contrast, hydrogen peroxide resulted in the reversible oxidation especially of proteins with active site cysteines. Moreover, high levels of hydrogen peroxide influenced the pI of three proteins containing cysteines within their active sites (GapA1, AhpC, and HchA) indicating the generation of sulfinic or sulfonic acid by irreversible oxidation of thiols.  相似文献   

5.
To analyse the role of native structures of membrane proteins in their structural modifications induced by the elevated intracellular free Ca2+ levels, we have studied the Ca(2+)-mediated effects on membrane skeletal proteins in human erythrocytes that were loaded with Ca2+ using the ionophore A23187 after their pretreatment with the sulphydryl oxidizing agent, diamide. The diamide treatment not only induced polymerization of the major membrane skeletal protein, spectrin, in the erythrocytes, but it also promoted intersubunit crosslinking within the tetramers and dimers of this protein. Loading of these diamide-treated cells with Ca2+ failed to induce significant structural modifications of spectrin as well as polypeptide 4.1, another major membrane skeletal protein, as compared to the erythrocytes that were loaded with Ca2+ without the diamide pretreatment. These results have been interpreted to suggest that the Ca(2+)-induced membrane skeletal protein changes in erythrocytes depend on both the shape and relative orientation of these proteins within the membrane skeleton.  相似文献   

6.
In erythrocytes treated with the SH-oxidizing agent, diamide, mixed disulfide bonds between membrane proteins and GSH are formed involving 20% of the membrane SH groups. To study the distribution of these mixed disulfides over the membrane protein fractions, intracellular GSH was labelled biosynthetically with [2-3H]glycine prior to diamide treatment of the cells and the radioactivity of defined membrane peptide fractions determined. Mixed disulfides preferentially occur in the extrinsic protein, spectrin (six SH groups), in addition to the formation of peptide disulfides. Intrinsic proteins are much less reactive: only one SH group of the major intrinsic protein (band 3) reacts with GSH, which accounts for previously observed impossibility to dimerize band 3 via disulfide bonds in intact cells. The labelling method described offers a promising strategy to label and map exposed endofacial SH groups of membrane proteins with a physiological, impermeable marker, GSH.In ghosts treated with diamide and GSH the number of mixed disulfides formed is greater than in erythrocytes. Polymerization of spectrin via intermolecular disulfide bridges is suppressed, while intramolecular disulfides are still formed, providing a means for the analysis of spectrin structure.The diamide-induced mixed membrane-GSH disulfides are readily reduced by GSH. This suggests, that GSH may also be able to reduce mixed disulfides formed in the erythrocyte membrane under oxidative stress in vivo. The reversible formation of mixed disulfides may serve to protect sensitive membrane structures against irreversible oxidative damage.  相似文献   

7.
Two methods for quantitation of protein S-thiolation, by isoelectric focusing or by enzyme activity, were used for studying S-thiolation of cytoplasmic cardiac creatine kinase. With these methods, creatine kinase was identified as a major S-thiolated protein in both bovine and rat heart. In rat heart cell cultures, creatine kinase became 10% S-thiolated during a 10 min incubation with 0.2 mM diamide. This enzyme became S-thiolated more slowly than other heart cell proteins and it also dethiolated more slowly. Two sequential additions of diamide at a 25 min interval caused twice as much S-thiolation after the second addition as compared to the first. This increased sensitivity to the second diamide treatment may have resulted from glutathione loss during the first addition which produced a higher GSSG-to-GSH ratio after the second treatment. The GSSG-to-GSH ratio was highest prior to the maximum S-thiolation of creatine kinase, but, in general, the time course of glutathione was similar to the S-thiolation of creatine kinase. This study demonstrates that cytoplasmic creatine kinase is S-thiolated and, therefore, inhibited during a diamide-induced oxidative stress in heart cells. Implications for regulation of cardiac metabolism during oxidative stress are discussed.  相似文献   

8.
Beating neonatal heart cell cultures were treated with diamide or t-butyl hydroperoxide, and changes in glutathione oxidation, cell beating, and protein S-thiolation (protein mixed-disulfide formation) were examined. Both compounds caused extensive oxidation of glutathione. Cells treated with diamide stopped beating within 2 min, and beating returned to normal after 30-45 min. Cells stopped beating 25 min after the addition of t-butyl hydroperoxide, and beating did not resume. t-Butyl hydroperoxide caused S-thiolation of a variety of proteins, but only one protein, of molecular mass 23 kDa, was extensively modified. Diamide caused extensive modification of proteins with molecular masses of 97, 42 and 23 kDa as well as three proteins of about 35 kDa. Though the GSSG content of cell cultures returned to normal by 15 min after diamide treatment. S-thiolation of several proteins persisted. These studies show that S-thiolation of proteins is an important metabolic response in cells exposed to an oxidative challenge by t-butyl hydroperoxide or diamide, and that the specificity of the response depends on the agent used.  相似文献   

9.
10.
Oxidants can activate signaling pathways and modulate a variety of cellular activities. Their action at a molecular level involves the post-translational modification of protein thiols. We have developed a proteomic method to monitor the reduction and oxidation of protein thiols, and identify those thiol proteins most sensitive to oxidation. Cells were disrupted in the presence of N-ethylmaleimide to block the reduced thiol proteins and dithiothreitol was added to reduce the oxidized thiol proteins before labeling with 5-iodoacetamidofluorescein. Two-dimensional (2-D) electrophoresis was used to resolve the labeled samples. We applied the method to Jurkat T lymphocytes and examined the effect of diamide on the oxidized and reduced thiol protein profiles. A small percentage of protein thiols were already oxidized in untreated cells. Exposure of cells to 2 mM diamide for ten minutes led to a dramatic increase in thiol protein oxidation as seen in the oxidized thiol protein map. However, it was difficult to detect any change in the pattern of reduced thiol proteins. Separation of proteins by 2-D electrophoresis revealed approximately 200 thiol proteins that were oxidized by diamide treatment. This method will be valuable in elucidating redox signaling pathways.  相似文献   

11.
Changes in physical and chemical factors appeared in response to freeze-thawing and low temperature storage of biological samples can result in impairments of protein structures. Spontaneous and diamide-induced protein aggregation of placenta blood serum stored at −20 and −196°C up to 2 years has been investigated by SDS-PAGE. It was shown that storage of placental blood serum at low temperatures did not cause any quantitative and qualitative changes in fraction distribution of proteins denatured by SDS compared with native (unfrozen) samples. Application of β-mercaptoethanol revealed that during freeze-thawing placental blood serum proteins did not form spontaneous aggregates cross-linked by disulphide bridges. Oxidation of amino acid sulfhydryl groups induced by diamide and accompanied by formation of high molecular aggregates was a reasonably effective approach for indirect assessment of structural changes in protein molecules induced by low temperatures. In the samples exposed to low temperature storage protein aggregation induced by 4 mM diamide was significantly higher than in native serum. The structural changes in serum proteins caused by low temperatures and recognized by discrepant susceptibility to diamide-induced protein aggregate formation did not depend on temperature (−20 and −196°C) and time-length of storage (2 years and 3 weeks). These changes do reflect protein reaction to freeze-thawing processes and could originate from ice crystal formation which takes place in unprotected media.  相似文献   

12.
The status of platelet actin has been studied analytically by the DNase-I inhibition assay. Exposure of platelets to diamide, which oxidizes sulphydryl groups, results in an increase of filamentous actin. Neutralization of the effect of diamide by addition of 2-mercaptopropionylglycine (2-MPG) or washing out the excess of diamide is associated with a normalization of the cellular actin status. These findings strongly suggest that the redox state of platelets is somehow involved in the process of actin polymerization. Alterations of the redox state in metabolically altered platelets could therefore account for changes in the G- to F-actin equilibrium. In the thrombin-induced actin polymerization the redox state of the cell seems to be not involved, since 2-MPG preincubation of platelets (1.25 mM, 30 min) does not inhibit the filament assembly.  相似文献   

13.
The crosslinking of membrane proteins of human erythrocytes by diamide (diazene dicarboxylic acid bis(N,N-dimethylamide) ) was quantified by 4% polyacrylamide gel electrophoresis in 1% sodium dodecyl sulfate. The relation between the crosslinking of membrane proteins and erythrocyte functions (rheological and oxygen transporting) was quantitatively examined. (i) The crosslinking of membrane protein was induced by diamide, without changing the shape and the contents of intracellular organic phosphates (adenylates and 2,3-diphosphoglycerate). The intensity of spectrin 2 in SDS-polyacrylamide gel electrophoresis decreased proportionally to diamide concentration. The percentage decrease in spectrin 2 (using band 3 as an internal standard) was the most appropriate indicator for crosslinking ("% crosslinking'). (ii) The suspension viscosity of erythrocytes increased in proportion to the percentage of crosslinking, in the range of applied shear rates of 3.76-752 s-1. (iii) Erythrocyte deformability (measured by a high-shear rheoscope) was reduced by the crosslinking. The change was detectable even at 5% crosslinking. (iv) Rouleaux formation (measured by a television image analyzer combined with a low-shear rheoscope) was inhibited by the crosslinking. The inhibition was also sensitively detected at more than 5% crosslinking. (v) Hemoglobin in erythrocytes was chemically modified by higher dose of diamide (probably by the binding of diamide with sulfhydryl groups). Also the oxygen affinity of hemoglobin increased and the heme-heme interaction decreased. (vi) The reduction of the crosslinking of membrane proteins by dithiothreitol apparently reversed the intensity of spectrin bands in SDS-polyacrylamide gel electrophoresis and the erythrocyte functions (the suspension viscosity and the deformability), though not completely.  相似文献   

14.
Among polyamines (putrescine, spermidine, and spermine), spermine specifically induces cataract in an organ cultured lens. Spermine uptake nearly paralleled the cataract formation. When polyamines were added to lens soluble proteins, spermine specifically induced turbidity. When lens soluble proteins were separated by gel chromatography, heavy-molecular-weight protein (HMW, high molecular form of alpha-crystallin) and proteins between betaH- and betaL-crystallin fractions reacted with spermine and aggregated. SDS-polyacrylamide gel electrophoresis of the aggregated proteins showed that 43-kDa lens protein was commonly observed in both aggregates. Spermine-affinity chromatography of the total soluble proteins showed the binding of HMW protein to the gel and the chromatogram of the second turbidity peak in the gel chromatography showed the binding of 43-kDa protein. These results indicated that 43-kDa protein, which is present as a subunit in HMW and also in free form, binds spermine and induces turbidity of lens soluble proteins and produces cataract in a cultured lens.  相似文献   

15.
We have analyzed the pattern of protein synthesis in solar near ultraviolet (334 nm, 365 nm) and near visible (405 nm) irradiated normal human skin fibroblasts. Two hours after irradiation we find that one major stress protein of approximately 32 kDa is induced in irradiated cells. This protein is not induced by ultraviolet radiation at wavelengths shorter than 334 nm and is not inducible by heat shock treatment of these cells. Although sodium arsenite, diamide, and menadione all induced a 32-kDa protein, they also induced the major heat shock proteins. In contrast, the oxidizing agent, hydrogen peroxide, induced the low molecular weight stress protein without causing induction of the major heat shock proteins. A comparison of the 32-kDa proteins induced by sodium arsenite, H2O2, and solar near ultraviolet radiation using chemical peptide mapping shows that they are closely related. These results imply that the pathways for induction of the heat shock response and the 32-kDa protein are not identical and suggest that, at least in the case of radiation and treatment with H2O2, the 32-kDa protein might be induced in response to cellular oxidative stress. This conclusion is supported by the observation that depletion of endogenous cellular glutathione prior to solar near ultraviolet irradiation lowers the fluence threshold for induction of the 32-kDa stress protein.  相似文献   

16.
Several steps in the ubiquitin-proteasome pathway have been shown to be inhibited in models of oxidative stress and aging. We have designed similar models of aging and oxidation in the HLE B-3 human lens epithelial cell line. Following hydrogen peroxide (H2O2) treatment, B-3 cells exhibited an expected activation of c-fos. The effect of these same and similar treatments on the lens proteasome system was unexpected. The 2D gel pattern and the chymotrypsin-like activity of the 20S core were unaffected by this H2O2 treatment, contrary to previous experience in other culture systems. The critical role of proteolysis in the aging lens, and the strong tie between oxidation and proteasome changes, urged us to further model lens oxidation and investigate several steps of the ubiquitin-proteasome pathway with an alternative agent: the thiol-specific oxidant, diamide. The 20S core proteasome, de-ubiquitinating, and ATP-dependent 26S proteasome activities all showed decreases 10 min after diamide was applied, and recovered to near normal within 1h. The higher, 300 microM dose inhibited the 20S by 43%, the de-ubiquitinating activity by 17% and the 26S by 31%. The comparable susceptibility of the 20S activity and the 26S activity differs from several previously published models. Such differences may be the result of tissue or cell line-specific variants in either the components of the ubiquitin-proteasome pathway or in their modification by intracellular oxidants or reductants.  相似文献   

17.
We report here the isolation of a novel acid-labile yellow chromophore from the enzymatic digest of human lens proteins and the identification of its chemical structure by liquid chromatography-mass spectrometry, liquid chromatography-tandem mass spectrometry, and (1)H, (13)C, and two-dimensional NMR. This new chromophore exhibited a UV absorbance maximum at 343 nm and fluorescence at 410 nm when excited at 343 nm. Analysis of the purified compound by reversed-phase HPLC with in-line electrospray ionization mass spectrometry revealed a molecular mass of 370 Da. One- and two-dimensional NMR analyses elucidated the structure to be 1-(5-amino-5-carboxypentyl)-4-(5-amino-5-carboxypentylamino)-3-hydroxy-2,3-dihydropyridinium, a cross-link between the epsilon-amino groups of two lysine residues, and a five-carbon ring. Because this cross-link contains two lysine residues and a dihydropyridinium ring, we assigned it the trivial name of K2P. Quantitative determinations of K2P in individual normal human lens or cataract lens water-soluble and water-insoluble protein digests were made using a high-performance liquid chromatograph equipped with a diode array detector. These measurements revealed a significant enhancement of K2P in cataract lens proteins (613 +/- 362 pmol/mg of water-insoluble sonicate supernatant (WISS) protein or 85 +/- 51 pmol/mg of WS protein) when compared with aged normal human lens proteins (261 +/- 93 pmol/mg of WISS protein or 23 +/- 15 pmol/mg of water-soluble (WS) protein). These data provide chemical evidence for increased protein cross-linking during aging and cataract development in vivo. This new cross-link may serve as a quantitatively more significant biomarker for assessing the role of lens protein modifications during aging and in the pathogenesis of cataract.  相似文献   

18.
不仅在体内,而且在体外亚硒酸钠可引起晶状体蛋白质聚合。将亚硒酸钠加到pH7.4的晶状体蛋白质溶液中,在37℃保温30min后观察到蛋白质溶液变混浊,随时间的延长混浊程度加重并有沉淀形成。经SDS聚丙烯酰胺凝胶电泳发现,加硒保温后形成的不溶性蛋白质中有大量的高分子聚合物。当加入二硫苏糖醇后混浊的蛋白质溶液变清,其中的高分子聚合物也基本消失,我们还发现;在亚硒酸钠使晶状体蛋白质变混浊的同时,蛋白质巯基减少,而蛋白质结合的硒量增加,且二者之间有较固定的比例关系,即蛋白质上每增加一个硒原子,蛋白质巯基就减少4.26个。当用二硫苏糖醇还原后,68%的硒从蛋白质中释放出来。这些结果表明,亚硒酸钠可引起大鼠晶状体水溶性蛋白质聚合,其可能方式如下:4PSH+SeO_3~-→PSSP+PS-Se-SP+H_2O+2OH~-这可能是亚硒酸钠诱发白内障的主要原因。  相似文献   

19.
To understand the physiological function of glutaredoxin, a thiotransferase catalyzing the reduction of mixed disulfides of protein and glutathione, we generated a line of knockout mice deficient in the cytosolic glutaredoxin 1 (Grx1). To our surprise, mice deficient in Grx1 were not more susceptible to acute oxidative insults in models of heart and lung injury induced by ischemia/reperfusion and hyperoxia, respectively, suggesting that either changes in S-glutathionylation status of cytosolic proteins are not the major cause of such tissue injury or developmental adaptation in the Glrx1-knockout animals alters the response to oxidative insult. In contrast, mouse embryonic fibroblasts (MEFs) isolated from Grx1-deficient mice displayed an increased vulnerability to diquat and paraquat, but they were not more susceptible to cell death induced by hydrogen peroxide (H(2)O(2)) and diamide. A deficiency in Grx1 also sensitized MEFs to protein S-glutathionylation in response to H(2)O(2) treatment and retarded deglutathionylation of the S-glutathionylated proteins, especially for a single prominent protein band. Additional experiments showed that MEFs lacking Grx1 were more tolerant to apoptosis induced by tumor necrosis factor alphaplus actinomycin D. These findings suggest that various oxidants may damage the cells via distinct mechanisms in which the action of Grx1 may or may not be protective and Grx1 may exert its function on specific target proteins.  相似文献   

20.
Thermotolerance and synthesis of heat shock proteins are induced in cells in response to a variety of environmental stresses. We examined the suggestion of Hightower (1980) that modifications of intracellular proteins may be the triggering event that induces heat shock protein synthesis and thermotolerance. We did so by modifying cellular proteins, using diamide, a sulfhydryl oxidizing agent, and dithio-bis (succinimidyl propionate), an agent that cross-links bifunctional amino groups. Both of these agents induced heat shock proteins and thermotolerance in CHO (HA-1) cells. Furthermore, we observed cross-resistance and self-tolerance with three seemingly unrelated stimuli (diamide, heat, and sodium arsenite). This observation suggests that the induction of protective responses to these stimuli is mediated by a common mechanism. The results support the hypothesis that production of abnormal proteins by various stresses induces the stress responses as well as tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号