首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stimulation of CD95 (APO-1/Fas) by its natural ligand CD95L (APO-1L/FasL) leads to the formation of the death-inducing signaling complex. Here we report that upon CD95 stimulation in several T and B cell lines, a novel signaling complex is formed, which we term complex II. Complex II is composed of the death effector domain proteins as follows: procaspase-8a/b, three isoforms of c-FLIP (c-FLIP(L), c-FLIP(S), c-FLIP(R)), and FADD. Notably, complex II does not contain CD95. Based on our findings we suggest that CD95 signaling includes two steps. The first step involves formation of the death-inducing signaling complex at the cell membrane. The second step involves formation of the cytosolic death effector domain protein-containing complex that may play an important role in amplification of caspase activation.  相似文献   

2.
The mammalian repair protein MBD4 (methyl-CpG-binding domain IV) excises thymine from mutagenic G·T mispairs generated by deamination of 5-methylcytosine (mC), and downstream base excision repair proteins restore a G·C pair. MBD4 is also implicated in active DNA demethylation by initiating base excision repair of G·T mispairs generated by a deaminase enzyme. The question of how mismatch glycosylases attain specificity for excising thymine from G·T, but not A·T, pairs remains largely unresolved. Here, we report a crystal structure of the glycosylase domain of human MBD4 (residues 427-580) bound to DNA containing an abasic nucleotide paired with guanine, providing a glimpse of the enzyme-product complex. The mismatched guanine remains intrahelical, nestled into a recognition pocket. MBD4 provides selective interactions with the mismatched guanine (N1H, N2H(2)) that are not compatible with adenine, which likely confer mismatch specificity. The structure reveals no interactions that would be expected to provide the MBD4 glycosylase domain with specificity for acting at CpG sites. Accordingly, we find modest 1.5- to 2.7-fold reductions in G·T activity upon altering the CpG context. In contrast, 37- to 580-fold effects were observed previously for thymine DNA glycosylase. These findings suggest that specificity of MBD4 for acting at CpG sites depends largely on its methyl-CpG-binding domain, which binds preferably to G·T mispairs in a methylated CpG site. MBD4 glycosylase cannot excise 5-formylcytosine (fC) or 5-carboxylcytosine (caC), intermediates in a Tet (ten eleven translocation)-initiated DNA demethylation pathway. Our structure suggests that MBD4 does not provide the electrostatic interactions needed to excise these oxidized forms of mC.  相似文献   

3.
The U1A protein is a sequence-specific RNA binding protein found in the U1 snRNP particle where it binds to stem/loop II of U1 snRNA. U1A contains two 'RNP' or 'RRM' (RNA Recognition Motif) domains, which are common to many RNA-binding proteins. The N-terminal RRM has been shown to bind specifically to the U1 RNA stem/loop, while the RNA target of the C-terminal domain is unknown. Here, we describe experiments using a 102 amino acid N-terminal RRM of U1A (102A) and a 25-nucleotide RNA stem/loop to measure the binding constants and thermodynamic parameters of this RNA:protein complex. Using nitrocellulose filter binding, we measure a dissociation constant KD = 2 x 10(-11) M in 250 mM NaCl, 2 mM MgC2, and 10 mM sodium cacodylate, pH 6 at room temperature, and a half-life for the complex of 5 minutes. The free energy of association (delta G degrees) of this complex is about -14 kcal/mol in these conditions. Determination of the salt dependence of the binding suggests that at least 8 ion-pairs are formed upon complex formation. A mutation in the RNA loop sequence reduces the affinity 10 x, or about 10% of the total free energy.  相似文献   

4.
The laminin alpha4 chain is widely distributed in various mesodermal tissues, including the perineurium of peripheral nerves, dorsal root ganglion (DRG), skeletal muscle, and capillaries, and plays important roles in synaptic specialization at the neuromuscular junction and in microvascular formation. The C-terminal globular domain (G domain) of the laminin alpha4 chain was previously found to be critical for heparin binding and cell attachment activity. Here, we focused on neurite outgrowth activity of the laminin alpha4 chain G domain. We found that the recombinant alpha4 chain G domain protein (rec-alpha4G) promoted neurite outgrowth of rat pheochromocytoma PC12 cells. When 114 overlapping synthetic peptides that covered the entire G domain were tested for neurite outgrowth activity, nine peptides were active, but the 105 remaining peptides did not exhibit activity. Three of the nine active peptides, A4G6 (LAIKNDNLVYVY), A4G20 (DVISLYNFKHIY), and A4G107 (VIRDSNVVQLDV), strongly promoted neurite outgrowth of PC12 cells. A4G107 was found to form amyloid-like fibrils in Congo red, X-ray, and electron microscopy analyses. We also synthesized cyclic peptides to evaluate their conformational requirements. Cyclic peptide A4G82X (cyc-A4G82X;TLFLAHGRLVFX, where X is norleucine) significantly enhanced neurite outgrowth activity, but the rest of the cyclic peptides eliminated the activity. The A4G82 sequence is located on the loop region, suggesting that the activity of A4G82 is required for a loop conformation. These peptides also exhibited neurite outgrowth activity with dorsal root ganglion (DRG) explants and with DRG cells from E14.5 mouse embryos, indicating that they are active in both neuronal cell lines and native neuronal cells. Taken together, the data suggest that the peptides from the laminin alpha4 chain G domain promote neurite outgrowth activity via a specific conformation.  相似文献   

5.
The exocyst complex is involved in the final stages of exocytosis, when vesicles are targeted to the plasma membrane and dock. The regulation of exocytosis is vital for a number of processes, for example, cell polarity, embryogenesis, and neuronal growth formation. Regulation of the exocyst complex in mammals was recently shown to be dependent upon binding of the small G protein, Ral, to Sec5, a central component of the exocyst. This interaction is thought to be necessary for anchoring the exocyst to secretory vesicles. We have determined the structure of the Ral-binding domain of Sec5 and shown that it adopts a fold that has not been observed in a G protein effector before. This fold belongs to the immunoglobulin superfamily in a subclass known as IPT domains. We have mapped the Ral binding site on this domain and found that it overlaps with protein-protein interaction sites on other IPT domains but that it is completely different from the G protein-geranyl-geranyl interaction face of the Ig-like domain of the Rho guanine nucleotide dissociation inhibitor. This mapping, along with available site-directed mutagenesis data, allows us to predict how Ral and Sec5 may interact.  相似文献   

6.
Recent discovery of 5-hydroxymethylcytosine (5hmC) in genomic DNA raises the question how this sixth base is recognized by cellular proteins. In contrast to the methyl-CpG binding domain (MBD) of MeCP2, we found that the SRA domain of Uhrf1, an essential factor in DNA maintenance methylation, binds 5hmC and 5-methylcytosine containing substrates with similar affinity. Based on the co-crystal structure, we performed molecular dynamics simulations of the SRA:DNA complex with the flipped cytosine base carrying either of these epigenetic modifications. Our data indicate that the SRA binding pocket can accommodate 5hmC and stabilizes the flipped base by hydrogen bond formation with the hydroxyl group.  相似文献   

7.
Colicin D import into Escherichia coli requires an interaction via its TonB box with the energy transducer TonB. Colicin D cytotoxicity is inhibited by specific tonB mutations, but it is restored by suppressor mutations in the TonB box. Here we report that there is a second site of interaction between TonB and colicin D, which is dependent upon a 45-amino acid region, within the uncharacterized central domain of colicin D. In addition, the 8th amino acids of colicin D (a glycine) and colicin B (a valine), adjacent to their TonB boxes, are also required for TonB recognition, suggesting that high affinity complex formation involves multiple interactions between these colicins and TonB. The central domain also contributes to the formation of the immunity complex, as well as being essential for uptake and thus killing. Colicin D is normally secreted in association with the immunity protein, and this complex involves the following two interactions: a major interaction with the C-terminal tRNase domain and a second interaction involving the central domain of colicin D and, most probably, the alpha4 helix of ImmD, which is on the opposite side of ImmD compared with the major interface. In contrast, formation of the immunity complex with the processed cytotoxic domain, the form expected to be found in the cytoplasm after colicin D uptake, requires only the major interaction. Klebicin D has, like colicin D, a ribonuclease activity toward tRNAArg and a central domain, which can form a complex with ImmD but which does not function in TonB-mediated transport.  相似文献   

8.
The mechanism of beta-sheet formation remains a fundamental issue in our understanding of the protein folding process, but is hampered by the often encountered kinetic competition between folding and aggregation. The role of local versus nonlocal interactions has been probed traditionally by mutagenesis of both turn and strand residues. Recently, rigid organic molecules that impose a correct chain reversal have been introduced in several small peptides to isolate the importance of the long-range interactions. Here, we present the incorporation of a well-studied beta-turn mimic, designated as the dibenzofuran-based (DBF) amino acid, in the B1 domain of streptococcal protein G (B1G), and compare our results with those obtained upon insertion of the same mimic into the N-terminal beta-hairpin of B1G (O Melnyk et al., 1998, Lett Pept Sci 5:147-150). The DBF-B1G domain conserves the structure and the functional and thermodynamical properties of the native protein, whereas the modified peptide does not adopt a native-like conformation. The nature of the DBF flanking residues in the modified B1G domain prevents the beta-turn mimic from acting as a strong beta-sheet nucleator, which reinforces the idea that the native beta-hairpin formation is not driven by the beta-turn formation, but by tertiary interactions.  相似文献   

9.
10.
Active DNA demethylation in mammals occurs via hydroxylation of 5-methylcytosine to 5-hydroxymethylcytosine (5hmC) by the ten-eleven translocation family of proteins (TETs). 5hmC residues in DNA can be further oxidized by TETs to 5-carboxylcytosines and/or deaminated by the Activation Induced Deaminase/Apolipoprotein B mRNA-editing enzyme complex family proteins to 5-hydromethyluracil (5hmU). Excision and replacement of these intermediates is initiated by DNA glycosylases such as thymine-DNA glycosylase (TDG), methyl-binding domain protein 4 (MBD4) and single-strand specific monofunctional uracil-DNA glycosylase 1 in the base excision repair pathway. Here, we report detailed biochemical and structural characterization of human MBD4 which contains mismatch-specific TDG activity. Full-length as well as catalytic domain (residues 426–580) of human MBD4 (MBD4cat) can remove 5hmU when opposite to G with good efficiency. Here, we also report six crystal structures of human MBD4cat: an unliganded form and five binary complexes with duplex DNA containing a T•G, 5hmU•G or AP•G (apurinic/apyrimidinic) mismatch at the target base pair. These structures reveal that MBD4cat uses a base flipping mechanism to specifically recognize thymine and 5hmU. The recognition mechanism of flipped-out 5hmU bases in MBD4cat active site supports the potential role of MBD4, together with TDG, in maintenance of genome stability and active DNA demethylation in mammals.  相似文献   

11.
12.
Cleaved high molecular weight kininogen (HKa), as well as its domain 5 (D5), inhibits migration and proliferation induced by angiogenic factors and induces apoptosis in vitro. To study its effect on tube formation we utilized a collagen-fibrinogen, three-dimensional gel, an in vitro model of angiogenesis. HKa, GST-D5 and D5 had a similar inhibitory effect of tube length by 90+/-4.5%, 86+/-5.5% and 77+/-12.9%, respectively. D5-derived synthetic peptides: G440-H455 H475-H485 and G486-K502 inhibited tube length by 51+/-3.7%, 54+/-3.8% and 77+/-1.7%, respectively. By a comparison of its inhibitory potency and its sequences, a functional sequence of HKa was defined to G486-G496. PP2, a Src family kinase inhibitor, prevented tube formation in a dose-dependent manner (100-400 nM), but PP3 at 5 microM, an inactive analogue of PP2, did not. HKa and D5 inhibited Src 416 phosphorylation by 62+/-12.3% and 83+/-6.1%, respectively. The C-terminal Src kinase (Csk) inhibits Src kinase activity. Using a siRNA to Csk, expression of Csk was down-regulated by 86+/-7.0%, which significantly increased tube length by 27+/-5.8%. The addition of HKa and D5 completely blocked this effect. We further showed that HKa inhibited Src family kinase activity by disrupting the complex of uPAR, alphavbeta3 integrin and Src. Our results indicate that the anti-angiogenic effect of HKa and D5 is mediated at least in part through Src family kinases and identify a potential novel target for therapeutic inhibition of neovascularization in cancer and inflammatory arthritis.  相似文献   

13.
14.
The guanine-nucleotide-binding domain (G domain) of elongation factor Tu(EF-Tu) consisting of 203 amino acid residues, corresponding to the N-terminal half of the molecule, has been recently engineered by deleting part of the tufA gene and partially characterized [Parmeggiani, A., Swart, G. W. M., Mortensen, K. K., Jensen, M., Clark, B. F. C., Dente, L. and Cortese, R. (1987) Proc. Natl Acad. Sci. USA 84, 3141-3145]. In an extension of this project we describe here the purification steps leading to the isolation of highly purified G domain in preparative amounts and a number of functional properties. The G domain is a relatively stable protein, though less stable than EF-Tu towards thermal denaturation (t50% = 41.3 degrees C vs. 46 degrees C, respectively). Unlike EF-Tu, its affinity for GDP and GTP, as well as the association and dissociation rates of the relative complexes are similar, as determined under a number of different experimental conditions. Like EF-Tu, the GTPase of the G domain is strongly enhanced by increasing concentrations of Li+, K+, Na+ or NH+4, up to the molar range. The effects of the specific cations shows similarities and diversities when compared to the effects on EF-Tu. K+ and Na+ are the most active followed by NH+4 and Li+ whilst Cs+ is inactive. In the presence of divalent cations, optimum stimulation occurs in the range 3-5 mM, Mg2+ being more effective than Mn2+ and Ca2+. Monovalent and divalent cations are both necessary components for expressing the intrinsic GTPase activity of the G domain. The pH curve of the G domain GTPase displays an optimum at pH 7-8, similar to that of EF-Tu. The 70-S ribosome is the only EF-Tu ligand affecting the G domain in the same manner as that observed with the intact molecule, although the extent of the stimulatory effect is lower. The rate of dissociation of the G domain complexes with GTP and GDP as well as the GTPase activity are also influenced by EF-Ts and kirromycin, but the effects evoked are small and in most cases different from those exerted on EF-Tu. The inability of the G domain to sustain poly(Phe) synthesis is in agreement with the apparent lack of formation of a ternary complex between the G domain.GTP complex and aa-tRNA.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
In HIV the viral envelope protein is processed by a host cell protease to form gp120 and gp41. The C1 and C5 domains of gp120 are thought to directly interact with gp41 but are largely missing from the available X-ray structure. Biophysical studies of the HIV gp120 C5 domain (residues 489-511 of HIV-1 strain HXB2), which corresponds to the carboxy terminal region of gp120, have been undertaken. CD studies of the C5 domain suggest that it is unstructured in aqueous solutions but partially helical in trifluoroethanol/aqueous and hexafluoroisopropanol/aqueous buffers. The solution structure of the C5 peptide in 40% trifluoroethanol/aqueous buffer was determined by NMR spectroscopy. The resulting structure is a turn helix structural motif, consistent with the CD results. Fluorescence titration experiments suggest that HIV C5 forms a 1 : 1 complex with the HIV gp41 ectodomain in the presence of cosolvent with an apparent Kd of approximately 1.0 micro m. The absence of complex formation in the absence of cosolvent indicates that formation of the turn-helix structural motif of C5 is necessary for complex formation. Examination of the C5 structure provides insight into the interaction between gp120 and gp41 and provides a possible target site for future drug therapies designed to disrupt the gp120/gp41 complex. In addition, the C5 structure lends insight into the site of HIV envelope protein maturation by the host enzymes furin and PC7, which provides other possible targets for drug therapies.  相似文献   

16.
17.
The CCT (for CONSTANS, CONSTANS-LIKE, TOC1) domain is found in 45 Arabidopsis thaliana proteins involved in processes such as photoperiodic flowering, light signaling, and regulation of circadian rhythms. We show that this domain exhibits similarities to yeast HEME ACTIVATOR PROTEIN2 (HAP2), which is a subunit of the HAP2/HAP3/HAP5 trimeric complex that binds to CCAAT boxes in eukaryotic promoters. Moreover, we demonstrate that CONSTANS (CO), which promotes Arabidopsis flowering, interacts with At HAP3 and At HAP5 in yeast, in vitro, and in planta. Mutations in CO that delay flowering affect residues highly conserved between CCT and the DNA binding domain of HAP2. Taken together, these data suggest that CO might replace At HAP2 in the HAP complex to form a trimeric CO/At HAP3/At HAP5 complex. Flowering was delayed by overexpression of At HAP2 or At HAP3 throughout the plant or in phloem companion cells, where CO is expressed. This phenotype was correlated with reduced abundance of FLOWERING LOCUS T (FT) mRNA and no change in CO mRNA levels. At HAP2 or At HAP3 overexpression may therefore impair formation of a CO/At HAP3/At HAP5 complex leading to reduced expression of FT. During plant evolution, the number of genes encoding HAP proteins was greatly amplified, and these proteins may have acquired novel functions, such as mediating the effect of CCT domain proteins on gene expression.  相似文献   

18.
Laminins are a family of trimeric extracellular matrix proteins consisting of alpha, beta, and gamma chains. So far five different laminin alpha chains have been identified. The laminin alpha 4 chain, which is present in laminin-8/9, is expressed in cells of mesenchymal origin, such as endothelial cells and adipocytes. Previously, we identified heparin-binding sites in the C-terminal globular domain (G domain) of the laminin alpha 4 chain. Here we have focused on the biological functions of the laminin alpha 4 chain G domain and screened active sites using a recombinant protein and synthetic peptides. The rec-alpha 4G protein, comprising the entire G domain, promoted cell attachment activity. The cell attachment activity of rec-alpha 4G was completely blocked by heparin and partially inhibited by EDTA. We synthesized 116 overlapping peptides covering the entire G domain and tested their cell attachment activity. Twenty peptides showed cell attachment activity, and 16 bound to heparin. We further tested the effect of the 20 active peptides in competition assays for cell attachment and heparin binding to rec-alpha 4G protein. A4G6 (LAIKNDNLVYVY), A4G20 (DVISLYNFKHIY), A4G82 (TLFLAHGRLVFM), and A4G83 (LVFMFNVGHKKL), which promoted cell attachment and heparin binding, significantly inhibited both cell attachment and heparin binding to rec-alpha 4G. These results suggest that the four active sites are involved in the biological functions of the laminin alpha 4 chain G domain. Furthermore, rec-alpha 4G, A4G6, and A4G20 were found to interact with syndecan-4. These active peptides may be useful for defining of the molecular mechanism laminin-receptor interactions and laminin-mediated cellular signaling pathways.  相似文献   

19.
Newly synthesized peroxisomal matrix proteins are targeted to the organelle by PEX5. PEX5 has a dual role in this process. First, it acts as a soluble receptor recognizing these proteins in the cytosol. Subsequently, at the peroxisomal docking/translocation machinery, PEX5 promotes their translocation across the organelle membrane. Despite significant advances made in recent years, several aspects of this pathway remain unclear. Two important ones regard the formation and disruption of the PEX5-cargo protein interaction in the cytosol and at the docking/translocation machinery, respectively. Here, we provide data on the interaction of PEX5 with catalase, a homotetrameric enzyme in its native state. We found that PEX5 interacts with monomeric catalase yielding a stable protein complex; no such complex was detected with tetrameric catalase. Binding of PEX5 to monomeric catalase potently inhibits its tetramerization, a property that depends on domains present in both the N- and C-terminal halves of PEX5. Interestingly, the PEX5-catalase interaction is disrupted by the N-terminal domain of PEX14, a component of the docking/translocation machinery. One or two of the seven PEX14-binding diaromatic motifs present in the N-terminal half of PEX5 are probably involved in this phenomenon. These results suggest the following: 1) catalase domain(s) involved in the interaction with PEX5 are no longer accessible upon tetramerization of the enzyme; 2) the catalase-binding interface in PEX5 is not restricted to its C-terminal peroxisomal targeting sequence type 1-binding domain and also involves PEX5 N-terminal domain(s); and 3) PEX14 participates in the cargo protein release step.  相似文献   

20.
The crystal structure of ligand-free tryptophanyl-tRNA synthetase (TrpRS) was solved at 2.9 A using a combination of molecular replacement and maximum-entropy map/phase improvement. The dimeric structure (R = 23.7, Rfree = 26.2) is asymmetric, unlike that of the TrpRS tryptophanyl-5'AMP complex (TAM; Doublié S, Bricogne G, Gilmore CJ, Carter CW Jr, 1995, Structure 3:17-31). In agreement with small-angle solution X-ray scattering experiments, unliganded TrpRS has a conformation in which both monomers open, leaving only the tryptophan-binding regions of their active sites intact. The amino terminal alphaA-helix, TIGN, and KMSKS signature sequences, and the distal helical domain rotate as a single rigid body away from the dinucleotide-binding fold domain, opening the AMP binding site, seen in the TAM complex, into two halves. Comparison of side-chain packing in ligand-free TrpRS and the TAM complex, using identification of nonpolar nuclei (Ilyin VA, 1994, Protein Eng 7:1189-1195), shows that significant repacking occurs between three relatively stable core regions, one of which acts as a bearing between the other two. These domain rearrangements provide a new structural paradigm that is consistent in detail with the "induced-fit" mechanism proposed for TyrRS by Fersht et al. (Fersht AR, Knill-Jones JW, Beduelle H, Winter G, 1988, Biochemistry 27:1581-1587). Coupling of ATP binding determinants associated with the two catalytic signature sequences to the helical domain containing the presumptive anticodon-binding site provides a mechanism to coordinate active-site chemistry with relocation of the major tRNA binding determinants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号