首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relative roles of chance colonization and subsequent gene flow in the development of insular endemic biotas have been extensively studied in remote oceanic archipelagos, but are less well characterized on nearshore island systems. The current study investigated patterns of colonization and divergence between and within two wild buckwheat species (Polygonaceae), Eriogonum arborescens and E. giganteum, endemic to the California Channel Islands to determine whether geographical isolation is driving diversification. Using plastid and nuclear sequence data and microsatellite allele frequencies, we determined that gene flow in these Eriogonum spp. is restricted by isolation. The data suggest that successful colonization of and gene flow among the islands are infrequent. Colonization appears to have followed a stepping‐stone model that is consistent with a north‐to‐south pattern across the islands. This colonization pattern coupled with relatively little post‐colonization inter‐island gene flow, particularly among southern islands, has generated a pattern of more divergent lineages on the isolated southern islands. These results run counter to the general expectation that all islands close to a continental source should receive a high level of gene flow. Finally, management recommendations focused on protecting the lineages from loss of private alleles and the erosion of the remaining genetic diversity are offered.  相似文献   

2.
To identify mucosal immunity in HIV-infected chimpanzees, IgG, IgA, and IgM from plasma, saliva, rectal swabs, vaginal washes, semen, and urethral washes were tested from four male and three female HIV-1IIIB infected chimpanzees. The level of HIV infections in the seven chimpanzees were classified as high, intermediate and low depending on the number of HIV-1 infected cells per 107 peripheral blood mononuclear cells (PBMC). One male chimpanzee had a relatively high viral load, two males and two females had moderate viral loads and one male and one female had low levels of infection. All seven animals had plasma antibody. The principal finding was that nonclassical mucosal antibodies of the IgG isotype were the predominant antibody in the saliva, rectal swabs, vaginal washes, semen, and urethral washes of infected animals. All plasma and mucosal samples were negative for IgM antibodies. The results show that HIV-1 specific IgG responses and not sIgA predominate at mucosal surfaces of HIV-1IIIB infected chimpanzees. A trend was observed in which high viral loads correlated with high plasma IgG, IgA and sIgA titers. An overall correlation between relatively high virus loads and high amounts of mucosal IgG was also found.  相似文献   

3.
This work describes quantitative MRI assessment of primate brain maturation. Nine young baboons were followed from the age of one to 30 months. Assessment of myelination was based on the gray/white matter contrast on MR images and the evolution of T2 relaxation time respectively. The brain maturation began in the posterior fossa and progressed to the olfactory bulbs corresponding to decreasing white matter T2 values. Relaxation parameters provide new opportunities to trace the myelination process in vivo.  相似文献   

4.
TNF secretion was explored in sera during acute SIV-infection of cynomolgus macaques. A peak of TNF was detected in sera of animals in concomitance with SIV replication. Likewise, AZT treatment delayed and reduced peaks of viral replication and TNF production. Thus, SIVmac251-infected monkey could be an excellent model to explore the interdigitation existing between HIV and TNF in acute and chronic infection and to develop new therapeutic strategies that target the production of this cytokine or its inductive effects.  相似文献   

5.
Progressive retinal atrophy (PRA) in dogs is characterised by the degeneration of the photoreceptor cells of the retina, resulting in vision loss and eventually complete blindness. The condition affects more than 100 dog breeds and is known to be genetically heterogeneous between breeds. Around 14 mutations have now been identified that are associated with PRA in around 49 breeds, but for the majority of breeds the mutation(s) responsible have yet to be identified. Using genome‐wide association with 16 Gordon Setter PRA cases and 22 controls, we identified a novel PRA locus, termed rod–cone degeneration 4 (rcd4), on CFA17 (Praw = 2.22 × 10?8, Pgenome = 2.00 × 10?5), where a 3.2‐Mb region was homozygous within cases. A frameshift mutation was identified in C2orf71, a gene located within this region. This variant was homozygous in 19 of 21 PRA cases and was at a frequency of approximately 0.37 in the Gordon Setter population. Approximately 10% of cases in our study (2 of 21) are not associated with this C2orf71 mutation, indicating that PRA in this breed is genetically heterogeneous and caused by at least two mutations. This variant is also present in a number of Irish Setter dogs with PRA and has an estimated allele frequency of 0.26 in the breed. The function of C2orf71 remains unknown, but it is important for retinal development and function and has previously been associated with autosomal recessive retinitis pigmentosa in humans.  相似文献   

6.
7.
Crop plant domestication can change plant resistance to herbivores leading to differences in pest pressure experienced by crop plants and their wild relatives. To compare resistance to herbivores between domesticated and wild fruit trees, we quantified direct resistance and indirect resistance to a pest insect, the florivorous apple blossom weevil Anthonomus pomorum (Coleoptera: Curculionidae), for the cultivated apple Malus domestica and two wild apple species, the European crab apple M. sylvestris and the exotic M. kirghisorum. We measured weevil infestation and performance (weight, sex ratio), and weevil parasitism by parasitoid wasps for different cultivars of M. domestica and for the two wild apple species. To explain weevil and parasitoid responses to different apple species, we quantified tree characteristics including nitrogen content, size of flower buds, bark roughness, tree size, tree phenology and tree position. We found significant differences in susceptibility to weevil infestation between apple species, with lowest infestation (highest apple resistance) in M. domestica and highest infestation in M. kirghisorum. The suitability of apple species also varied significantly: weevils emerging from M. sylvestris were significantly lighter than those from M. kirghisorum. Parasitism of A. pomorum by different parasitoid species was significantly higher in M. sylvestris than in M. domestica. Infestation, weevil weight and parasitism were positively related to tree characteristics: infestation to bud nitrogen content and bark roughness, weevil size to nitrogen content and bud size, and parasitism to tree height and bud density. Our study revealed marked differences between apple species in susceptibility and suitability for the pest herbivore, but also for antagonistic parasitoids. Whereas direct resistance appeared to be higher in cultivated apple, indirect resistance via parasitoids was apparently higher in wild apple trees. Our findings suggest that wild and cultivated apple trees possess different resistance traits that may be combined to optimize resistance in commercial apple cultivars.  相似文献   

8.
Major histocompatibility complex expression of activated peripheral blood lymphocytes of captive African green monkeys from Barbados and from Africa were analyzed biochemically; class I molecules by one-dimensional isoelectric focusing and class II DR molecules by one-dimensional nonequilibrium pH gradient electrophoresis. Much less diversity was observed in the major histocompatability molecule expression of the African green monkeys of Barbados than in the African cohort.  相似文献   

9.
Priming is a physiological state for protection of plants against a broad range of pathogens, and is achieved through stimulation of the plant immune system. Various stimuli, such as beneficial microbes and chemical induction, activate defense priming. In the present study, we demonstrate that impairment of the high‐affinity nitrate transporter 2.1 (encoded by NRT2.1) enables Arabidopsis to respond more quickly and strongly to Plectosphaerella cucumerina attack, leading to enhanced resistance. The Arabidopsis thaliana mutant lin1 (affected in NRT2.1) is a priming mutant that displays constitutive resistance to this necrotroph, with no associated developmental or growth costs. Chemically induced priming by β–aminobutyric acid treatment, the constitutive priming mutant ocp3 and the constitutive priming present in the lin1 mutant result in a common metabolic profile within the same plant–pathogen interactions. The defense priming significantly affects sugar metabolism, cell‐wall remodeling and shikimic acid derivatives levels, and results in specific changes in the amino acid profile and three specific branches of Trp metabolism, particularly accumulation of indole acetic acid, indole‐3–carboxaldehyde and camalexin, but not the indolic glucosinolates. Metabolomic analysis facilitated identification of three metabolites in the priming fingerprint: galacturonic acid, indole‐3–carboxylic acid and hypoxanthine. Treatment of plants with the latter two metabolites by soil drenching induced resistance against P. cucumerina, demonstrating that these compounds are key components of defense priming against this necrotrophic fungus. Here we demonstrate that indole‐3–carboxylic acid induces resistance by promoting papillae deposition and H2O2 production, and that this is independent of PR1, VSP2 and PDF1.2 priming.  相似文献   

10.
The small hive beetle, Aethina tumida Murray (Coleoptera: Nitidulidae), is a significant pest of managed honeybees in the USA and eastern Australia. The beetle damages hives by feeding on hive products and leaving behind fermented wastes. The beetle is consistently associated with the yeast Kodamaea ohmeri (Etchells & Bell) Yamada et al. (Saccharomycetales: Metschnikowiaceae), and this yeast is the presumed agent of the fermentation. Previous work has noted that the small hive beetle is attracted to volatiles from hive products and those of the yeast K. ohmeri. In this study, we investigated how the volatile compounds from the fermenting hive products change depending upon the source of the hive material and also how these volatiles change through time. We used gas chromatography–mass spectrometry and choice‐test behavioural assays to investigate these changes using products sampled from apiaries across the established range of the beetle in eastern Australia. The starting hive products significantly affected the volatile composition of fermenting hive products, and this composition varied throughout time. We found 61.7% dissimilarity between attractive and non‐attractive fermenting hive products, and identified individual compounds that characterise each of these groups. Eleven of these individual compounds were then assessed for attractiveness, as well as testing a synthetic blend in the laboratory. In the laboratory bioassay, 82.1 ± 0.02% of beetles were trapped in blend traps. These results have strong implications for the development of an out‐of‐hive attractant trap to assist in the management of this invasive pest.  相似文献   

11.
Host–parasite interactions are ubiquitous in nature. However, how parasite population genetic structure is shaped by the interaction between host and parasite life history remains understudied. Studies comparing multiple parasites infecting a single host can be used to investigate how different parasite life history traits interplay with host behaviour and life history. In this study, we used 10 newly developed microsatellite loci to investigate the genetic structure of a parasitic bat fly (Basilia nana). Its host, the Bechstein's bat (Myotis bechsteinii), has a social system and roosting behaviour that restrict opportunities for parasite transmission. We compared fly genetic structure to that of the host and another parasite, the wing‐mite, Spinturnix bechsteini. We found little spatial or temporal genetic structure in B. nana, suggesting a large, stable population with frequent genetic exchange between fly populations from different bat colonies. This contrasts sharply with the genetic structure of the wing‐mite, which is highly substructured between the same bat colonies as well as temporally unstable. Our results suggest that although host and parasite life history interact to yield similar transmission patterns in both parasite species, the level of gene flow and eventual spatiotemporal genetic stability is differentially affected. This can be explained by the differences in generation time and winter survival between the flies and wing‐mites. Our study thus exemplifies that the population genetic structure of parasites on a single host can vary strongly as a result of how their individual life history characteristics interact with host behaviour and life history traits.  相似文献   

12.
The flavone, tricin (5,7,4′‐trihydroxy‐3′,5′‐dimethoxyflavone), is a valuable secondary metabolite that is common in gramineous plants, including cultivated rice (Oryza sativa). It can defend the rice plant against infestation by the brown planthopper (BPH), Nilaparvata lugens Stål, one of the most important pests of rice. This study evaluated the tricin concentration in infested and non‐infested rice plants. The results of the liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS) quantitative analysis showed that the tricin concentration in rice leaves was significantly higher than in the stems and roots. The mass concentration of tricin in the leaves at the leaf stage was significantly higher than at the tiller and booting stages. The relationship between rice variety, BPH resistance and tricin concentration was investigated. There was a significant negative correlation between tricin concentration and the injury severity scores for rice varieties. Moreover, BPH infestation caused variations in tricin concentration among rice plants. High BPH infestation levels can significantly reduce the tricin concentration in rice plants. However, there is no significant effect of the length of infestation times on tricin concentrations in rice leaves. These results suggest that there may be an elicitor in BPH saliva, which is injected into rice plants during BPH infestation and triggers the tricin metabolic system. Future studies need to identify the elicitor and clarify the mechanism underlying tricin reduction in infested rice plants.  相似文献   

13.
Leafcutter ants propagate co‐evolving fungi for food. The nearly 50 species of leafcutter ants (Atta, Acromyrmex) range from Argentina to the United States, with the greatest species diversity in southern South America. We elucidate the biogeography of fungi cultivated by leafcutter ants using DNA sequence and microsatellite‐marker analyses of 474 cultivars collected across the leafcutter range. Fungal cultivars belong to two clades (Clade‐A and Clade‐B). The dominant and widespread Clade‐A cultivars form three genotype clusters, with their relative prevalence corresponding to southern South America, northern South America, Central and North America. Admixture between Clade‐A populations supports genetic exchange within a single species, Leucocoprinus gongylophorus. Some leafcutter species that cut grass as fungicultural substrate are specialized to cultivate Clade‐B fungi, whereas leafcutters preferring dicot plants appear specialized on Clade‐A fungi. Cultivar sharing between sympatric leafcutter species occurs frequently such that cultivars of Atta are not distinct from those of Acromyrmex. Leafcutters specialized on Clade‐B fungi occur only in South America. Diversity of Clade‐A fungi is greatest in South America, but minimal in Central and North America. Maximum cultivar diversity in South America is predicted by the Kusnezov–Fowler hypothesis that leafcutter ants originated in subtropical South America and only dicot‐specialized leafcutter ants migrated out of South America, but the cultivar diversity becomes also compatible with a recently proposed hypothesis of a Central American origin by postulating that leafcutter ants acquired novel cultivars many times from other nonleafcutter fungus‐growing ants during their migrations from Central America across South America. We evaluate these biogeographic hypotheses in the light of estimated dates for the origins of leafcutter ants and their cultivars.  相似文献   

14.
NGF has been implicated in forebrain neuroprotection from amyloidogenesis and Alzheimer's disease (AD). However, the underlying molecular mechanisms are still poorly understood. Here, we investigated the role of NGF signalling in the metabolism of amyloid precursor protein (APP) in forebrain neurons using primary cultures of septal neurons and acute septo‐hippocampal brain slices. In this study, we show that NGF controls the basal level of APP phosphorylation at Thr668 (T668) by downregulating the activity of the Ser/Thr kinase JNK(p54) through the Tyr kinase signalling adaptor SH2‐containing sequence C (ShcC). We also found that the specific NGF receptor, Tyr kinase A (TrkA), which is known to bind to APP, fails to interact with the fraction of APP molecules phosphorylated at T668 (APPpT668). Accordingly, the amount of TrkA bound to APP is significantly reduced in the hippocampus of ShcC KO mice and of patients with AD in which elevated APPpT668 levels are detected. NGF promotes TrkA binding to APP and APP trafficking to the Golgi, where APP–BACE interaction is hindered, finally resulting in reduced generation of sAPPβ, CTFβ and amyloid‐beta (1‐42). These results demonstrate that NGF signalling directly controls basal APP phosphorylation, subcellular localization and BACE cleavage, and pave the way for novel approaches specifically targeting ShcC signalling and/or the APP–TrkA interaction in AD therapy.  相似文献   

15.
The freshwater turtles of the genus Emys and some leech species of the family Glossiphoniidae are the only Palaearctic representatives of primarily Nearctic taxa, which jointly colonized Eurasia and the Maghreb during the Miocene. The strict trophic relationships occurring between the glossiphoniid parasite leech Placobdella costata and its host, the emydid Emys orbicularis, make them a prime example of host–parasite cophylogenetic evolution. In the light of the discovery of the Sicilian cryptic endemic species Emys trinacris, which is the sister species to the widespread Palaearctic E. orbicularis, the possible cophylogenetic divergence of the turtle hosts and their leech parasites was investigated. In spite of the deep divergence scored between the two pond turtle species and of their allopatric distribution, their leech parasites proved to be conspecific and indistinguishable based on the implemented molecular marker. This unexpected decoupling might likely be ascribed to the different dispersal abilities of the two taxa and/or to the recent, human‐mediated introduction of the leech parasites in Sicily. If this last scenario is confirmed, the long‐term effects of the introduced leech parasite on the endemic Sicilian pond turtle Emys trinacris should be carefully monitored. In the frame of this study, representatives of the widely spread predatory leech Helobdella stagnalis were observed on E. trinacris. Molecular analyses of their stomach content allowed to rule out the possibility of the existence of a trophic relationships between these two taxa, in contrast to what was previously suspected, and suggest that H. stagnalis specimens were rather attached to the turtles for non‐nutritional reasons.  相似文献   

16.
17.
Host shifts by specialist insects can lead to reproductive isolation between insect populations that use different hosts, promoting diversification. When both a phytophagous insect and its ancestrally associated parasitoid shift to the same novel host plant, they may cospeciate. However, because adult parasitoids are free living, they can also colonize novel host insects and diversify independent of their ancestral host insect. Although shifts of parasitoids to new insect hosts have been documented in ecological time, the long‐term importance of such shifts to parasitoid diversity has not been evaluated. We used a genus of flies with a history of speciation via host shifting (Rhagoletis [Diptera: Tephritidae]) and three associated hymenopteran parasitoid genera (Diachasma, Coptera and Utetes) to examine cophylogenetic relationships between parasitoids and their host insects. We inferred phylogenies of Rhagoletis, Diachasma, Coptera and Utetes and used distance‐based cophylogenetic methods (ParaFit and PACo) to assess congruence between fly and parasitoid trees. We used an event‐based method with a free‐living parasitoid cost model to reconstruct cophylogenetic histories of each parasitoid genus and Rhagoletis. We found that the current species diversity and host–parasitoid associations between the Rhagoletis flies and parasitoids are the primary result of ancient cospeciation events. Parasitoid shifts to ancestrally unrelated hosts primarily occur near the branch tips, suggesting that host shifts contribute to recent parasitoid species diversity but that these lineages may not persist over longer time periods. Our analyses also stress the importance of biologically informed cost models when investigating the coevolutionary histories of hosts and free‐living parasitoids.  相似文献   

18.
Differential protein expression profile in gastrointestinal stromal tumors   总被引:5,自引:0,他引:5  
Summary. Gastrointestinal stromal tumors (GISTs) arise from the interstitial cells of Cajal through gain of function mutations of the oncogene KIT. Imatinib offers the first effective treatment for patients with GISTs, but the therapeutic outcome strongly depends on the type of KIT mutation. We used ProteinChip technology to investigate whether GISTs with different KIT mutations express different proteins. In total, 154 proteins were significantly differentially expressed in GISTs with exon 9 KIT mutation compared to GISTs with exon 11 KIT mutation.  相似文献   

19.
20.
  • Most plants that inhabit ant‐gardens (AGs) are cultivated by the ants. Some orchids occur in AGs; however, it is not known whether their seeds are dispersed by AG ants because most orchid seeds are tiny and dispersed by wind.
  • We performed in situ seed removal experiments, in which we simultaneously provided Azteca gnava ants with seeds of three AG orchid species and three other AG epiphyte species (Bromeliaceae, Cactaceae and Gesneriaceae), as well as the non‐AG orchid Catasetum integerrimum.
  • The seeds most removed were those of the bromeliad Aechmea tillandsioides and the gesneriad Codonanthe uleana, while seeds of AG orchids Coryanthes picturata, Epidendrum flexuosum and Epidendrum pachyrachis were less removed. The non‐AG orchid was not removed. Removal values were positively correlated with the frequency of the AG epiphytes in the AGs, and seeds of AG orchids were larger than those of non‐AG orchids, which should favour myrmecochory.
  • Our data show that Azt. gnava ants discriminate and preferentially remove seeds of the AG epiphytes. We report for the first time the removal of AG orchid seeds by AG ants in Neotropical AGs.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号