首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A laboratory‐made continuous flow lipid extraction system (CFLES) was devised to extract lipids from microalgae Nannochloropsis sp., a potential feedstock for biodiesel fuel, with a focus to assess the workable temperatures and pressures for future industrial applications. Using conventional solvents, the CFLES recovered 100% of the lipids extracted with conventional Soxhlet extraction. The optimum temperature and pressure were found to be 100 °C and 50 psi, respectively; conditions significantly lower than those normally used in pressurized liquid extractions requiring specialized equipment. Approximately 87% of the extracted oil was successfully transesterified into biodiesel fuel (fatty acid methyl esters). Preliminary calculations based on the tested lab‐scale system indicated savings in energy, solvent consumption, and extraction time as 96%, 80%, and more than 90%, respectively, as compared to Soxhlet extraction. However, the true cost savings can only be assessed at scaled up level. Energy efficiency of CFLES was calculated as 48.9%. Residual water (~70%) in the biomass had no effect on the extraction performance of CFLES, which is expected to help the process economics at scaled up application. The effect of temperature and pressure on the fatty acids profile of Nannochloropsis sp. is also discussed. Based on the existing literature, the authors believe that a pressurized liquid extraction system with continuous solvent flow has not been reported for lipid extraction from Nannochloropsis sp.  相似文献   

2.
The aim of this work was to evaluate a fungal DNA extraction procedure with the lowest inputs in terms of time as well as of expensive and toxic chemicals, but able to consistently produce genomic DNA of good quality for PCR purposes. Two types of fungal biological material were tested ‐ mycelium and conidia ‐ combined with two protocols for DNA extraction using Sodium Dodecyl Sulphate (SDS) and Cetyl Trimethyl Ammonium Bromide as extraction buffers and glass beads for mechanical disruption of cell walls. Our results showed that conidia and SDS buffer was the combination that lead to the best DNA quality and yield, with the lowest variation between samples. This study clearly demonstrates that it is possible to obtain high yield and pure DNA from pigmented conidia without the use of strong cell disrupting procedures and of toxic reagents.

Significance and Impact of the Study

There are numerous methods for DNA extraction from fungi. Some rely on expensive commercial kits and/or equipments, unavailable for many laboratories, or make use of toxic chemicals such as chloroform, phenol and mercaptoethanol. This study clearly demonstrates that it is possible to obtain high yields of pure DNA from pigmented conidia without the use of strong and expensive cell disrupting procedures and of toxic reagents. The method herein described is simultaneously inexpensive and adequate to DNA extraction from several different types of fungi.  相似文献   

3.
4.
Aphanomyces euteiches is a polyphagous, homothallic soilborne pathogen producing asexual (zoospores) and sexual (oospores) spores. Even if oospores are essential for disease development and survival, to date, no study has focused on the production rates of oospores or the quality of the offspring produced by oospores. In this study, a nonabrasive oospore extraction method from infected roots of leguminous species (pea, faba bean and vetch) was developed. This methodology includes steps of grinding and filtration. The quality of oospores (viable, dormant and dead) was assessed with tetrazolium bromide staining, and germination of oospores was tested using exudates of peas, faba bean and vetch. The average yield of the extraction method was approximately 21%. Staining revealed some differences between strains and between leguminous species. The germination percentage of oospores extracted from pea, faba bean and vetch was 25%, 62% and 70%, respectively, and a significant difference was observed according to the origin of A. euteiches‐inoculated strains. Application of exudates seems to stimulate the germination of oospores (2% for the control, 18% for pea exudates and 1% for vetch exudates). Differences observed between A. euteiches strains and leguminous species indicate that more knowledge concerning the biology of oospores is needed. This will help to better estimate evolution process of the pathogen and manage resistance and crop successions.  相似文献   

5.
6.

Aims

Nine commercial DNA extraction kits were evaluated for the isolation of DNA from 10‐fold serial dilutions of Bacillus anthracis spores using quantitative real‐time PCR (qPCR). The three kits determined by qPCR to yield the most sensitive and consistent detection (Epicenter MasterPure Gram Positive; MoBio PowerFood; ABI PrepSeq) were subsequently tested for their ability to isolate DNA from trace amounts of B. anthracis spores (approx. 6·5 × 101 and 1·3 × 102 CFU in 25 ml or 50 g of food sample) spiked into complex food samples including apple juice, ham, whole milk and bagged salad and recovered with immunomagnetic separation (IMS).

Methods and Results

The MasterPure kit effectively and consistently isolated DNA from low amounts of B. anthracis spores captured from food samples. Detection was achieved from apple juice, ham, whole milk and bagged salad from as few as 65 ± 14, 68 ± 8, 66 ± 4 and 52 ± 16 CFU, respectively, and IMS samples were demonstrated to be free of PCR inhibitors.

Conclusions

Detection of B. anthracis spores isolated from food by IMS differs substantially between commercial DNA extraction kits; however, sensitive results can be obtained with the MasterPure Gram Positive kit.

Significance and Impact of the Study

The extraction protocol identified herein combined with IMS is novel for B. anthracis and allows detection of low levels of B. anthracis spores from contaminated food samples.  相似文献   

7.
Cyanobacteria are ancient organisms surviving on the earth due to their simple nutritional requirements and ability to produce distinct secondary metabolites that can combat detrimental environmental impacts. In order to understand these abilities of cyanobacteria at the molecular level, it is necessary to extract high‐quality genomic DNA. However, the presence of secondary metabolites and exopolysaccharides hinders the DNA extraction from these organisms, especially from hypersaline environments. Here we have developed and compared a new method with two known methods of DNA extraction from environmental isolates. The results clearly indicate that the new optimized method yielded large amount of DNA with high purity. Additionally, the extracted DNA showed reduced degradation and excellent overall quality, which can be used directly for downstream purposes such as PCR and sequencing.  相似文献   

8.
Current research targeting filtered macrobial environmental DNA (eDNA) often relies upon cold ambient temperatures at various stages, including the transport of water samples from the field to the laboratory and the storage of water and/or filtered samples in the laboratory. This poses practical limitations for field collections in locations where refrigeration and frozen storage is difficult or where samples must be transported long distances for further processing and screening. This study demonstrates the successful preservation of eDNA at room temperature (20 °C) in two lysis buffers, CTAB and Longmire's, over a 2‐week period of time. Moreover, the preserved eDNA samples were seamlessly integrated into a phenol–chloroform–isoamyl alcohol (PCI) DNA extraction protocol. The successful application of the eDNA extraction to multiple filter membrane types suggests the methods evaluated here may be broadly applied in future eDNA research. Our results also suggest that for many kinds of studies recently reported on macrobial eDNA, detection probabilities could have been increased, and at a lower cost, by utilizing the Longmire's preservation buffer with a PCI DNA extraction.  相似文献   

9.
10.
  1. Understanding plant‐insect interactions is an active area of research in both ecology and evolution. Much attention has been focused on the impact of secondary metabolites in the host plant or fungi on these interactions. Plants and fungi contain a variety of biologically active compounds, and the secondary metabolite profile can vary significantly between individual samples. However, many experiments characterize the biological effects of only a single secondary metabolite or a subset of these compounds.
  2. Here, we develop an exhaustive extraction protocol using an accelerated solvent extraction protocol to recover the complete suite of cyclopeptides and other secondary metabolites found in Amanita phalloides (death cap mushrooms) and compare its efficacy to the “Classic” extraction method used in earlier works.
  3. We demonstrate that our extraction protocol recovers the full suite of cyclopeptides and other secondary metabolites in A. phalloides unlike the “Classic” method that favors polar cyclopeptides.
  4. Based on these findings, we provide recommendations for how to optimize protocols to ensure exhaustive extracts and also the best practices when using natural extracts in ecological experiments.
  相似文献   

11.
Grasses (Poaceae) are very common plants, which are widespread in all environments and urban areas. Despite their economical importance, they can represent a problem to humans due to their abundant production of allergenic pollen. Detailed information about the pollen season for these species is needed in order to plan adequate therapies and to warn allergic people about the risks they take in certain areas at certain moments. Moreover, precise identification of the causative species and their allergens is necessary when the patient is treated with allergen‐specific immunotherapy. The intrafamily morphological similarity of grass pollen grains makes it impossible to distinguish which particular species is present in the atmosphere at a given moment. This study aimed at developing new biomolecular tools to analyze aerobiological samples and identifying major allergenic Poaceae taxa at subfamily or species level, exploiting fast real‐time PCR. Protocols were tested for DNA extraction from pollen sampled with volumetric and gravimetric methods. A fragment of the matK plastidial gene was amplified and sequenced in Poaceae species known to have high allergological impact. Species‐ and subfamily‐specific primer–probe systems were designed and tested in fast real‐time PCRs to evaluate the presence of these taxa in aerobiological pollen samples. Species‐specific systems were obtained for four of five studied species. A primer–probe set was also proposed for the detection of Pooideae (a grass subfamily that includes also major cereal grains) in aerobiological samples, as this subfamily includes species carrying both grass allergens from groups 1 and 5. These, among the 11 groups in which grass pollen allergens are classified, are considered responsible for the most frequent and severe symptoms.  相似文献   

12.
Phytohormones play essential roles in the regulation of growth and development in plants. Plant hormone profiling is therefore essential to understand developmental processes and the adaptation of plants to biotic and/or abiotic stresses. Interestingly, commonly used hormone extraction and profiling methods do not adequately resolve other molecular entities, such as polar metabolites, lipids, starch and proteins, which would be required to comprehensively describe the continuing biological processes at a systematic level. In this article we introduce an updated version of a previously published liquid:liquid metabolite extraction protocol, which not only allows for the profiling of primary and secondary metabolites, lipids, starch and proteins, but also enables the quantitative analysis of the major plant hormone classes, including abscisic acid, auxins, cytokinins, jasmonates and salicylates, from a single sample aliquot. The optimization of the method, which uses the introduction of acidified water, enabling the complete purification of major plant hormones into the organic (methyl‐tert‐butyl‐ether) phase, eliminated the need for solid‐phase extraction for sample clean‐up, and therefore reduces both sampling time and cost. As a proof‐of‐concept analysis, Arabidopsis thaliana plants were subjected to water‐deficit stress, which were then profiled for hormonal, metabolic, lipidomic and proteomic changes. Surprisingly, we determined not only previously described molecular changes but also significant changes regarding the breakdown of specific galactolipids, followed by the substantial accumulation of unsaturated fatty‐acid derivatives and diverse jasmonates in the course of adaptation to water‐deficit stress.  相似文献   

13.
Carrageenan extracted from Eucheuma spinosum harvested from three different coastal sea regions, where this alga has been mainly cultivated, were determined for their chemical and physical characteristics. The carrageenan was extracted from the seaweed using hot alkali followed by precipitation, drying, and milling. The carrageenan properties were determined in terms of yield, ash, mineral, sulfate content, functional group, molecular weight, and viscosity profile. Physical characteristics of carrageenan were evaluated by a texture analyzer for gel strength and a rapid visco analyzer for viscosity. The yield of carrageenan from Sumenep (34.81 ± 5.83%) and Takalar (37.16 ± 3.26%) was found to be relatively higher than that of Nusa Penida (25.81 ± 1.93%). The calcium content was higher than magnesium, potassium and sodium content, and no cadmium, lead, mercury, and arsenic detected in all carrageenan. The ash content was around 29%; while, the sulfate content was in the range of 30–32%, and those were not different in all carrageenan. The presence of sulfate content was identified by FTIR at absorption band of 1373 cm?1. It was found that the molecular weight of carrageenan from Takalar were relatively higher and the gel strength of carrageenan from Takalar were significantly higher than that of carrageenan from Nusa Penida and Sumenep. Likewise, upon cooling from 80 to 20°C, the viscosity profile of carrageenan from Takalar characterized by higher viscosity compared to that of carrageenan from Sumenep and Nusa Penida. These results indicated that carrageenan from Nusa Penida, Sumenep, and Takalar were identified as iota‐carrageenan with similar physico‐chemical characteristics except for the gel strength, viscosity profile upon cooling from 80 to 20°C and the yield.  相似文献   

14.
Insect DNA barcoding is a species identification technique used in biodiversity assessment and ecological studies. However, DNA extraction can result in the loss of up to 70% of DNA. Recent research has reported that direct PCR can overcome this issue. However, the success rates could still be improved, and tissues used for direct PCR could not be reused for further genetic studies. Here, we developed a direct PCR workflow that incorporates a 2‐min sample preparation in PBS‐buffer step for fast and effective universal insect species identification. The developed protocol achieved 100% success rates for amplification in six orders: Mantodea, Phasmatodea, Neuroptera, Odonata, Blattodea and Orthoptera. High and moderate success rates were obtained for five other species: Lepidoptera (97.3%), Coleoptera (93.8%), Diptera (90.5%), Hemiptera (81.8%) and Hymenoptera (75.0%). High‐quality sequencing data were also obtained from these amplifiable products, allowing confidence in species identification. The method was sensitive down to 1/4th of a 1‐mm fragment of leg or body and its success rates with oven‐dried, ethanol‐preserved, food, bat guano and museum specimens were 100%, 98.6%, 90.0%, 84.0% and 30.0%, respectively. In addition, the pre‐PCR solution (PBS with insect tissues) could be used for further DNA extraction if needed. The workflow will be beneficial in the fields of insect taxonomy and ecological studies due to its low cost, simplicity and applicability to highly degraded specimens.  相似文献   

15.
Esteya vermicola is the first recorded endoparasitic fungus of the pinewood nematode, Bursaphelenchus xylophilus, which is the causal agent for the pine wilt disease. Culture on modified agar media with herbal extraction (0.5%) was found to be able to induce resistance to UV radiation, heat and drought conditions in Esteya vermicola. Herba Houttuyniae, Tatraxacum officinale and Scutellaria baicalensis Georgi exhibited the highest improvement on environmental competence of Esteya vermicola at all the tested time points under the stress conditions. In addition, improved quality and effective viability of Esteya vermicola were observed amended with the three herbal extractions in culture media. Enhanced stress resistance was associated with herbal metabolites. These findings provided a green, feasible, economical method for developing an open‐field spay application of fungal biocontrol agents against pine wilt disease.  相似文献   

16.
17.
18.
Fusarium wilt, caused by Fusarium oxysporum f. sp. lycopersici (FOL), is an important disease of tomato. Pathogenicity and vegetative compatibility tests, although reliable, are laborious for the identification of FOL isolates and cannot efficiently quantify population densities of FOL in the soil. The objective of this study was to develop a rapid, sensitive and quantitative real‐time polymerase chain reaction (PCR) assay for detecting and quantifying FOL in soil. An inexpensive and relatively simple method for soil DNA extraction and purification was developed based on bead‐beating and a silica‐based DNA‐binding method. A TaqMan probe and PCR primers were designed using the DNA sequence of the species‐specific virulence gene SIX1, which is only present in isolates of FOL, not in isolates of other formae speciales or non‐pathogenic isolates of F. oxysporum. The real‐time PCR assay successfully amplified isolates of three races of FOL used in this study and quantified FOL DNA in soils, with a detection limit of 0.44 pg of genomic DNA of FOL in 20 μl of the real‐time PCR. A spiking test performed by adding different concentrations of conidia to soil showed a significant linear relationship between the amount of genomic DNA of FOL detected by the real‐time PCR assay and the concentration of conidia added. In addition, the real‐time PCR assay revealed a significant quadratic regression for a glasshouse experiment between disease severity and DNA concentration of FOL. The soil DNA extraction method and real‐time PCR assay developed in this study could be used to determine population densities of FOL in soil, develop threshold models to predict Fusarium wilt severity, identify high‐risk fields and measure the impact of cultural practices on FOL populations in soils.  相似文献   

19.
The localization of metabolites on plant surfaces has been problematic because of the limitations of current methodologies. Attempts to localize glucosinolates, the sulfur‐rich defense compounds of the order Brassicales, on leaf surfaces have given many contradictory results depending on the method employed. Here we developed a matrix‐assisted laser desorption–ionization (MALDI) mass spectrometry protocol to detect surface glucosinolates on Arabidopsis thaliana leaves by applying the MALDI matrix through sublimation. Quantification was accomplished by spotting glucosinolate standards directly on the leaf surface. The A. thaliana leaf surface was found to contain approximately 15 nmol of total glucosinolate per leaf with about 50 pmol mm?2 on abaxial (bottom) surfaces and 15–30 times less on adaxial (top) surfaces. Of the major compounds detected, 4‐methylsulfinylbutylglucosinolate, indol‐3‐ylmethylglucosinolate, and 8‐methylsulfinyloctylglucosinolate were also major components of the leaf interior, but the second most abundant glucosinolate on the surface, 4‐methylthiobutylglucosinolate, was only a trace component of the interior. Distribution on the surface was relatively uniform in contrast to the interior, where glucosinolates were distributed more abundantly in the midrib and periphery than the rest of the leaf. These results were confirmed by two other mass spectrometry‐based techniques, laser ablation electrospray ionization and liquid extraction surface analysis. The concentrations of glucosinolates on A. thaliana leaf surfaces were found to be sufficient to attract the specialist feeding lepidopterans Plutella xylostella and Pieris rapae for oviposition. The methods employed here should be easily applied to other plant species and metabolites.  相似文献   

20.
Chytridiomycosis is an amphibian disease of global conservation concern that is caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd). Since the discovery of Bd in 1998, several methods have been used for detection of Bd; among these polymerase chain reaction (PCR) from skin swabs is accepted as the best method due to its noninvasiveness, high sensitivity and ease of use. However, PCR is not without problems – to be successful, this technique is dependent upon the presence of nondegraded DNA template and reaction contents that are free from inhibitors. Here, we report on an investigation of several techniques aimed at improving the reliability of the Bd PCR assay by minimizing the effects of humic acid (HA), a potent PCR inhibitor. We compared the effectiveness of four DNA extraction kits (DNeasy, QIAamp DNA Stool, PowerLyzer Power Soil and PrepMan Ultra) and four PCR methods (Amplitaq Gold, bovine serum albumin, PowerClean DNA Clean‐up and inhibitor resistant Taq Polymerase). The results of this and previous studies indicate that chytridiomycosis studies that use PCR methods for disease detection may be significantly underestimating the occurrence of Bd. Our results suggest that to minimize the inhibitory effects of HA, DNeasy should be used for sample DNA extraction and Amplitaq Gold with bovine serum albumin should be used for the Bd PCR assay. We also outline protocols tested, show the results of our methods comparisons and discuss the pros and cons of each method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号