共查询到20条相似文献,搜索用时 0 毫秒
1.
Scions of the non-ripening rin and nor tomato strains (Lycopersicum esculentum Mill.) were grafted on normal understock plants (cv. Rutgers) in an effort to study the influence of roots and vegetative tissue on the ripening behavior of the tomato fruit. Receiprocal grafts of ‘Rutgers’ scions on rin and nor understocks as well as grafted and ungrafted controls were also established. No alteration in the ethylene, and CO2 evolution and color development of either mutant fruits on normal understock or of normal fruits on mutant understock occurred. We suggest that the inability of rin and nor mutant fruits to ripen normally stems either from the presence in mutant fruit of a non-translocatable ripening inhibitor, or from the absence of a non-translocatable ripening factor. 相似文献
2.
This work tested one aspect of the relations between membrane permeability and fruit ripening. Membrane permeability was measured as [3H]water efflux rate from preloaded fruit pericarp disks. Different stages of fruit development were compared between two tomato (Lycopersicon esculentum Mill) strains: the normal Rutgers and the isogenic nonripening rin strain. The first significant increase in permeability was measured in Rutgers tissue at 110% of development, after fruit ripening had already begun as indicated by ethylene and CO2 evolution and lycopene synthesis. The rin did not show any increase in tissue permeability during fruit development or maturation. 相似文献
3.
4.
Photosynthetic Activity of Ripening Tomato Fruit 总被引:4,自引:0,他引:4
Gas exchanges, chlorophyll (Chl) a fluorescence and carboxylation activities of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) and phosphoenolpyruvate carboxylase (PEPC) were determined in tomato (Lycopersicon esculentum Mill.) fruits picked at different developmental stages (immature, red-turning, mature, and over-ripe). The fruits did not show signs of CO2 fixation. However, photochemical activity was detectable and an effective electron transport was observed, the values of Chl fluorescence parameters in green fruits being similar to those determined in the leaves. The RuBPCO activity, which was similar to those recorded in the leaves at the immature stage of the fruit, decreased as the fruit ripened. PEPC activity was always higher than RuBPCO activity. 相似文献
5.
PG与番茄果实成熟的关系 总被引:12,自引:0,他引:12
系统比较了转多聚半乳糖醛酸酶(PG)反义基因和对照番茄果实成熟过程中绿熟、转色、粉顶、粉红、全红5个时期的PG活性和与其相关的生理、生化组分的动态变化.实验表明,转基因果与对照果相比,PG活性始终处于较低水平,PG活性强烈被抑制是在全红期;果实的硬度、贮藏寿命指数都高于对照果;番茄红素合成积累进程被延缓;可溶性果胶含量、电解质外渗百分率均低于对照果.外源乙烯刺激引起对照果PG活性剧增,而转基因果表现钝化.讨论了PG活性与果实成熟、耐贮性及软化的关系,及对外源乙烯刺激的敏感性.首次明确提出PG活性在对照果中极大地表达,在转基因果中强烈被抑制是在全红期,而不是在整个成熟期;PG活性在果实软化中起直接和重要作用;PG活性的高低与番茄红素的合成与积累有关. 相似文献
6.
7.
Analysis of Ca and other inorganic ions in the pericarp of rin, a nonripening mutant, and normal tomato (Lycopersicon esculentum Mill) fruits revealed significant differences in their accumulations at advanced stages of fruit development. During early stages of fruit development, soluble Ca was higher in Rutgers and there were no detectable changes in the accumulation patterns of the other inorganic ions. In the mutant rin, bound Ca continued to increase with age and it was twice as high as compared to earlier stages. In the normal tomato, bound Ca decreased about 3-fold at later stages of development. Mg and Mn also showed some changes similar to Ca. K continued to increase with age and the mutant rin had lower levels than Rutgers throughout development. Other ions such as P, Zn, Cu, and Co were similar in the mutant and normal fruits. These results are interpreted as indicating that high levels of bound divalent cations in the mutant rin may be associated with an altered membrane and cell wall and play a role in fruit ripening. 相似文献
8.
Reversible Inhibition of Tomato Fruit Gene Expression at High Temperature (Effects on Tomato Fruit Ripening) 总被引:3,自引:1,他引:3
下载免费PDF全文

The reversible inhibition of three ripening-related processes by high-temperature treatment (38[deg]C) was examined in tomato (Lycopersicon esculentum L. cv Daniella) fruit. Ethylene production, color development, and softening were inhibited during heating and recovered afterward, whether recovery took place at 20[deg]C or fruit were first held at chilling temperature (2[deg]C) after heating and then placed at 20[deg]C. Ethylene production and color development proceeded normally in heated fruit after 14 d of chilling, whereas the unheated fruit had delayed ethylene production and uneven color development. Levels of mRNA for 1-aminocyclopropane-1-carboxylic acid oxidase, phytoene synthase, and polygalacturonase decreased dramatically during the heat treatment but recovered afterward, whereas the mRNA for HSP17 increased during the high-temperature treatment and then decreased when fruit were removed from heat. As monitored by western blots, the HSP17 protein disappeared from fruit tissue after 3 d at 20[deg]C but remained when fruit were held at 2[deg]C. The persistence of heat-shock proteins at low temperature may be relevant to the protection against chilling injury provided by the heat treatment. Protein levels of 1-aminocyclopropane-1-carboxylic acid oxidase and polygalacturonase also did not closely follow the changes in their respective mRNAs. This implied both differences in relative stability and turnover rates of mRNA compared to protein and nontranslation of the message that accumulated in low temperature. The results suggest that high temperature inhibits ripening by inhibiting the accumulation of ripening-related mRNAs. Ripening processes that depend on continuous protein synthesis including ethylene production, lycopene accumulation, and cell-wall dissolution are thereby diminished. 相似文献
9.
The aim of the work reported herein was to determine whether the lack of normal ripening in fruits of rin and nor tomato mutants is due to the presence of ripening inhibitors or to the lack of ripening factors in the fruit. A fruit tissue transplantation technique was developed for this purpose. 相似文献
10.
Polygalacturonase Gene Expression in Rutgers, rin, nor, and Nr Tomato Fruits 总被引:7,自引:7,他引:7
下载免费PDF全文

Polygalacturonase (PG) gene expression was studied in normally ripening tomato fruit (Lycopersicon esculentum Mill, cv Rutgers) and in three ripening-impaired mutants, rin, nor, and Nr. Normal and mutant fruit of identical chronological age were analyzed at 41, 49, and 62 days after pollination. These stages corresponded to mature-green, ripe, and overripe, respectively, for Rutgers. The amount of PG mRNA in Rutgers was highest at 49 days and accounted for 2.3% of the total mRNA mass but at 62 days had decreased to 0.004% of the total mRNA mass. In Nr, the amount of PG mRNA steadily increased between 41 and 62 days after pollination, reaching a maximum level of 0.5% of the total mRNA mass. The mutant nor exhibited barely detectable levels of PG mRNA at all stages tested. Surprisingly, PG mRNA, comprising approximately 0.06% of the mRNA mass, was detected in 49 day rin fruit. This mRNA accumulation occurred in the absence of elevated ethylene production by the fruit and resulted in the synthesis of enzymically active PG I. The different patterns of PG mRNA accumulation in the three mutants suggests that distinct molecular mechanisms contribute to reduced PG expression in each ripening-impaired mutant. 相似文献
11.
12.
Marta Renato Irini Pateraki Albert Boronat Joaquín Azcón-Bieto 《Plant physiology》2014,166(2):920-933
During tomato (Solanum lycopersicum) fruit ripening, chloroplasts differentiate into photosynthetically inactive chromoplasts. It was recently reported that tomato chromoplasts can synthesize ATP through a respiratory process called chromorespiration. Here we show that chromoplast oxygen consumption is stimulated by the electron donors NADH and NADPH and is sensitive to octyl gallate (Ogal), a plastidial terminal oxidase inhibitor. The ATP synthesis rate of isolated chromoplasts was dependent on the supply of NAD(P)H and was fully inhibited by Ogal. It was also inhibited by the proton uncoupler carbonylcyanide m-chlorophenylhydrazone, suggesting the involvement of a chemiosmotic gradient. In addition, ATP synthesis was sensitive to 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, a cytochrome b6f complex inhibitor. The possible participation of this complex in chromorespiration was supported by the detection of one of its components (cytochrome f) in chromoplasts using immunoblot and immunocytochemical techniques. The observed increased expression of cytochrome c6 during ripening suggests that it could act as electron acceptor of the cytochrome b6f complex in chromorespiration. The effects of Ogal on respiration and ATP levels were also studied in tissue samples. Oxygen uptake of mature green fruit and leaf tissues was not affected by Ogal, but was inhibited increasingly in fruit pericarp throughout ripening (up to 26% in red fruit). Similarly, Ogal caused a significant decrease in ATP content of red fruit pericarp. The number of energized mitochondria, as determined by confocal microscopy, strongly decreased in fruit tissue during ripening. Therefore, the contribution of chromoplasts to total fruit respiration appears to increase in late ripening stages.Chromoplasts are plastids specialized in the production and accumulation of carotenoids, conferring color to many fruits and flowers. During tomato (Solanum lycopersicum) fruit ripening, chloroplasts differentiate into chromoplasts in a process that involves the dismantling of the photosynthetic apparatus and a massive synthesis and deposition of lycopene (Camara et al., 1995). Chromoplasts show a barely studied respiratory process, first reported for daffodil (Narcissus pseudonarcissus) chromoplasts and called chromorespiration, which consists of a membrane-bound redox pathway associated with carotenoid desaturation and results in oxygen uptake activity (Nievelstein et al., 1995). The most likely oxidase involved in this respiratory activity is the plastidial terminal oxidase (PTOX), a plastoquinol oxidase homologous to the mitochondrial alternative oxidase (AOX; Carol et al., 1999; Wu et al., 1999). According to its role in chromorespiration and in carotenoid biosynthesis, the expression of PTOX increases during the ripening process of tomato and bell pepper (Capsicum annuum) fruits (Josse et al., 2003), in parallel to chromoplast differentiation. PTOX has been characterized in vitro and it has been reported to be inhibited by pyrogallol analogs, specially by octyl gallate (Ogal; Josse et al., 2000). In vivo, PTOX has been studied mainly in chloroplasts. PTOX not only participates in carotenoid biosynthesis in chloroplasts but is also involved in chlororespiration, an electron transport chain present in thylakoids that shares plastoquinone with the photosynthetic electron transport chain (Carol and Kuntz, 2001; McDonald et al., 2011).In daffodil chromoplast homogenates (Nievelstein et al., 1995) as well as in isolated tomato fruit chromoplasts (Pateraki et al., 2013), NAD(P)H acts as an electron donor for chromorespiration, indicating the participation of NAD(P)H plastoquinone oxidoreductase activity. Considering that tomato fruit chromoplasts derive from chloroplasts, it is possible that some components of the chromoplastic redox pathway could originate from chlororespiration, such as the NAD(P)H:plastoquinone-reductase complex (NDH), which could act as the electron entrance. However, the enzymes involved in chromorespiration are not well known. It was also reported that the oxygen uptake activity of daffodil chromoplast homogenates was sensitive to the classic uncoupler 2,4-dinitrophenol (Nievelstein et al., 1995), and this observation led to the proposal that chromorespiration could be linked to membrane energization. Morstadt et al. (2002) found that liposomes containing daffodil chromoplast proteins and energized by an acid-base transition were able to produce ATP through a chemiosmotic mechanism, demonstrating that daffodil chromoplasts contain a functional H+-ATP synthase complex. We recently reported that isolated chromoplasts from tomato fruits can synthesize ATP de novo (Pateraki et al., 2013). This process is dependent on an ATP synthase complex containing an atypical γ-subunit without the regulatory dithiol domain, which may be active using lower proton gradients than those present in the chloroplast (Pateraki et al., 2013). This finding is consistent with proteomic analyses that reveal that several proteins related to electron transport and ATP production are present in chromoplasts of ripe fruits, like ATP synthase, some subunits of the NDH complex, and the cytochrome b6f complex (Barsan et al., 2012; Wang et al., 2013).Several anabolic pathways that require ATP and reducing agents are active in ripe fruit chromoplasts, such as synthesis of carotenoids, lipids (glycolipids, phospholipids, and sterols), and the shikimate pathway (Bian et al., 2011; Angaman et al., 2012). On the other hand, the ATP synthesis capacity of mitochondria in ripe fruit is low, because its membrane potential diminishes during ripening as a result of the increasing activity of the mitochondrial uncoupling protein (Almeida et al., 1999; Costa et al., 1999). This fact raised the question of whether chromorespiration could play a significant role in the production of ATP at the last stages of ripening. To our knowledge, the ATP synthesis rates of chromoplasts have not been quantified; therefore, it was uncertain whether the endogenous production could provide ATP in significant amounts to address the energy requirements of the chromoplasts. Moreover, there was no information about the quantitative contribution of chromorespiration to total fruit tissue respiration. This work aimed to deepen the study of the chromorespiratory process in isolated tomato fruit chromoplasts and to analyze the relative participation of this pathway in the overall respiration and ATP levels of fruit pericarp in vivo. 相似文献
13.
14.
Carboxypeptidase activity of tomato fruit reached a maximum at an early period of ripening. During storage of the fruit at 25°C, the enzyme activity decreased, accompanied by a fall of the pH value of the sap.The enzyme was apparently localized in the soluble fraction, as determined by differential centrifugation.The enzyme was optimally active at pH 5.0 ~ 5.5, was most stable at pH 4.5 ~ 6.5, and was strongly inhibited by DFP and HgCl2, but not by EDTA and 1,10-phenanthroIine. Z-dipeptides containing arginine, proline and several neutral amino acids were hydrolyzed by the enzyme.The similarity of the enzymatic properties of the present enzyme to those of other plant carboxypeptidases and pig kidney cathepsin A is also discussed. 相似文献
15.
B. C. PEACOCK 《Nature: New biology》1972,235(54):62-63
LIGHT is known to retard the senescence of leaves1–3 and chloroplasts4, but although it has been shown to modify the type and rate of pigmentation of ripening fruits5–7, there has been no good evidence that it effects the initiation of ripening8. I now report that exposure to light will shorten the preclimacteric phase of bananas. 相似文献
16.
Some chemical agents known to uncouple oxidation from phosphorylationin biological systems were injected into mature green tomatofruit. Limited amounts of the substances accelerated the ripeningof fruit left on the plants but had no effect on picked fruit.L-Methionine, regarded as having a coupling action on oxidativephosphorylation, appeared to lengthen the ripening period. Aswell as speeding up ripening, DNP and CPA were also shown toincrease the activity of polygalacturonase, but not pectinesterase,in unpicked tomato fruit. It is concluded that even when subjectto the action of uncoupling substances, production of enzymesprobably necessary for the furtherance of the ripening processcontinues. The methods by which this process in tomato fruitcould be maintained are examined, and the possibility is discussedthat loose coupling is the mechanism by whichan energy source is provided for the endergonic cell processestaking place during ripening. 相似文献
17.
Experiments were carried out to evaluate the effect of glucose on ripening and ethylene biosynthesis in tomato fruit (Lycopersicon esculentum Mill.). Fruit at the light-red stage were vacuum infiltrated with glucose solutions post-harvest and changes in 1-aminocyclopropane-1-carboxylic acid (ACC) synthase, ACC, ACC oxidase, and ethylene production monitored over time. ACC oxidase activity was also measured in pericarp discs from the same fruits that were treated either with glucose, fructose, mannose, or galactose. While control fruit displayed a typical peak of ethylene production, fruit treated with glucose did not. Glucose appeared to exert its effect on ethylene biosynthesis by suppressing ACC oxidase activity. Fructose, mannose, and galactose did not inhibit ACC oxidase activity in tomato pericarp discs. Glucose treatment inhibited ripening-associated colour development in whole fruit. The extent of inhibition of colour development was dependent upon the concentration of glucose. These results indicate that glucose may play an important role in ethylene-associated regulation of fruit ripening. 相似文献
18.
Dario A. Breitel Louise Chappell-Maor Sagit Meir Irina Panizel Clara Pons Puig Yanwei Hao Tamar Yifhar Hagai Yasuor Mohamed Zouine Mondher Bouzayen Antonio Granell Richart Ilana Rogachev Asaph Aharoni 《PLoS genetics》2016,12(3)
The involvement of ethylene in fruit ripening is well documented, though knowledge regarding the crosstalk between ethylene and other hormones in ripening is lacking. We discovered that AUXIN RESPONSE FACTOR 2A (ARF2A), a recognized auxin signaling component, functions in the control of ripening. ARF2A expression is ripening regulated and reduced in the rin, nor and nr ripening mutants. It is also responsive to exogenous application of ethylene, auxin and abscisic acid (ABA). Over-expressing ARF2A in tomato resulted in blotchy ripening in which certain fruit regions turn red and possess accelerated ripening. ARF2A over-expressing fruit displayed early ethylene emission and ethylene signaling inhibition delayed their ripening phenotype, suggesting ethylene dependency. Both green and red fruit regions showed the induction of ethylene signaling components and master regulators of ripening. Comprehensive hormone profiling revealed that altered ARF2A expression in fruit significantly modified abscisates, cytokinins and salicylic acid while gibberellic acid and auxin metabolites were unaffected. Silencing of ARF2A further validated these observations as reducing ARF2A expression let to retarded fruit ripening, parthenocarpy and a disturbed hormonal profile. Finally, we show that ARF2A both homodimerizes and interacts with the ABA STRESS RIPENING (ASR1) protein, suggesting that ASR1 might be linking ABA and ethylene-dependent ripening. These results revealed that ARF2A interconnects signals of ethylene and additional hormones to co-ordinate the capacity of fruit tissue to initiate the complex ripening process. 相似文献
19.
Mannosyl- and Xylosyl-Containing Glycans Promote Tomato (Lycopersicon esculentum Mill.) Fruit Ripening
下载免费PDF全文

The oligosaccharide glycans mannosylα1-6(mannosylα1-3)mannosylα1-6(mannosylα1-3) mannosylβ1-4-N-acetylglucosamine and mannosylα1-6(mannosylα1-3)(xylosylβ1-2) mannosylβ1-4-N-acetylglucosaminyl(fucosylα1-3) N-acetylglucosamine were infiltrated into mature green tomato fruit (Lycopersicon esculentum Mill., cv Rutgers). Coinfiltration of 1 nanogram per gram fresh weight of the glycans with 40 micrograms per gram fresh weight galactose, a level of galactose insufficient to promote ripening, stimulated ripening as measured by red coloration and ethylene production. 相似文献
20.
M. A. Atta-Aly G. S. Riad Z. El-S. Lacheene A. S. El-Beltagy 《Journal of Plant Growth Regulation》1999,18(1):15-24
Flowers of tomato (Lycopersicon esculentum Mill.) plants cv. Castle Rock were sprayed with 100 ppm of ethrel, 0.5 mm aminooxyacetic acid (AOA), or water (control) 2 days after anthesis. The fruit period of cell division was extended up to
16–18 days after anthesis with the application of ethrel but reduced from 10–12 days (control) down to only 6–8 days with
the application of AOA. In a trend opposite to AOA application, fruits that received ethrel treatment were of higher ethylene
and 1-aminocyclopropane-1-carboxylic acid (ACC) levels than control. This was noticed not only during the first 2 weeks after
anthesis but also during the fruit climacteric phase. Mesocarp cells of ethrel-treated fruits were greater in number/mm2 but smaller in size than control; an opposite trend was obtained with the application of AOA. This was observed for a period
of 18 days after anthesis, but by that time or at earlier ages, fruits of AOA treatment were larger in size and heavier in
weight than control, and both were larger and heavier than ethrel-treated ones. At 5 weeks after anthesis and thereafter,
the fruit response to all treatments was totally reversed because early ethrel-treated fruits became significantly larger
in size and heavier in weight with a ripening delay of about 10 and 15 days compared with those of control and AOA-treated
ones, respectively. When the same treatments were applied to the whole plant, similar results were obtained because the early
application of ethrel increased the fruit yield by about 15% over control with a pronounced ripening delay; an opposite trend
was obtained with the application of AOA. No significant differences were found among all treatments in terms of flower or
fruit abscission or fruit number/plant. The data suggest that ethylene regulates tomato fruit transmission from cell division
to cell enlargement. In addition, fruit cell division is terminated only when endogenous ethylene decreases to its basal level,
allowing cell enlargement to dominate and proceed as in the case of the early application of AOA. The ripening delay of ethrel-treated
fruits may be caused by the longer time required for the increased cell number to reach maturation. A low level of ethrel
application at the tomato early fruiting stage may be used for increasing fruit yield by increasing fruit size and consequently
its quality.
Received June 1, 1998; accepted December 7, 1998 相似文献