共查询到20条相似文献,搜索用时 0 毫秒
1.
Divergence and evolution of reproductive barriers among three allopatric populations of Rhagoletis cingulata across eastern North America and Mexico 下载免费PDF全文
Eduardo Tadeo Jeffery L. Feder Scott P. Egan Hannes Schuler Martin Aluja Juan Rull 《Entomologia Experimentalis et Applicata》2015,156(3):301-311
Geography is often a key factor facilitating population divergence and speciation. In this regard, the geographic distributions of flies in the genus Rhagoletis (Diptera: Tephritidae) in temperate North America have been affected by cycles of Pleistocene glaciation and interglacial periods. Fluctuations in climatic conditions may have had their most dramatic effects on geographically isolating Rhagoletis flies in the central highland region of Mexico. During past periods of allopatry, a degree of post‐zygotic reproductive isolation appears to have evolved between hawthorn‐infesting populations of Rhagoletis pomonella (Walsh) in the central Eje Volcanico Trans Mexicano (EVTM) and those from the Sierra Madre Oriental Mountains (SMO) of Mexico, as well as hawthorn flies from the eastern USA. Here, we investigate the generality of this finding in the genus Rhagoletis by testing for reproductive isolation among populations of Rhagoletis cingulata (Loew) (Diptera: Tephritidae) collected from infested domesticated sweet cherry (Prunus avium L.) in the USA and black cherry [Prunus serotina Ehrh. (both Rosaceae)] from the SMO and EVTM. We report evidence for marked post‐mating reproductive isolation among certain R. cingulata populations. The high levels of reproductive isolation were observed between R. cingulata flies from populations in the USA and SMO differed from the pattern seen for R. pomonella, primarily involving the EVTM. In addition, egg hatch was significantly reduced for crosses between SMO males and EVTM females, but not greatly in the opposite direction. We discuss potential causes for the different patterns of post‐mating reproductive isolation among Rhagoletis flies. 相似文献
2.
3.
Dolly Varden (Salvelinus malma, Pisces: Salmonidae) and bull trout (Salvelinus confluentus) have widely overlapping, but largely parapatric ranges in watersheds in northwestern North America from Washington State to northern British Columbia. Genetic analysis of natural populations using diagnostic molecular markers revealed widespread local sympatry and hybridization with hybrids comprising 0-25% of the local samples. In a detailed analysis of hybridization using four nuclear DNA markers and mitochondrial DNA within the Thutade Lake watershed, northcentral British Columbia, hybrid genotypes constituted up to 9% of the population of juvenile char. There were significant deviations from Hardy-Weinberg, gametic, and cytonuclear equilibria, and local samples showed bimodal frequency distributions of genotypes. Pure parental and inferred backcross genotypes were most common, and F1 and F(n) hybrids were comparatively rare. Interspecific hybridization was asymmetrical, with most F1 hybrids (five of six) bearing S. confluentus mtDNA. The introgression of nuclear and mitochondrial alleles was asymmetrical, with S. confluentus mtDNA and Growth Hormone 2 introgressing into S. malma significantly more than either introgression of the three other nuclear loci, or introgression of S. malma alleles into S. confluentus. Substantial prezygotic isolation between the species likely depends on the large body size difference between them in sympatry: S. malma have small bodies and a stream resident life history (12-21 cm adult fork length at maturity), while S. confluentus are larger and adfluvial, i.e., they migrate to Thutade Lake where they grow to maturity before returning to tributary streams to spawn (40-90 cm at maturity). These traits may limit interspecific pairings because of size assortative pairing and size-dependent reproductive habitat use. 相似文献
4.
Forister ML 《Evolution; international journal of organic evolution》2005,59(5):1149-1155
Divergent natural selection contributes to reproductive isolation among populations adapting to different habitats or resources if hybrids between populations are intermediate in phenotype and suffer an associated, environmentally dependent reduction in fitness. This prediction was tested using two host races of Mitoura butterflies. Thirty-five F1 hybrid and parental lines were created, larvae were raised on the two host plants, and oviposition preferences were assayed in choice arenas. Larvae from both reciprocal hybrid crosses suffered a host-specific reduction in performance: when reared on incense cedar, hybrid survival was approximately 30% less than the survival of pure lines of the cedar-associated host race. The performance of hybrid larvae reared on the other host, MacNab cypress, was not reduced relative to parental genotypes. Females from both reciprocal hybrid crosses preferred to oviposit on incense cedar, the same host that resulted in the reduced survival of hybrid larvae. Thus, dominance is implicated in the inheritance of traits involved in both preference and performance, which do not appear to be genetically linked in Mitoura butterflies. Gene flow between host races may be reduced because the correlation between preference and performance that was previously described in parental populations is essentially broken by hybridization. 相似文献
5.
In this study, female preferences and behavioural isolation were estimated in a pair of allopatric sister species, Etheostoma duryi and Etheostoma flavum. Dichotomous mate preference trials were conducted to determine whether females prefer to associate with conspecific over heterospecific males and free‐spawning assays were conducted to determine whether those preferences translated into behavioural isolation. Dichotomous mate choice trials revealed asymmetric female preference, as female E. flavum preferred conspecific males, whereas female E. duryi showed no preference. Free‐spawning assays indicated that behavioural isolation remains incomplete between E. duryi and E. flavum (IB = 0·19). In addition to female mating preferences, male behaviour also appeared to influence mating outcomes as male E. flavum consistently courted conspecific females more often in free‐spawning assays whereas male E. duryi did not. The data therefore suggest that despite marked divergence in male nuptial colour, divergence in female preferences between these species may not be sufficient to maintain species boundaries upon secondary contact. These results contrast with similar work in a sympatric darter species pair and may be explained by considering the contributions of reinforcement and differences in colour pattern as well as colour value. 相似文献
6.
7.
Abbott RJ Ritchie MG Hollingsworth PM 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2008,363(1506):2965-2969
Although approximately 150 years have passed since the publication of On the origin of species by means of natural selection, the definition of what species are and the ways in which species originate remain contentious issues in evolutionary biology. The biological species concept, which defines species as groups of interbreeding natural populations that are reproductively isolated from other such groups, continues to draw support. However, there is a growing realization that many animal and plant species can hybridize with their close relatives and exchange genes without losing their identity. On occasion, such hybridization can lead to the origin of new species. A key to understanding what species are and the ways in which they originate rests to a large extent on a detailed knowledge of the nature and genetics of factors that limit gene flow between species and the conditions under which such isolation originates. The collection of papers in this issue addresses these topics and deals as well with some specific issues of hybrid speciation and the causes of species radiations. The papers included arise from a 1-day symposium on speciation held during the Sixth Biennial Meeting of the Systematics Association at Edinburgh in August 2007. In this introduction, we provide some background to these papers and highlight some key points made. The papers make clear that highly significant advances to our understanding of animal and plant speciation are currently being made across the range of this topic. 相似文献
8.
In theory, adaptive divergence can increase intrinsic post‐zygotic reproductive isolation (RI), either directly via selection on loci associated with RI, or indirectly via linkage of incompatibility loci with loci under selection. To test this hypothesis, we measured RI at five intrinsic post‐zygotic reproductive barriers between 18 taxa from the genera Cakile and Erucaria (Brassicaceae). Using a comparative framework, we tested whether the magnitude of RI was associated with genetic distance, geographic distance, ecological divergence and parental mating system. Early stages of post‐zygotic RI related to F1 viability (i.e. initial seed set) tended to be stronger than later stages related to F1 fecundity (i.e. flower number, fruit number). Mating system significantly influenced early stages of RI, such that RI was lowest when the mother was selfing and father was outcrossing, consistent with an imbalance between sink strength and resistance to provisioning. We found little evidence that adaptive divergence accelerates the evolution of intrinsic post‐zygotic RI, consistent with a nonecological model of evolution that predicts the nonlinear accumulation of RI and RI asymmetry with time (i.e. genetic distance), irrespective of adaptive divergence. Thus, although certain aspects of ecological divergence do not appear to have contributed strongly to the evolution of RI in this system, divergence in mating system actually reduced RI, suggesting that mating system evolution may play a significant role in speciation dynamics. 相似文献
9.
Manuel Uribe-Alcocer Hugo Olvera-García Píndaro Díaz-Jaimes 《Ichthyological Research》2002,49(1):85-88
Karyotype analyses of three Chirostoma species, C. estor, C. patzcuaro, and C. jordani from Mexico, are presented. C. estor and C. jordani have both a diploid number of 2N = 48 and a fundamental number of NF = 68, but different karyotype formulae. The co-occurrence
of these karyotypes with morphometric and allozymatic primitive features so far reported suggests that the ancestral karyotype
of the genus Chirostoma was similar to the one shown by these species. The divergent karyotype of C. patzcuaro (2N = 44 and NF = 44) could be related to its endemism and to the relatively small size of its populations.
Received: February 7, 2001 / Revised: September 7, 2001 / Accepted: October 11, 2001 相似文献
10.
Remating responses are consistent with male postcopulatory manipulation but not reinforcement in D. pseudoobscura 下载免费PDF全文
Reinforcement occurs when hybridization between closely related lineages produces low‐fitness offspring, prompting selection for elevated reproductive isolation specifically in areas of sympatry. Both premating and postmating prezygotic behaviors have been shown to be the target of reinforcing selection, but it remains unclear whether remating behaviors experience reinforcement, although they can also influence offspring identity and limit formation of hybrids. Here, we evaluated evidence for reinforcing selection on remating behaviors in Drosophila pseudoobscura, by comparing remating traits in females from populations historically allopatric and sympatric with Drosophila persimilis. We found that the propensity to remate was not higher in sympatric females, compared to allopatric females, regardless of whether the first mated male was heterospecific or conspecific. Moreover, remating behavior did not contribute to interspecific reproductive isolation among any population; that is, females showed no higher propensity to remate following a heterospecific first mating than following a conspecific first mating. Instead, we found that females are less likely to remate after initial matings with unfamiliar males, regardless of species identity. This is consistent with one scenario of postmating sexual conflict in which females are poorly defended against postcopulatory manipulation by males with whom they have not coevolved. Our results are generally inconsistent with reinforcement on remating traits and suggest that this behavior might be more strongly shaped by the consequences of local antagonistic male–female interactions than interactions with heterospecifics. 相似文献
11.
ARND SCHREIBER MICHAEL STUBBE ANNEGRET STUBBE 《Biological journal of the Linnean Society. Linnean Society of London》2000,69(3):351-365
Allozyme analysis of 24 loci in 154 red kites (Milvus milvus) and 36 black kites (Milvus migrans) from die Hakel forest (Sachsen-Anhalt, Germany) revealed a Nei's interspecies genetic distance of D = 0.009. Of die observed genetic variance of four polymorphic enzymes, 15.4% referred to die differentiation between die kite species, but 84.6% were contributed by the ingroup polymorphism widiin diese species. Allozymes permit the identification of some 78% of samples as orignating from M. milvus , but only of 5.4% of samples obtained from M. migrans. Akhough the genetic distance is slight, die Milvus kites are valid biospecies which, despite occasional instances of hybridization, coexist sympatrically and may breed in mixed breeding aggregations. Mate choice in die largely separate winter quarters of diese migratory birds or chromosomal incompatibility are hypodietical isolation mechanisms stabilizing die species boundary. Moreover, the range sympatry could have developed fairly recendy widi die spread of human agriculture. 相似文献
12.
Examination of genetic and ecological relationships within sibling species complexes can provide insights into species diversity and speciation processes. Alpheus angulatus and A. armillatus, two snapping shrimp species with overlapping ranges in the north-western Atlantic, are similar in morphology, exploit similar ecological niches and appear to represent recently diverged sibling species. We examined phylogenetic and ecological relationships between these two species with: (i) sequence data from two mitochondrial genes (16S rRNA and COI); (ii) data on potential differences in microhabitat distribution for A. armillatus and A. angulatus; and (iii) data from laboratory experiments on the level of reproductive isolation between the two species. DNA sequence data suggest A. armillatus and A. angulatus are sister species that diverged subsequent to the close of the Isthmus of Panama, and that haplotype diversity is lower in A. armillatus than in A. angulatus. Both species are distantly related to A. heterochaelis and A. estuariensis, two species with which A. angulatus shares some similarities in coloration. Ecological data on the distribution of A. angulatus and A. armillatus from two locations revealed differences in distribution of the two species between habitat patches, with each patch dominated by one or the other species. However, there was no apparent difference in distribution of the two species within habitat patches with respect to microhabitat location. Ecological data also revealed that heterospecific individuals often occur in close proximity (i.e. within metres or centimetres) where sympatric. Behavioural data indicated that these species are reproductively isolated, which is consistent with speciation in transient allopatry followed by post-divergence secondary contact. Our data further resolve taxonomic confusion between the sibling species, A. armillatus and A. angulatus, and suggest that sympatry in areas of range overlap and exploitation of similar ecological niches by these two recently diverged species have selected for high levels of behavioural incompatibility. 相似文献
13.
THOMAS B. SMITH HENRI A. THOMASSEN ADAM H. FREEDMAN RAVINDER N. M. SEHGAL WOLFGANG BUERMANN SASSAN SAATCHI JOHN POLLINGER BORJA MILÁ DEBRA PIRES GEDIMINAS VALKIŪNAS ROBERT K. WAYNE 《Biological journal of the Linnean Society. Linnean Society of London》2011,103(4):821-835
In the debate over modes of vertebrate diversification in tropical rainforests, two competing hypotheses of speciation predominate: those that emphasize the role of geographical isolation during glacial periods and those that stress the role of ecology and diversifying selection across ecotones or environmental gradients. To investigate the relative roles of selection versus isolation in refugia, we contrasted genetic and morphologic divergence of the olive sunbird (Cyanomitra olivacea) at 18 sites (approximately 200 individuals) across the forest–savanna ecotone of Central Africa in a region considered to have harboured three hypothesized refugia during glacial periods. Habitats were characterized using bioclimatic and satellite remote‐sensing data. We found relatively high levels of gene flow between ecotone and forest populations and between refugia. Consistent with a pattern of divergence‐with‐gene‐flow, we found morphological characters to be significantly divergent across the gradient [forest versus ecotone (mean ± SD): wing length 60.47 ± 1.81 mm versus 62.18 ± 1.35 mm; tarsus length 15.51 ± 0.82 mm versus 16.00 ± 0.57 mm; upper mandible length 21.77 ± 1.09 mm versus 23.19 ± 0.98 mm, respectively]. Within‐habitat comparisons across forest and ecotone sites showed no significant differences in morphology. The results show that divergence in morphological traits is tied to environmental variables across the gradient and is occurring despite gene flow. The pattern of divergence‐with‐gene‐flow found is similar to that described for other rainforest species across the gradient. These results suggest that neither refugia, nor isolation‐by‐distance have played a major role in divergence in the olive sunbird, although ecological differences along the forest and savanna ecotone may impose significant selection pressures on the phenotype and potentially be important in diversification. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 821–835. 相似文献
14.
15.
TONY GRACE SAMANTHA M. WISELY SUSAN J. BROWN FLOYD E. DOWELL ANTHONY JOERN 《Biological journal of the Linnean Society. Linnean Society of London》2010,100(4):866-878
Early stages of lineage divergence in insect herbivores are often related to shifts in host plant use and divergence in mating capabilities, which may lead to sexual isolation of populations of herbivorous insects. We examined host preferences, degree of differentiation in mate choice, and divergence in cuticular morphology using near‐infrared spectroscopy in the grasshopper Hesperotettix viridis aiming to understand lineage divergence. In Kansas (USA), H. viridis is an oligophagous species feeding on Gutierrezia and Solidago host species. To identify incipient mechanisms of lineage divergence and isolation, we compared host choice, mate choice, and phenotypic divergence among natural grasshopper populations in zones of contact with populations encountering only one of the host species. A significant host‐based preference from the two host groups was detected in host‐paired feeding preference studies. No‐choice mate selection experiments revealed a preference for individuals collected from the same host species independent of geographic location, and little mating was observed between individuals collected from different host species. Female mate choice tests between males from the two host species resulted in 100% fidelity with respect to host use. Significant differentiation in colour and cuticular composition of individuals from different host plants was observed, which correlated positively with host choice and mate choice. No evidence for reinforcement in the zone of contact was detected, suggesting that divergent selection for host plant use promotes sexual isolation in this species. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 866–878. 相似文献
16.
The evolution of reproductive isolation (RI) is a critical step shaping progress towards speciation. In the context of ecological speciation, a critical question is the extent to which specific reproductive barriers important to RI evolve rapidly and predictably in response to environmental differences. Only reproductive barriers with these properties (importance, rapidity, predictability) will drive the diversification of species that are cohesively structured by environment type. One candidate barrier that might exhibit such properties is allochrony, whereby populations breed at different times. We studied six independent lake–stream population pairs of threespine stickleback (Gasterosteus aculeatus Linnaeus, 1758) that are known from genetic studies to show RI. However, the specific reproductive barriers driving this RI have proven elusive, leading to a ‘conundrum of missing reproductive isolation’. We here show that breeding times differ among some of the populations, but not in a consistent manner between lakes and streams. Moreover, the timing differences between lake and stream populations within each pair could account for only a small proportion of total RI measured with neutral genetic markers. Allochrony cannot solve the conundrum of missing reproductive isolation in lake–stream stickleback. 相似文献
17.
Asymmetric reproductive barriers and mosaic reproductive isolation: insights from Misty lake–stream stickleback 下载免费PDF全文
Ecological speciation seems to occur readily but is clearly not ubiquitous – and the relative contributions of different reproductive barriers remain unclear in most systems. We here investigate the potential importance of selection against migrants in lake/stream stickleback (Gasterosteus aculeatus) from the Misty Lake system, Canada. This system is of particular interest because one population contrast (Lake vs. Outlet stream) shows very low genetic and morphological divergence, whereas another population contrast (Lake vs. Inlet stream) shows dramatic genetic and morphological divergence apparently without strong and symmetric reproductive barriers. To test whether selection against migrants might solve this “conundrum of missing reproductive isolation”, we performed a fully factorial reciprocal transplant experiment using 225 individually marked stickleback collected from the wild. Relative fitness of the different ecotypes (Lake, Inlet, and Outlet) was assessed based on survival and mass change in experimental enclosures. We found that Inlet fish performed poorly in the lake (selection against migrants in that direction), whereas Lake fish outperformed Inlet fish in all environments (no selection against migrants in the opposite direction). As predicted from their phenotypic and genetic similarity, Outlet and Lake fish performed similarly in all environments. These results suggest that selection against migrants is asymmetric and, together with previous work, indicates that multiple reproductive barriers contribute to reproductive isolation. Similar mosaic patterns of reproductive isolation are likely in other natural systems. 相似文献
18.
I. Vila P. Morales S. Scott E. Poulin D. Véliz C. Harrod M. A. Méndez 《Journal of fish biology》2013,82(3):927-943
This study presents phylogenetic molecular data of the Chilean species of Orestias to propose an allopatric divergence hypothesis and phylogeographic evidence that suggests the relevance of abiotic factors in promoting population divergence in this complex. The results reveal that diversification is still ongoing, e.g. in the Ascotán salt pan, where populations of Orestias ascotanensis restricted to individual freshwater springs exhibit strong genetic differentiation, reflecting putative independent evolutionary units. Diversification of Orestias in the southern Altiplano may be linked to historical vicariant events and contemporary variation in water level; these processes may have affected the populations from the Plio‐Pleistocene until the present. 相似文献
19.
R. Alexander Pyron Gabriel C. Costa Michael A. Patten Frank T. Burbrink 《Biological reviews of the Cambridge Philosophical Society》2015,90(4):1248-1262
Phylogenetic niche conservatism (PNC) typically refers to the tendency of closely related species to be more similar to each other in terms of niche than they are to more distant relatives. This has been implicated as a potential driving force in speciation and other species‐richness patterns, such as latitudinal gradients. However, PNC has not been very well defined in most previous studies. Is it a pattern or a process? What are the underlying endogenous (e.g. genetic) and exogenous (e.g. ecological) factors that cause niches to be conserved? What degree of similarity is necessary to qualify as PNC? Is it possible for the evolutionary processes causing niches to be conserved to also result in niche divergence in different habitats? Here, we revisit these questions, codifying a theoretical and operational definition of PNC as a mechanistic evolutionary process resulting from several factors. We frame this both from a macroevolutionary and population‐genetic perspective. We discuss how different axes of physical (e.g. geographic) and environmental (e.g. climatic) heterogeneity interact with the fundamental process of PNC to produce different outcomes of ecological speciation. We also review tests for PNC, and suggest ways that these could be improved or better utilized in future studies. Ultimately, PNC as a process has a well‐defined mechanistic basis in organisms, and future studies investigating ecological speciation would be well served to consider this, and frame hypothesis testing in terms of the processes and expected patterns described herein. The process of PNC may lead to patterns where niches are conserved (more similar than expected), constrained (divergent within a limited subset of available niches), or divergent (less similar than expected), based on degree of phylogenetic relatedness between species. 相似文献
20.
Devin D. Bloom Kyle R. Piller John Lyons Norman Mercado-Silva 《Environmental Biology of Fishes》2008,82(3):221-222
Chirostoma aculeatum is a rare silverside found only in central Mexico. Its conservation status is considered in addition to providing information regarding its ecology, life history, and distribution. 相似文献