首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hyaluronan controls keratinocyte proliferation and regeneration. We examined effect of UV on the expression of hyaluronan synthases (HASs) and hyaluronidases in cultured normal human newborn foreskin epidermal keratinocytes, NHEK(F). HAS3 mRNA was expressed predominantly and HAS2 mRNA expressed in lesser amounts and both were up-regulated after a single irradiation with moderate UVB but hyaluronidases was unchanged. Increased accumulation of hyaluronan in the culture medium mirrored the UVB-induced increase in the mRNA levels of HAS3 and HAS2. Unexpectedly, hyaluronan derived from UVB-irradiated and non-irradiated cells had identical size distribution. Increased expression of KGF and IL-1β was detected just prior to the increase of HAS3 and HAS2 mRNAs after UVB irradiation. Antibody-neutralization study revealed that KGF and/or IL-1β were at least involved in the up-regulation of HAS3 and HAS2 expressions. UVB-irradiated cells may enhance hyaluronan production to maintain homeostasis through up-regulation of HAS3 and HAS2 genes via cytokine response mechanism.  相似文献   

2.
Osteosarcoma is a common malignant bone tumor associated with childhood and adolescence. The results of numerous studies have suggested that hyaluronan plays an important role in regulating the aggressive behavior of various types of cancer cells. However, no studies have addressed hyaluronan with respect to osteosarcomas. In this investigation, the mRNA expression copy number of three mammalian hyaluronan synthases (HAS) was determined using competitive RT-PCR in the osteoblastic osteosarcoma cell line, MG-63. MG-63 are highly malignant osteosarcoma cells with an abundant hyaluronan-rich matrix. The results demonstrated that HAS-2 is the predominant HAS in MG-63. Accumulation of intracellular hyaluronan increased in association with the proliferative phase of these cells. The selective inhibition of HAS-2 mRNA in MG-63 cells by antisense phosphorothioate oligonucleotides resulted in reduced hyaluronan accumulation by these cells. As expected, the reduction in hyaluronan disrupted the assembly of cell-associated matrices. However, of most interest, coincident with the reduction in hyaluronan, there was a substantial decrease in cell proliferation, a decrease in cell motility and a decrease in cell invasiveness. These data suggest that hyaluronan synthesized by HAS-2 in MG-63 plays a crucial role in osteosarcoma cell proliferation, motility, and invasion.  相似文献   

3.
The complex anatomy the of ovine cervix limits the success of transcervical artificial insemination in sheep, but Misoprostol (a PGE1 analogue) relaxes the cervix and facilitates transcervical artificial insemination. However, the mechanism by which Misoprostol causes cervical relaxation is not known. This study examined if intra-cervical Misoprostol altered the hyaluronan content and the mRNA expression of COX-2, LHR, or FSHR in the cervix of the estrus ewe. Estrus was synchronized in cyclic ewes with progestagen pessaries and 48 h after sponge removal ewes were treated intra-cervically with 0 (controls), 200, or 400 μg Misoprostol. Hyaluronan content was determined by ELISA and mRNA expression of LHR, FSHR, and COX-2 was analyzed by in situ hybridization using digoxigenin-11-uridine-5′-triphosphate labeled riboprobes. The hyaluronan content of the cervix was significantly higher in sheep that received 200 (P < 0.05) or 400 (P < 0.05) μg Misoprostol compared to controls. Moreover, it was significantly (P < 0.05) higher in the vaginal region compared to mid and uterine regions. Misoprostol increased (P < 0.05) the mRNA expression of LHR and COX-2 but not FSHR. The expression for all three genes was highest in the vaginal region and lowest in uterine region. The luminal epithelium and circular smooth muscle layers had higher (P < 0.05) expression for LHR, FSHR, and COX-2 mRNAs, and the sub-epithelial stroma had the lowest (P < 0.05). We propose that the intra-cervical application of Misoprostol induces the mRNA expression of LHR, FSHR, and COX-2 through a positive feedback loop. The data suggest that softening of the cervix by Misoprostol is caused by an increase in the hyaluronan content of the cervix.  相似文献   

4.
The natural cervical relaxation which occurs at estrus in the ewe may be initiated by binding of hyaluronan (HA) to its receptor CD44. Indeed, we have previously shown that HA content and fragment size in the ovine cervix varies with the stage of the estrous cycle. Despite the importance of cervical relaxation in promoting sperm transport and facilitating the possible development of transcervical artificial insemination (AI), the mechanisms coordinating these changes in HA content remain to be defined. Hyaluronan synthases (HAS) 1, 2, and 3 regulate HA biosynthesis and herein, we describe the changing pattern of HAS isoform expression during the estrous cycle to determine whether this may underpin HA-mediated changes in relaxation of the ovine cervix. Accordingly, cervices were collected from 24 cyclic sheep (n = 8 / group) at the luteal, pre-luteinizing hormone (LH) and post-LH surge stages. Protein and mRNA expression for HAS 1, 2 and 3 was determined in five different tissue layers (epithelium, subepithelial stroma, and longitudinal, circular and transverse muscle) of the vaginal, mid and uterine regions of each cervix by immunohistochemistry and in situ hybridization, respectively. HA synthases were expressed in all the tissue layers and regions of the cervix, and the pattern of expression was similar for mRNA and protein. HAS1 protein and mRNA expression was significantly (P ≤ 0.05) higher at the pre-LH surge stage, while HAS 2 and 3 protein and mRNA expression was significantly (P ≤ 0.001) higher at the luteal stage. Overall, both HAS protein and mRNA expression was significantly (P ≤ 0.001) higher in the epithelial layer and the vaginal region. These findings are in accordance with our previous results and explain the differences observed in the HA content and differing HA fragment size at different stages of the estrous cycle.  相似文献   

5.
6.
7.
8.
9.
Hyaluronan (HA) is a glycosaminoglycan that is synthesized by a family of enzymes called hyaluronan synthases (HASs), of which there are three isoforms (HAS1, 2 and 3) in mammals. The HASs have different tissue expression patterns and function, indicating that synthesis of HA and formation of the HA matrix may be regulated by various factors. The HA matrix has an important role in renal water handling and the production of a concentrated urine. We investigated the distribution of HA and the expression of HAS1, HAS2 and HAS3 mRNAs in the kidney of the Spinifex hopping mouse, Notomys alexis, a native Australian desert rodent that is reported to produce the most concentrated urine of any mammal. After periods of three, seven and fourteen days of water deprivation, the distribution of renal HA changed considerably, and there was a general down-regulation of HAS mRNA expression. It is proposed that the regulation of HA synthesis by the different HAS isoforms during water deprivation in N. alexis, could be influenced by the molecular mass of the HA chains produced by each isoform, followed by the rate at which the individual HAS produces HA.  相似文献   

10.
11.
12.
Hyaluronan is a rapidly turned over component of the vertebrate extracellular matrix. Its levels are determined, in part, by the hyaluronan synthases, HAS1, HAS2, and HAS3, and three hyaluronidases, HYAL1, HYAL2 and HYAL3. Hyaluronan binding proteins also regulate hyaluronan levels although their involvement is less well understood. To date, two genetic disorders of hyaluronan metabolism have been reported in humans: HYAL1 deficiency(Mucopolysaccharidosis IX) in four individuals with joint pathology as the predominant phenotypic finding and HAS2 deficiency in a single person having cardiac pathology. However, inherited disorders and induced mutations affecting hyaluronan metabolism have been characterized in other species. Overproduction of hyaluronan by HAS2 results in skin folding and thickening in shar-pei dogs and the naked mole rat, whereas a complete deficiency of HAS2 causes embryonic lethality in mice due to cardiac defects. Deficiencies of murine HAS1 and HAS3 result in a predisposition to seizures. Like humans, mice with HYAL1 deficiency exhibit joint pathology. Mice lacking HYAL2 have variably penetrant developmental defects, including skeletal and cardiac anomalies. Thus, based on mutant animal models, a partial deficiency of HAS2 or HYAL2 might be compatible with survival in humans, while complete deficiencies of HAS1, HAS3, and HYAL3 may yet be recognized.  相似文献   

13.
We examined and compared the in vitro effects of misoprostol (synthetic prostaglandin E1 (PGE1) analogue) on prostaglandin E2 (PGE2) secretion and EP3 receptor mRNA expression in the pregnant rat myometrium and cervix at 19 days gestation. Myometrial and cervical tissue samples were exposed to media with or without misoprostol (50 or 100 pg/ml) and incubated for 15 and 30 min, and 1, 3, 6, 12, and 24 h. Media and tissue samples were collected for quantification of PGE2 and mRNA expression of rEP3alpha and rEP3beta receptor, respectively. PGE2 secretion increased (P < or = 0.05) in the myometrium exposed to 50 and 100 pg/ml misoprostol. Cervical PGE2 secretion increased following exposure to the 100 pg/ml dose only. In the myometrium, 50 and 100 pg/ml misoprostol induced elevations in rEP3alpha and rEP3beta receptor mRNA expression. rEP3alpha and rEP3beta receptor mRNA expression in the cervix was not different from controls. These data demonstrate that the EP3 receptor is differentially expressed in the myometrium and cervix in response to misoprostol. This may account for the ability of misoprostol to stimulate the myometrium when administered for cervical ripening.  相似文献   

14.
The aim of this study was to evaluate how growth factors (PDGF-BB, EGF, and TGF-1beta) modulate hyaluronan synthase (HAS) activities in normal or stressed cultured human skin fibroblasts. The effects of concomitant treatment with cytokines and FeSO4 plus ascorbate on HAS mRNA expression, protein synthesis, and hyaluronic acid (HA) concentrations were also studied. Treatment of fibroblasts with growth factors up-regulated HAS gene expression and increased HAS enzymes and HA production. PDGF-BB induced HAS mRNA expression, protein synthesis, and HA production more efficiently than EGF and TGF-1beta. EGF was less effective than TGF-1beta. In addition, TGF-1beta reduced the expression and synthesis of HAS3, while PDGF-BB and EGF had the opposite effect. Concomitant treatment with growth factors and the oxidant was able to further increase HAS mRNA expression, once again with the exception of HAS3 with TGF-1beta. HAS protein synthesis was reduced, while HA levels were unaffected in comparison to those obtained from exposure to FeSO4 plus ascorbate alone. In conclusion, although growth factors plus the oxidant synergistically induced HAS mRNA expression in part, enzyme production was not correlated with this increase. Moreover, the increase in HAS mRNA levels was not translated into a consequent rise in HA concentration.  相似文献   

15.
16.
Transcervical artificial insemination in sheep is limited by the inability to completely penetrate the cervix with an inseminating pipette. Penetration is partially enhanced at estrus due to a degree of cervical relaxation, which is probably regulated by cervical prostaglandin synthesis and extracellular matrix remodeling. Prostaglandin E2 acts via prostaglandin E receptors EP1 to EP4, and EP2 and EP4 stimulate smooth muscle relaxation and glycosaminoglycan synthesis. This study investigated the expression of EP2 and EP4 mRNA and glycosaminoglycans in the sheep cervix during the estrous cycle. Sheep cervices were collected prior to, during, and after the luteinizing hormone (LH) surge and during the luteal phase. The mRNA expression of EP2 and EP4 was determined by in situ hybridization, glycosaminoglycan composition was assessed by Alcian blue staining, and hyaluronan concentration was investigated by ELISA. The expression of EP2 mRNA was greatest prior to the LH surge (P = 0.02), although EP2 and EP4 were expressed throughout the estrous cycle. Hyaluronan was the predominant glycosaminoglycan, and hyaluronan content increased prior to the LH surge (P < 0.05). Cervical EP2 mRNA expression changed throughout the estrous cycle and was greatest prior to the LH surge. We propose that prostaglandin E2 binds to EP2 and EP4 stimulating hyaluronan synthesis, which may cause remodeling of the cervical extracellular matrix, culminating in cervical relaxation.  相似文献   

17.
In vertebrates, hyaluronan is produced in the plasma membrane from cytosolic UDP-sugar substrates by hyaluronan synthase 1–3 (HAS1–3) isoenzymes that transfer N-acetylglucosamine (GlcNAc) and glucuronic acid (GlcUA) in alternative positions in the growing polysaccharide chain during its simultaneous extrusion into the extracellular space. It has been shown that HAS2 immunoprecipitates contain functional HAS2 homomers and also heteromers with HAS3 (Karousou, E., Kamiryo, M., Skandalis, S. S., Ruusala, A., Asteriou, T., Passi, A., Yamashita, H., Hellman, U., Heldin, C. H., and Heldin, P. (2010) The activity of hyaluronan synthase 2 is regulated by dimerization and ubiquitination. J. Biol. Chem. 285, 23647–23654). Here we have systematically screened in live cells, potential interactions among the HAS isoenzymes using fluorescence resonance energy transfer (FRET) and flow cytometric quantification. We show that all HAS isoenzymes form homomeric and also heteromeric complexes with each other. The same complexes were detected both in Golgi apparatus and plasma membrane by using FRET microscopy and the acceptor photobleaching method. Proximity ligation assays with HAS antibodies confirmed the presence of HAS1-HAS2, HAS2-HAS2, and HAS2-HAS3 complexes between endogenously expressed HASs. C-terminal deletions revealed that the enzymes interact mainly via uncharacterized N-terminal 86-amino acid domain(s), but additional binding site(s) probably exist in their C-terminal parts. Of all the homomeric complexes HAS1 had the lowest and HAS3 the highest synthetic activity. Interestingly, HAS1 transfection reduced the synthesis of hyaluronan obtained by HAS2 and HAS3, suggesting functional cooperation between the isoenzymes. These data indicate a general tendency of HAS isoenzymes to form both homomeric and heteromeric complexes with potentially important functional consequences on hyaluronan synthesis.  相似文献   

18.
Hyaluronan is a ubiquitous glycosaminoglycan involved in embryonic development, inflammation and cancer. In mammals, three hyaluronan synthase isoenzymes (HAS1-3) inserted in the plasma membrane produce hyaluronan directly on cell surface. The mRNA level and enzymatic activity of HAS1 are lower than those of HAS2 and HAS3 in many cells, obscuring the importance of HAS1. Here we demonstrate using immunocytochemistry and transfection of fluorescently tagged HAS1 that its enzymatic activity depends on the ER–Golgi–plasma membrane traffic, like reported for HAS2 and HAS3. When cultured in 5 mM glucose, HAS1-transfected MCF-7 cells show very little cell surface hyaluronan, detected with a fluorescent hyaluronan binding probe. However, a large hyaluronan coat was seen in cells grown in 20 mM glucose and 1 mM glucosamine, or treated with IL-1β, TNF-α, or TGF-β. The coats were mostly removed by the presence of hyaluronan hexasaccharides, or Hermes1 antibody, indicating that they depended on the CD44 receptor, which is in a contrast to the coat produced by HAS3, remaining attached to HAS3 itself. The findings suggest that HAS1-dependent coat is induced by inflammatory agents and glycemic stress, mediated by altered presentation of either CD44 or hyaluronan, and can offer a rapid cellular response to injury and inflammation.  相似文献   

19.
20.
The importance of glycosaminoglycan hyaluronan (HA) and its receptor CD44 in cell proliferation is becoming increasingly evident. Expression of the genes coding for hyaluronan synthase 1 (HAS1), HAS2, HAS3, CD44, fibroblast growth factor-2 (FGF-2), and FGF receptor-1 (FGFR-1) and the histological evidence for increases of HA and CD44 were investigated in an experimental rat model of cardiac hypertrophy. The abdominal aorta was ligated to induce cardiac hypertrophy, and mRNAs prepared from heart tissue were analyzed after 1, 6, and 42 days. The total concentration of HA was quantified, and HA and CD44 were studied histochemically. The expression of HAS1, HAS2, CD44, and FGF-2 was considerably up-regulated at days 1 and 6 and returned to basal levels after 42 days. FGFR-1 was up-regulated at day 1 but at basal levels once more at days 6 and 42. The concentration of HA significantly increased in aorta-ligated rats. Histochemical analysis showed increased expression of CD44 in hypertrophied myocardium mainly in and around the coronary arteries. These results agree well with other studies of tissue growth (malignancies and wound healing). The increase of HA, its synthases, and receptor in parallel with FGF-2 and its receptor illustrates their complicated interplay in the development of cardiac hypertrophy. The up-regulation of both HAS1 and HAS2 indicates the importance of HA production in the hypertrophic process and the possibility that HA is needed for two different purposes for the heart to be able to adapt to the increased afterload caused by aortic ligature. This research received financial support from the Swedish Heart Lung Foundation. The authors declare no conflicting financial interests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号