首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Plant communities are not stable over time and biological novelty is predicted to emerge due to climate change, the introduction of exotic species and land‐use change. However, the rate at which this novelty may arise over longer time periods has so far received little attention. We reconstruct the emergence of novelty in Europe for a set of baseline conditions over the past 15 000 years to assess past rates of emergence and investigate underlying causes. The emergence of novelty is baseline specific and, during the early‐Holocene, was mitigated by the rapid spread of plant taxa. Although novelty generally increases as a function of time, climate and human‐induced landscape changes contributed to a non‐linear post‐glacial trajectory of novelty with jumps corresponding to periods of rapid changes. Emergence of novelty accelerated during the past 1000 years. Historical cultural landscapes experienced a faster novelty development due to the contribution from anthropogenic land‐cover changes.  相似文献   

3.
4.
5.
Large shifts in species ranges have been predicted under future climate scenarios based primarily on niche‐based species distribution models. However, the mechanisms that would cause such shifts are uncertain. Natural and anthropogenic fires have shaped the distributions of many plant species, but their effects have seldom been included in future projections of species ranges. Here, we examine how the combination of climate and fire influence historical and future distributions of the ponderosa pine–prairie ecotone at the edge of the Black Hills in South Dakota, USA, as simulated by MC1, a dynamic global vegetation model that includes the effects of fire, climate, and atmospheric CO2 concentration on vegetation dynamics. For this purpose, we parameterized MC1 for ponderosa pine in the Black Hills, designating the revised model as MC1‐WCNP. Results show that fire frequency, as affected by humidity and temperature, is central to the simulation of historical prairies in the warmer lowlands versus woodlands in the cooler, moister highlands. Based on three downscaled general circulation model climate projections for the 21st century, we simulate greater frequencies of natural fire throughout the area due to substantial warming and, for two of the climate projections, lower relative humidity. However, established ponderosa pine forests are relatively fire resistant, and areas that were initially wooded remained so over the 21st century for most of our future climate x fire management scenarios. This result contrasts with projections for ponderosa pine based on climatic niches, which suggest that its suitable habitat in the Black Hills will be greatly diminished by the middle of the 21st century. We hypothesize that the differences between the future predictions from these two approaches are due in part to the inclusion of fire effects in MC1, and we highlight the importance of accounting for fire as managed by humans in assessing both historical species distributions and future climate change effects.  相似文献   

6.
Question: Is post‐fire, medium‐term vegetation dynamics determined by land‐use or fire history prior to fire? Location: South‐facing slope in the Gallinera valley, Alicante province, eastern Spain. Methods: After mapping the land‐use and fire history of the study site using photo‐interpretation, we sampled vegetation structure on a set of plots representing the most frequent land‐use and fire history combinations on an area burned six years before sampling. We studied the effects of land‐use history, comparing the one‐fire land‐use trajectories. We analysed the effects of fire history; comparing one‐ and two‐fire plots for both previously cropped and uncropped areas. Results: Most variables were not significantly different between the earliest abandoned plots (abandoned at least 38 years before the fire) and the uncropped plots. On the most recently abandoned plots (abandoned between one and four years before the fire), the therophyte richness and the ratio of seeder: resprouter richness were significantly greatest. Different fire recurrences did not determine different post‐fire vegetation on either the uncropped or the early abandoned plots (all dominated by fire‐recruited seeder shrubs). The most recently abandoned plots had a lower resilience to fire. Conclusions: Land‐use history and recent pre‐fire land use, in particular, determined the post‐fire vegetation in the medium term. The vegetation composition converged during secondary succession among land‐use histories. Increasing fire recurrence had a small effect on mature plant communities, due to the combination of life‐history traits determining the response to fire of the dominant species.  相似文献   

7.
We assessed the impacts of co‐occurring invasive plant species on fire regimes and postfire native communities in the Mojave Desert, western USA. We analyzed the distribution and co‐occurrence patterns of three invasive annual grasses (Bromus rubens, Bromus tectorum, and Schismus spp.) known to alter fuel conditions and community structure, and an invasive forb (Erodium cicutarium) which dominates postfire sites. We developed species distribution models (SDMs) for each of the four taxa and analyzed field plot data to assess the relationship between invasives and fire frequency, years postfire, and the impacts on postfire native herbaceous diversity. Most of the Mojave Desert is highly suitable for at least one of the four invasive species, and 76% of the ecoregion is predicted to have high or very high suitability for the joint occurrence of B. rubens and B. tectorum and 42% high or very high suitability for the joint occurrence of the two Bromus species and E. cicutarium. Analysis of cover from plot data indicated two or more of the species occurred in 77% of the plots, with their cover doubling with each additional species. We found invasive cover in burned plots increased for the first 20 years postfire and recorded two to five times more cover in burned than unburned plots. Analysis also indicated that native species diversity and evenness as negatively associated with higher levels of relative cover of the four invasive taxa. Our findings revealed overlapping distributions of the four invasives; a strong relationship between the invasives and fire frequency; and significant negative impacts of invasives on native herbaceous diversity in the Mojave. This suggests predicting the distributions of co‐occurring invasive species, especially transformer species, will provide a better understanding of where native‐dominated communities are most vulnerable to transformations following fire or other disturbances.  相似文献   

8.
9.
The primary goal of restoration is to create self‐sustaining ecological communities that are resilient to periodic disturbance. Currently, little is known about how restored communities respond to disturbance events such as fire and how this response compares to remnant vegetation. Following the 2003 fires in south‐eastern Australia we examined the post‐fire response of revegetation plantings and compared this to remnant vegetation. Ten burnt and 10 unburnt (control) sites were assessed for each of three types of vegetation (direct seeding revegetation, revegetation using nursery seedlings (tubestock) and remnant woodland). Sixty sampling sites were surveyed 6 months after fire to quantify the initial survival of mid‐ and overstorey plant species in each type of vegetation. Three and 5 years after fire all sites were resurveyed to assess vegetation structure, species diversity and vigour, as well as indicators of soil function. Overall, revegetation showed high (>60%) post‐fire survival, but this varied among species depending on regeneration strategy (obligate seeder or resprouter). The native ground cover, mid‐ and overstorey in both types of plantings showed rapid recovery of vegetation structure and cover within 3 years of fire. This recovery was similar to the burnt remnant woodlands. Non‐native (exotic) ground cover initially increased after fire, but was no different in burnt and unburnt sites 5 years after fire. Fire had no effect on species richness, but burnt direct seeding sites had reduced species diversity (Simpson's Diversity Index) while diversity was higher in burnt remnant woodlands. Indices of soil function in all types of vegetation had recovered to levels found in unburnt sites 5 years after fire. These results indicate that even young revegetation (stands <10 years old) showed substantial recovery from disturbance by fire. This suggests that revegetation can provide an important basis for restoring woodland communities in the fire‐prone Australian environment.  相似文献   

10.
11.
How does time‐since‐fire influence the structural recovery of semi‐arid, eucalypt‐dominated Murray‐Mallee shrublands after fire, and is recovery affected by spatial variation in climate? We assessed the structure and dynamics of a hummock grass, Triodia scariosa N.T. Burb, and mallee eucalypts – two key structural components of mallee shrublands – using a >100 year time‐since‐fire chronosequence. The relative influence of climatic variables, both individually and combined with time‐since‐fire, was modelled to account for spatial variation in the recovery of vegetation structural components. Time‐since‐fire was the primary determinant of the structural recovery of T. scariosa and eucalypts. However, climate, notably mean annual rainfall and rainfall variability, also influenced the recovery of the eucalypt overstorey, T. scariosa cover and mean hummock height. We observed that (i) the mean number of live eucalypt stems per individual decreased while mean individual basal area increased, (ii) cover of T. scariosa peaked at ~30 years post‐fire and gradually decreased thereafter, and (iii) the ‘hummock’ form of T. scariosa occurred throughout the chronosequence, whereas the ‘ring’ form tended not to occur until ~30 years post‐fire. Time‐since‐fire was the key determinant of the structural recovery of eucalypt‐dominated mallee shrublands, but there is geographical variation in recovery related to rainfall and its variability. Fire regimes are likely to have different effects across the geographic range of mallee shrublands.  相似文献   

12.
Intense debate surrounds the effects of post‐fire salvage logging (SL) versus nonintervention policies on forest regeneration, but scant support is available from experimental studies. We analyze the effect of three post‐fire management treatments on the recruitment of a serotinous pine (Pinus pinaster) at a Mediterranean mountain. Treatments were applied 7 months after the fire and differ in the degree of intervention, ranging from “no intervention” (NI, all trees left standing) to “partial cut plus lopping” (PCL, felling most of the trees, cutting the main branches, and leaving all the biomass in situ without mastication), and “SL” (felling and piling the logs, and masticating the woody debris). Seedling survival after 3 years was the highest in PCL (47.3% versus 38.7% in SL). This was associated with the amelioration of microclimatic conditions under the scattered branches, which reduced radiation and soil temperature while increasing soil moisture. Seedling density after 2 years was approximately 5.5 times higher in PCL than in SL, as in SL a large fraction of seedlings was lost as a consequence of mechanized mastication. The NI treatment showed the lowest seedling survival (17.3%). Nevertheless, seedling density was similar to SL. Seedling growth scarcely differed among treatments. Our results show that branches left onsite acted as nurse objects that improved key microclimatic conditions for seedling recruitment. This creates a facilitative interaction ideal for seedling establishment in moisture‐deficient ecosystems, as it provides the benefit of a shading overstory but without underground competition.  相似文献   

13.
In ecosystems subject to regular canopy fires, woody species have evolved two general strategies of post‐fire regeneration. Seeder species are killed by fire and populations regenerate solely by post‐fire recruitment from a seed bank. Resprouter species survive fire and regenerate by vegetative regrowth from protected organs. Interestingly, the abundance of these strategies varies along environmental gradients and across regions. Two main hypotheses have been proposed to explain this spatial variation: the gap dependence and the environmental‐variability hypotheses. The gap‐dependence model predicts that seeders are favoured in sparse vegetation (vegetation gaps allowing effective post‐fire recruitment of seedlings), while resprouters are favoured in densely vegetated sites (seedlings being outcompeted by the rapid crown regrowth of resprouters). The environmental‐variability model predicts that seeders would prevail in reliable rainfall areas, whereas resprouters would be favoured in areas under highly variable rainfall that are prone to severe dry events (leading to high post‐fire seedling mortality). We tested these two models using distribution data, captured at the scale of quarter‐degree cells, for seeder and resprouter species of two speciose shrub genera (Aspalathus and Erica) common in fire‐prone fynbos ecosystems of the mediterranean‐climate part of the Cape Floristic Region. Contrary to the predictions of the gap‐dependence model, species number of both resprouters and seeders increased with values of the Normalized Difference Vegetation Index (a widely used surrogate for vegetation density), with a more marked increase for seeders. The predictions of the environmental‐variability hypothesis, by contrast, were not refuted by this study. Seeder and resprouter species of both genera showed highest richness in environments with high rainfall reliability. However, with decreasing reliability, seeder numbers dropped more quickly than those of resprouters. We conclude that the environmental‐variability model is better able to explain the abundance of woody seeder and resprouter species in Southern Hemisphere fire‐prone shrublands (fynbos and kwongan) than the gap‐dependence model.  相似文献   

14.
Models of vegetation dynamics framed as testable hypotheses provide powerful tools for predicting vegetation change in response to contemporary disturbances or climate change. Synthesizing existing information and applying new data, we develop a conceptual model of vegetation states and transitions for the previously overlooked woodlands dominated by obligate‐seeder eucalypts of dry to semi‐arid south‐western Australia. These comprise the largest extant temperate woodland globally, are uniquely dominated by a high diversity of obligate‐seeder eucalypts (55 taxa), but are under threat from wildfire. Our conceptual model incorporates four critical ecological processes that also distinguish obligate‐seeder woodlands from temperate woodlands dominated by resprouting eucalypts: (i) a lack of well‐protected epicormic buds results in major disturbances (prominently fire) being stand‐replacing. The pre‐disturbance tree cohort is killed, followed by dense post‐disturbance recruitment from seed shed from a serotinous seed bank; (ii) competition between saplings leads to self‐thinning over a multi‐century timeframe, with surviving individuals having great longevity (regularly >400 years); (iii) multiple processes limit recruitment in the absence of stand‐replacement disturbances, leading to frequent single‐cohort stands. However, unlike the few other obligate‐seeder eucalypt communities, trickle recruitment in very long‐unburnt stands can facilitate indefinite community persistence in the absence of stand‐replacement disturbances; and (iv) discontinuous fuels, relatively low understorey flammability (low grass and often high chenopod cover) and topographic barriers to fire (salt lakes) allow mature woodlands to persist for centuries without burning. Notably though, evidence suggests that flammability peaks at intermediate times since fire, establishing a ‘flammability bottleneck’ (or landscape fire trap) through which regenerating woodlands must pass. Our model provides a framework to support management to conserve obligate‐seeder eucalypt woodlands. Research into reasons for exceptional tree heights relative to ecosystem productivity, the evolution of diverse and dominant obligate‐seeder eucalypts, the paucity of grass, and the recent spatial distribution of fires, will further inform conservation management.  相似文献   

15.
Signalling behaviour is integral to animal contests. However, post‐contest signals, such as victory displays, have received relatively little attention. One hypothesised function of victory displays is to ensure a more lasting dominance by reducing the risk of losers re‐initiating a new contest with winners. Despite several theoretical studies using game theory that support this hypothesis, empirical support for the understanding of when and why victory displays are used with respect to browbeating is lacking. We use a common South‐East Asian mangrove crab, Perisesarma eumolpe, to examine whether the performance of victory displays by winners, among other factors, affects the time of fight re‐initiation by losers, if at all re‐initiated. Using mixed‐effects survival analysis models, we analysed 77 fights from 27 staged contest trials between randomly paired males. We found losers that experienced victory display performed by winners, presented a decreased instantaneous hazard rate of re‐initiating a new fight than losers that did not. These results corroborate previous game theoretical models indicating that victory displays may function to reduce the chances of losers re‐initiating another fight. In discouraging losers from restarting a fight, winners reduce the potential costs of a future contest.  相似文献   

16.
Arid shrublands in the Karoo (South Africa) seldom accumulate sufficient combustible fuel to support fire. However, as a result of invasion by an alien perennial grass (Pennisetum setaceum), they could become flammable. This paper reports on an experiment to assess the effects of fire following invasion by P. setaceum. We established 10 plots (5 × 10 m) separated by 2.5 m, and added grass fuel to five plots (5 and 10 tons ha?1 to alternate halves of the plot) leaving the remaining five plots as interspersed controls. Plots with fuel added were burnt, and fire behaviour was measured during the burns. Rates of fire spread were generally low (0.01–0.07 m s?1) and did not differ significantly between burn treatments. Mean fireline intensities were higher in the high compared with the low fuel treatments (894 and 427 kW m?1, respectively). We recorded plant species and their cover before and after burning on each of the plots. After 15 months of follow‐up monitoring in the burn plots, only two species, the dwarf shrub (Tripteris sinuata) and the perennial herb (Gazania krebsiana) resprouted. Most individuals of other species were killed and did not reseed during the 15‐month study. The mass of added fuel load (high or low) did not influence vegetation recovery rates after fire. Should future invasions by P. setaceum lead to similar fuel loads in these shrublands, inevitable fires could change the vegetation and may favour spread of the flammable grass. Our results have important implications for predicting the effects of invasive alien plants (especially grasses) on fire‐free ecosystems elsewhere. The predicted impacts of fire may alter species composition, ultimately affecting core natural resources that support the Karoo economy.  相似文献   

17.
18.
Photosynthesis simulations by terrestrial biosphere models are usually based on the Farquhar's model, in which the maximum rate of carboxylation (Vcmax) is a key control parameter of photosynthetic capacity. Even though Vcmax is known to vary substantially in space and time in response to environmental controls, it is typically parameterized in models with tabulated values associated to plant functional types. Remote sensing can be used to produce a spatially continuous and temporally resolved view on photosynthetic efficiency, but traditional vegetation observations based on spectral reflectance lack a direct link to plant photochemical processes. Alternatively, recent space‐borne measurements of sun‐induced chlorophyll fluorescence (SIF) can offer an observational constraint on photosynthesis simulations. Here, we show that top‐of‐canopy SIF measurements from space are sensitive to Vcmax at the ecosystem level, and present an approach to invert Vcmax from SIF data. We use the Soil‐Canopy Observation of Photosynthesis and Energy (SCOPE) balance model to derive empirical relationships between seasonal Vcmax and SIF which are used to solve the inverse problem. We evaluate our Vcmax estimation method at six agricultural flux tower sites in the midwestern US using spaced‐based SIF retrievals. Our Vcmax estimates agree well with literature values for corn and soybean plants (average values of 37 and 101 μmol m?2 s?1, respectively) and show plausible seasonal patterns. The effect of the updated seasonally varying Vcmax parameterization on simulated gross primary productivity (GPP) is tested by comparing to simulations with fixed Vcmax values. Validation against flux tower observations demonstrate that simulations of GPP and light use efficiency improve significantly when our time‐resolved Vcmax estimates from SIF are used, with R2 for GPP comparisons increasing from 0.85 to 0.93, and for light use efficiency from 0.44 to 0.83. Our results support the use of space‐based SIF data as a proxy for photosynthetic capacity and suggest the potential for global, time‐resolved estimates of Vcmax.  相似文献   

19.
Understanding mechanisms underlying fire regime effects on savanna fauna is difficult because of a wide range of possible trophic interactions and feedbacks. Yet, understanding mechanisms underlying fauna dynamics is crucial for conservation management of threatened species. Small savanna mammals in northern Australia are currently undergoing widespread declines and regional extinctions partly attributable to fire regimes. This study investigates mammal trophic and ecosystem responses to fire in order to identify possible mechanisms underlying these declines. Mammal trophic responses to fire were investigated by surveying mammal abundance, mammal diet, vegetation structure and non‐mammal fauna dynamics in savannas six times at eight sites over a period of 3 years. Known site‐specific fire history was used to test for trophic responses to post‐fire interval and fire frequency. Mammal and non‐mammal fauna showed only minor responses of post‐fire interval and no effect of fire frequency. Lack of fauna responses differed from large post‐fire vegetation responses. Dietary analysis showed that two mammal species, Dasyurus hallucatus and Isoodon auratus, increased their intake of large prey groups in recently burnt, compared to longer unburnt vegetation. This suggests a fire‐related change in trophic interactions among predators and their prey, after removal of ground‐layer vegetation. No evidence was found for other changes in food resource uptake by mammals after fire. These data provide support for a fire‐related top‐down ecosystem response among savanna mammals, rather than a bottom‐up resource limitation response. Future studies need to investigate fire responses among other predators, including introduced cats and dingoes, to determine their roles in fire‐related mammal declines in savannas of northern Australia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号