首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Question: Is post‐fire, medium‐term vegetation dynamics determined by land‐use or fire history prior to fire? Location: South‐facing slope in the Gallinera valley, Alicante province, eastern Spain. Methods: After mapping the land‐use and fire history of the study site using photo‐interpretation, we sampled vegetation structure on a set of plots representing the most frequent land‐use and fire history combinations on an area burned six years before sampling. We studied the effects of land‐use history, comparing the one‐fire land‐use trajectories. We analysed the effects of fire history; comparing one‐ and two‐fire plots for both previously cropped and uncropped areas. Results: Most variables were not significantly different between the earliest abandoned plots (abandoned at least 38 years before the fire) and the uncropped plots. On the most recently abandoned plots (abandoned between one and four years before the fire), the therophyte richness and the ratio of seeder: resprouter richness were significantly greatest. Different fire recurrences did not determine different post‐fire vegetation on either the uncropped or the early abandoned plots (all dominated by fire‐recruited seeder shrubs). The most recently abandoned plots had a lower resilience to fire. Conclusions: Land‐use history and recent pre‐fire land use, in particular, determined the post‐fire vegetation in the medium term. The vegetation composition converged during secondary succession among land‐use histories. Increasing fire recurrence had a small effect on mature plant communities, due to the combination of life‐history traits determining the response to fire of the dominant species.  相似文献   

2.
The primary goal of restoration is to create self‐sustaining ecological communities that are resilient to periodic disturbance. Currently, little is known about how restored communities respond to disturbance events such as fire and how this response compares to remnant vegetation. Following the 2003 fires in south‐eastern Australia we examined the post‐fire response of revegetation plantings and compared this to remnant vegetation. Ten burnt and 10 unburnt (control) sites were assessed for each of three types of vegetation (direct seeding revegetation, revegetation using nursery seedlings (tubestock) and remnant woodland). Sixty sampling sites were surveyed 6 months after fire to quantify the initial survival of mid‐ and overstorey plant species in each type of vegetation. Three and 5 years after fire all sites were resurveyed to assess vegetation structure, species diversity and vigour, as well as indicators of soil function. Overall, revegetation showed high (>60%) post‐fire survival, but this varied among species depending on regeneration strategy (obligate seeder or resprouter). The native ground cover, mid‐ and overstorey in both types of plantings showed rapid recovery of vegetation structure and cover within 3 years of fire. This recovery was similar to the burnt remnant woodlands. Non‐native (exotic) ground cover initially increased after fire, but was no different in burnt and unburnt sites 5 years after fire. Fire had no effect on species richness, but burnt direct seeding sites had reduced species diversity (Simpson's Diversity Index) while diversity was higher in burnt remnant woodlands. Indices of soil function in all types of vegetation had recovered to levels found in unburnt sites 5 years after fire. These results indicate that even young revegetation (stands <10 years old) showed substantial recovery from disturbance by fire. This suggests that revegetation can provide an important basis for restoring woodland communities in the fire‐prone Australian environment.  相似文献   

3.
4.
The frequency of large, high‐severity “mega‐fires” has increased in recent decades, with numerous consequences for forest ecosystems. In particular, small mammal communities are vulnerable to post‐fire shifts in resource availability and play critical roles in forest ecosystems. Inconsistencies in previous observations of small mammal community responses to fire severity underscore the importance of examining mechanisms regulating the effects of fire severity on post‐fire recovery of small mammal communities. We compared small mammal abundance, diversity, and community structure among habitats that burned at different severities, and used vegetation characteristics and small mammal functional traits to predict community responses to fire severity three years after one mega‐fire in the Sierra Nevada, California. Using a model‐based fourth‐corner analysis, we examined how interactions between vegetation variables and small mammal traits associated with their resource use were associated with post‐fire small mammal community structure among fire severity categories. Small mammal abundance was similar across fire severity categories, but diversity decreased and community structure shifted as fire severity increased. Differences in small mammal communities were large only between unburned and high‐severity sites. Three highly correlated fire‐dependent vegetation variables affected by fire and the volume of soft coarse woody debris were associated with small mammal community structures. Furthermore, we found that interactions between vegetation variables and three small mammal traits (feeding guild, primary foraging mode, and primary nesting habit) predicted community structure across fire severity categories. We concluded that resource use was important in regulating small mammal recovery after the fire because vegetation provided required resources to small mammals as determined by their functional traits. Given the mechanistic nature of our analyses, these results may be applicable to other fire‐prone forest systems, although it will be important to conduct studies across large biogeographic regions and over long post‐fire time periods to assess generality.  相似文献   

5.
Juli G. Pausas 《Oikos》2019,128(2):147-153
Despite the existing large body of research on plant–animal interactions, plant research and animal research are still relatively independent and asymmetrical in relation to disturbance. Animals and plants are likely to have different fire responses, yet biodiversity studies in relation to disturbance may benefit from a more integrated functional approach across kingdoms. This would also force us to go deeper into the biological mechanisms and scales for persistence than a taxonomic‐based classification. An integrated view of plant and animal responses would enable us to learn from a great variety of life forms and benefit from expertise in complementary disciplines. To achieve this integrated view, I propose a functional classification for both plants and animals in relation to their fire response strategy. This classification includes the following strategies: resistance, refugia, avoidance, dormancy, recolonization, crypsis and intolerance. Given the limited knowledge of fire responses for many organisms, and especially for many animals, this classification may require further development. However, it provides a framework that facilitates finding knowledge gaps and directing future research for gaining a better understanding of the role of fire on biodiversity.  相似文献   

6.
The ability of communities or ecosystems to recover their structure and function after a disturbance is known as resilience. According to different views, resilience can be influenced by the resource‐use strategies of the plant functional types that dominate the community or by the existence of functional redundancy within plant functional types. We investigated how the dominance of different plant functional types and species affected the resilience of a mountain shrubland after an intense fire. We took advantage from a pre‐existing long‐term removal experiment in which either whole plant functional types (deciduous shrubs, graminoids, perennial forbs and annual forbs) or the dominant species within each plant functional type were removed for 10 years. We sampled species and plant functional types cover during the first growing season after the fire. First, to test whether functional redundancy increased resilience, we analyzed the existence of functional compensation inside plant functional types. Second, to test whether the dominance of plant functional types with different resource‐use strategies affected recovery, we compared resilience at the levels of species, plant functional types and total cover, estimated on the basis of a change index and multivariate Euclidean distances. No compensation was observed in any of the plant functional types. At the level of species, we found that the assemblages dominated by conservative resource‐use strategies were the ones showing higher resilience. This was due to the high recovery of the dominant species of shrubs plant functional type. The opposite (lowest recovery of conservative resource‐use strategies) was found at the plant functional type and total cover‐levels. Our study did not support the hypothesis of resilience by functional redundancy. Instead, regeneration by buried meristems from the pre‐fire stage appeared to be the factor that most influenced recovery. Resource‐use strategies explained resilience of vegetation cover, but not of floristic composition. Regeneration traits, rather than vegetative traits or mechanism of functional compensation, appeared as the most relevant to explain the response of this system after fire.  相似文献   

7.
Abstract A new fire history for south‐western Australian sclerophyll forests was proposed recently based on grasstree (Xanthorrhoea preissii ) records that were interpreted to show a high frequency (3–5 years) ‘pre‐European burning regime’. Such a fire regime appears incompatible with the long‐term survival of many fire‐killed woody taxa. We investigated the local fire history in a small area of the northern sand‐plain shrub‐lands of south‐western Australia using 15 grasstrees, examining individual grasstree records in detail and comparing this with the decadal or averaged approach used in the original research, and with fire histories reconstructed from satellite images for the period since 1975. Results lead us to question the utility of the proposed grasstree fire history record as a tool for understanding past fire regimes for two reasons: First, inconsistencies in fire histories among individual grasstrees were considerable – some individuals were not burnt by known fires, while some apparently were burned many times during periods when others were not burned at all. Second, the grasstree record indicates a possible increase in patchiness of fires since 1930, while contemporary evidence and interpretations of the nature of Aboriginal (pre‐European) fire regimes would suggest the opposite. We believe that further research is needed to identify to what extent the grasstree method for reconstruction of fire histories can be used to re‐interpret how fire operated in many highly diverse ecosystems prior to European settlement of Australia.  相似文献   

8.
9.
10.
Abstract.  1. The effects of prescribed fire on ant community structure were examined in a regenerating longleaf pine savanna in Florida, U.S.A. The presence of ants on 20, 10 × 10 m plots was determined by baiting every 1–3 months from 18 months before a fire until 6 months afterwards.
2. Expected species richness (based on rarefaction) and species density 6 months post-fire were significantly lower than for the same month (September) 6 months before the fire.
3. Cluster analysis revealed that the effects of fire were far less important predictors of ant community structure than seasonality and unexplained inter-annual variation. Thus, overall, the impacts of fire were relatively minor and short term at the community level.
4. Different functional groups of ants (as defined by Andersen, 1997) responded to fire in strikingly different ways. Generalised Myrmicinae (e.g. Pheidole spp., Monomorium viride ) were affected more severely by fire than were the other functional groups. In contrast, the dominant Dolichoderinae ( Forelius pruinosus ) exhibited a large increase after the fire and seemed to be responsible for the decline in abundance of several species.
5. A strong negative correlation between F. pruinosus and other groups of ants immediately after the fire suggested more intense competition among ants at that time. Six months post-fire, the abundance of F. pruinosus decreased markedly and the abundance of other species rebounded.
6. The rapid post-fire recovery of the ant community probably reflects adaptations of ants to a chronic fire regime.  相似文献   

11.
12.
Abstract Yallalie is a probable meteor impact crater and in the Upper Pliocene contained a substantial lake. Two Mid‐Pliocene finely laminated sediment records from Palaeolake Yallalie, from about 3 million years ago, provide evidence of fire and fire frequency in the sclerophyll woodland and heaths of south‐western Australia in the absence of humans. Fine charcoal was observed in all samples examined, and was deposited at a rate of about 0.3–0.8 cm2 cm?2 year?1 in Palaeolake Yallalie. This evidence suggests the occurrence of annual fires occurring every year in the slightly warmer and wetter climate compared with today. The near coastal western location and the prevailing westerly winds probably carry charcoal from the near region or lake catchment scale. The data indicate that local fires occurred at a variety of time intervals between 3 and 13 years, with a typical average of 6–10 years. The results are comparable with those of Atahan et al. (2004) for the same site but from a period of about 200 000 years later in the Mid‐Pliocene. Thus, the records which differ in age by some hundreds of thousands of years have all recorded fire frequencies that are longer than for the historical period and this may have important implications for the long‐term survival of the integrity of the high biodiversity plant communities of the region.  相似文献   

13.
Soil seed bank is an important source of resilience of plant communities who suffered disturbances. We analysed the effect of an intense fire in the soil seed bank of a semi‐arid shrubland of Córdoba Argentina. We asked if the fire affected seed abundance, floristic and functional composition of the soil seed bank at two different layers (0–5 cm and 5–10 cm), and if fire could compromise the role of the soil seed bank as a source of resilience for the vegetation. We collected soil samples from a burned site and from a control site that had not burned. Samples were installed in a greenhouse under controlled conditions. During 12 months, we recorded all germinated seedlings. We compare soil seed bank with pre‐fire vegetation in terms of floristic and functional composition. The high‐intensity fire deeply affected the abundance of seeds in the soil, but it did not affect its floristic or functional composition. Floristic and functional composition of soil seed banks – at burned and unburned sites‐ differed markedly from that of the pre‐fire vegetation, although a previous study at the same site indicated high resilience after fire of this plant community. Our results indicate that resilience of this system is not strongly dependent on direct germination from seeds buried in the soil. Other sources of resilience, like colonization from neighbouring vegetation patches and resprouting from underground organs appear to gain relevance after an intense fire.  相似文献   

14.
15.
随着全球人口增长,世界范围内野地-城市交界域(WUI)正在加速扩张。美国的WUI面积大、分布广、聚集人口多,由于交界域直接与森林植被相贯通,极易受到林火影响,区域范围内人类生命财产安全面临巨大威胁。经过长期的火灾管理实践,美国形成了一套较为完善的WUI林火预防、扑救管理体系。本文从美国WUI的形成方式、火灾发生情况、预防扑救措施等几方面系统总结了美国WUI火灾的管理体系。此外,本文分析了我国WUI火灾管理的现状及存在问题,并基于美国经验提出了完善我国WUI火灾管理的六点建议:(1)制定交界域消防管理计划;(2)合理利用计划火烧;(3)研发火灾预警系统;(4)增强社区防火能力;(5)提高消防员灭火水平;(6)完善火灾扑救策略。  相似文献   

16.
17.
18.
Aim We examined the century‐long post‐fire responses of reptiles to (1) determine the time‐scales over which fauna – fire relationships occur, (2) assess the capacity of a conceptual model to predict faunal response to fire, and (3) investigate the degree to which models of fauna – fire relationships can predict species occurrence and are transferable across space. Location A 104,000 km2 area in the semi‐arid Murray Mallee region of south‐eastern Australia. Methods We surveyed reptiles at 280 sites across a century‐long post‐fire chronosequence. We developed generalized additive mixed models (GAMMs) of the relationship between time since fire and the occurrence of 17 species in two subregions, and compared modelled responses with predictions derived from the conceptual model. The predictive capacity of GAMMs was then assessed (1) within the subregion the model was developed and (2) when transferred into a novel subregion. Results Eleven species displayed a significant relationship with time‐since‐fire, with changes in species probability of occurrence continuing up to 100 years post‐fire. Predictions of the timing of species post‐fire peak in occurrence were accurate for 9 of 13 species models for which a significant fire response was detected, but little success was achieved in predicting the shape of a species' response. GAMMs predicted species occurrence more accurately when applied within the subregion in which they were developed than when transferred into a novel subregion, primarily due to some species responding to fire more strongly in one part of their geographic range. Main conclusions Fire influences the occurrence of reptiles in semi‐arid ecosystems over century‐long time frames. Habitat‐use conceptual models have value in predicting the peak occurrence of species following fire, particularly for species with distributions strongly shaped by fire. Species relationships with fire can differ across their geographic range, probably associated with variation in climatic influences on post‐fire succession and the consequent provision of habitat resources.  相似文献   

19.
Questions: What is the variability in abundance of lichens on grassland soil between and within fields after prescribed fire? Is post‐fire lichen abundance an effect of pre‐fire population size? Location: Cedar Creek Natural History Area, Minnesota, USA. Methods: Lichen abundance, estimated as ground cover and dominated by Cladonia spp., was mapped in plots in two fields before prescribed burning on 06.10.2003 and 15.10.2003 for the first time since abandonment in the 1950s. The plots were resurveyed one year post‐fire. Results: Post‐fire cover of Cladonia spp. varied strongly between the fields, most likely due to different weather conditions between the burn events, which resulted in different fire intensities, one of low and one of high intensity. In the field that experienced the low intensity fire, post‐fire cover of Cladonia spp. was still relatively high, and showed a positive relationship with pre‐fire cover, while no such relationship was found after the high intensity fire. In that field Cladonia spp. experienced high mortality rates irrespective of pre‐fire cover. Conclusions: This study provides an example of how species response to disturbance can be a function of population size, but that this relationship can be non‐linear; lichens in grassland can survive a low intensity fire proportionally to pre‐fire population size, but experience high mortality rates above a fire intensity threshold. The applications of these results are that fire intensity matters to species response to prescribed fire, and that the persistence of climax lichen communities and biodiversity in the study system needs a broad range of fire intervals.  相似文献   

20.
Fire‐induced changes in canopy openness may affect sunlight penetration to the forest floor, and thus the operative temperatures available to terrestrial ectotherms. We examined thermal regimes for two types of ectotherms: diurnally active species that utilize sun‐exposed patches to regulate their body temperatures, and nocturnally active species that depend upon solar radiation striking the rocks under which they shelter. We measured canopy openness, shrub height, radiation transmission and operative environmental temperatures in the open and inside reptile retreat‐sites, at 24 study sites in eucalypt forests in two regions (Gosford and Yengo) in south‐eastern Australia. All sites were last burnt in 2000–2001, but had experienced different fire frequencies (1–4 fires over the previous 37 years). In Gosford, higher fire frequencies reduced canopy openness and radiation transmission at ground and shrub level, and thus reduced environmental temperatures and the thermal quality of reptile habitats. Our modelling based on thermal preferenda of an endangered snake species (the broad‐headed snake Hoplocephalus bungaroides) suggests that increased fire frequency at Gosford halved the amount of time an animal could spend within its preferred (set‐point) range, regardless of whether it thermoregulated beneath rocks or basked out in the open. At Yengo, however, fire frequency did not affect the thermal quality of reptile habitats. Thus, the effects of fire frequency on forest structure and the thermal environment at ground level differed between adjacent areas, and relatively small changes in canopy openness translated into major effects on thermoregulatory opportunities for reptiles. Although fire is a useful management tool for creating open habitats, we need to understand more about the effects of fire frequency on vegetation structure and thermal environment before we can use fire to manage habitats for reptiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号