首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Copper chaperones are necessary for intracellular trafficking of copper to target proteins. This is probably because the milieu inside the cell has a large capacity for sequestering this metal. By fluorometry using a fluorescent Cu(II) chelator and by centrifugal ultrafiltration, we have studied copper binding of the whole cytosolic proteins from mouse brain and liver, and found that their binding capacity and affinity for copper were markedly increased by ascorbate. Brain cytosolic protein bound, with high affinity, 63 nmol of copper/mg, more than half of which was redox-inactive, as indicated by its inability to catalyze oxidation of ascorbate. Most of the bound copper was in the Cu(I) state, coordinating to thiol groups of protein. Cytosolic protein competed for copper more strongly than GSH when compared at their relative concentrations in tissues. The results taken together suggest that protein thiols of cytosol can strongly sequester copper.  相似文献   

2.
Copper is critically important for cellular metabolism. It plays essential roles in developmental processes, including angiogenesis. The liver is central to mammalian copper homeostasis: biliary excretion is the major route of excretion for ingested copper and serves to regulate the total amount of copper in the organism. An extensive network of proteins manipulates copper disposition in hepatocytes, but comparatively little is known about this protein system. Copper exists in two oxidation states: most extracellular copper is Cu(II) and most, if not all, intracellular copper is Cu(I). Typical intracellular copper-binding proteins, such as the Cu-transporting P-type ATPases ATP7B (Wilson ATPase) and ATP7A (Menkes ATPase), bind copper as Cu(I). Accordingly, the recent discovery that the ubiquitous protein COMMD1 binds Cu(II) exclusively raises the question as to what role Cu(II) may play in intracellular processes. This issue is particularly important in the liver and brain. In humans, Wilson’s disease, due to mutations in ATP7B, exhibits progressive liver damage from copper accumulation; in some Bedlington terriers, mutations in COMMD1 are associated with chronic copper-overloaded liver disease, clinically distinct from Wilson’s disease. It seems unlikely that Cu(II), which generates reactive oxygen species through the Fenton reaction, has a physiological role intracellularly; however, Cu(II) might be the preferred state of copper for elimination from the cell, such as by biliary excretion. We argue that COMMD1 participates in the normal disposition of copper within the hepatocyte and we speculate about that role. COMMD1 may contribute to the mechanism of biliary excretion of copper by virtue of binding Cu(II). Additionally, or alternatively, COMMD1 may be an important component of an intracellular system for utilizing Cu(II), or for detecting and detoxifying it.  相似文献   

3.
The ability of several metals to inhibit dopamine beta-monooxygenase was measured and compared with their ability to compete with the binding of 64Cu to the water-soluble form of the bovine adrenal enzyme at pH 6.0. In the presence of an optimal concentration of copper (0.5 microM in the present assay system), an inhibition was observed upon addition of Hg(II), Zn(II), or Ni(II). Only a small fraction of the inhibition with these metals may be due to uncoupling of electron transport from hydroxylation. Preincubation of these metals with the Cu-depleted apoenzyme before addition of copper, revealed a stronger inhibition than if copper was added before the other metals. Hg(II), Zn(II), and Ni(II) also compete with the binding of 64Cu(II) to the protein. Hg(II) was the most effective and Ni(II) the least effective of these metals, both with respect to inhibition of the enzyme activity and to prevent the binding of 64Cu(II). Competition experiments on the binding of Zn(II) and 64Cu in the presence and absence of ascorbate, indicated i) a similar affinity of Cu(I) and Cu(II) to the native enzyme, and ii) a more rapid binding of Cu(I) than Cu(II) to the Cu-depleted and Zn-containing enzyme. Al(III), Fe(II), Mg(II), Mn(II), Co(II), Cd(II), and Pb(II) neither inhibited the enzyme activity nor competed with the binding of 64Cu(II) to the protein (Fe(II) was not tested for binding). Of those metals cited above only Cu(II)/Cu(I) was able to reactivate the apoenzyme.  相似文献   

4.
Little is known about copper metabolism at the cellular level. The brindled mouse is an animal model of Menkes disease which is an inborn error of copper metabolism. Control and brindled mice were used to identify copper-binding proteins with possible roles in normal copper metabolism that are affected by the defect in the brindled mice. When 64Cu-labeled hepatic or renal cytosols from control mice were applied to Mono Q or Superose columns, a approximately 48-kDa protein coeluted with the protein fractions which contained the radiolabeled copper. Large decreases in copper binding were detected in these fractions from the brindled mice. The same column fractions which showed decreased copper binding showed large decreases in the levels of the approximately 48-kDa protein. Decreased copper binding and approximately 48-kDa protein were not simply secondary to the abnormal hepatic and renal copper levels that are found in the brindled mice since although their liver copper levels are low, their kidney copper levels are high. Elevated levels of an approximately 80-kDa heat shock protein were also detected in the hepatic and renal cytosols from the brindled mice. Consistent with expression of the primary defect in both the liver and kidney, the levels of the approximately 48- and approximately 80-kDa proteins were affected similarly in both organs. Irrespective of how the low levels of the approximately 48-kDa protein may be related to the basic defect in the brindled mice, the data are consistent with an important role for the approximately 48-kDa protein in intracellular copper metabolism.  相似文献   

5.
The subcellular distribution of radiocopper in the brain and liver of rats has been determined following i.v. administration of Cu-PTSM, pyruvaldehyde bis(N4-methylthiosemicarbazonato)copper(II), labeled with copper-67. Homogenized tissue samples were separated by differential centrifugation into four subcellular fractions: (I) cell membrane + nuclei; (II) mitochondria; (III) microsomes; and (IV) cell cytosol. Upon sacrifice at 10 min post-Cu-PTSM injection, brain fractions, I, II, III and IV contain 35 ± 12, 11 ± 3, 2.8 ± 1.3 and 51 ± 7% of brain activity, respectively (n = 4). In animals sacrificed 24 h post-injection the subcellular fractions of brain tissue show little change from the radiocopper distribution seen at 10 min post-injection, although the mitochondrial fraction may contain slightly more tracer and the cytosolic fraction slightly less (I, 40 ± 10%; II, 18 ± 5%; III, 3.4 ± 1.5%; and IV, 38 ± 5%; n = 5). Subcellular fractions I, II, III and IV of liver contain 25 ± 5, 12 ± 3, 17 ± 4 and 46 ± 6% of 67Cu tracer in animals sacrificed 10 min post-Cu-PTSM injection. An identical subcellular distribution of 67Cu, was found in the liver following i.v. administration of ionic radiocopper (as Cu-citrate). The liver and brain cytosolic fractions at 10 min post-injection were further separated by Sephadex column chromatography. In liver cytosol, three different radiocopper components with molecular weights of about 140,000, 41,000–46,000 and 10,000–16,000 Da were found. In the brain supernatant fraction, most of the radiocopper was bound to a single low molecular weight cytosolic component (14,000–16,000 Da). These results suggest that the intracellular decomposition of tracer Cu-PTSM may result in the radiocopper entering the normal cellular pools for copper ions.  相似文献   

6.
Cytosolic proteins may play an important role in the intracellular transport of bile acids in enterocytes. The lithocholate binding properties of cytosolic protein from bovine small intestine were studied. Lithocholate binding was observed in the Y (45-50 kDa), Y' (30-35 kDa), and Z fractions (10-15 kDa) following gel filtration of cytosol. A Y protein with glutathione S-transferase activity (46 kDa) was purified by S-octyl-glutathione affinity chromatography and chromatofocusing (eluted at pH 7.5) of the Y fraction. Two Y' bile acid binding proteins with dihydrodiol dehydrogenase activity were partially purified from the Y' fraction by chromatofocusing and hydroxyapatite-HPLC. The lithocholate binding affinity of Y' protein (Kd < 0.35 microM) was higher than that of Y protein (Kd = 2 microM) and was comparable to that of Z protein (Kd = 0.2 microM). The binding affinity of Y protein was higher for bilirubin (Kd = 2.5 microM) than that for BSP (Kd = 200 microM). This was comparable to the binding affinity of bovine hepatic Y protein. These data indicate that Y' and Z proteins participate in the intracellular transport of bile acids from the brush border to the basolateral pole in enterocytes.  相似文献   

7.
Both cytosolic and high salt nuclear extracts were isolated from Hepa 1c1c7 cells incubated with 2-azido-3[125I]iodo-7,8-dibromo-dibenzo-p-dioxin ([125I]N3Br2DpD). The [125I]N3Br2DpD-labeled cytosolic fraction was subjected to chemical cross-linking with dimethyl pimelimidate and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Chemical cross-linking of the cytosolic form of the AhR revealed monomeric (97 kDa), dimeric (185 kDa), trimeric (281 kDa), and tetrameric (327 kDa) complexes. In a time course of exposure to the cross-linking reagent, the largest form given above became the predominant AhR form observed in the cytosolic extracts. The 327 kDa cytosolic species apparently consists of a 97 kDa AhR, an approximately 88 kDa protein, an approximately 96 kDa protein, and an approximately 46 kDa protein. Nuclear extracts from [125I]N3Br2DpD-labeled Hepa 1c1c7 cells were applied to sucrose density gradients. The 6 S nuclear receptor peak fractions were pooled and subjected to chemical cross-linking. Analysis by SDS-PAGE revealed a monomeric (97 kDa) ligand binding protein and a dimeric (182 kDa) complex. This would suggest that the nuclear 6 S AhR consists of a 97 kDa AhR and an approximately 85 kDa protein. These findings would indicate that the AhR exists in cytosol as a tetrameric species, while in the nucleus the AhR exists as a heterodimer.  相似文献   

8.
Protein disulfide isomerase (PDI) is a 55 kDa multifunctional protein of the endoplasmic reticulum (ER) involved in protein folding and isomerization. In addition to the chaperone and catalytic functions, PDI is a major calcium-binding protein of the ER. Although the active site of PDI has a similar motif CXXC to the Cu-binding motif in Wilson and Menkes proteins and in other copper chaperones, there has been no report on any metal-binding capability of PDI other than calcium binding. We present evidence that PDI is a copper-binding protein. In the absence of reducing agent freshly reduced PDI can bind a maximum of 4 mol of Cu(II) and convert to Cu(I). These bound Cu(I) are surface exposed as they can be competed readily by BCS reagent, a Cu(I) specific chelator. However, when the binding is performed using the mixture of Cu(II) and 1mM DTT, the total number of Cu(I) bound increases to 10 mol/mol, and it is slower to react with BCS, indicating a more protected environment. In both cases, the copper-bound forms of PDI exist as tetramers while apo-protein is a monomer. These findings suggest that PDI plays a role in intracellular copper disposition.  相似文献   

9.
The subcellular distribution, kinetic properties, and endogenous substrates of calcium-activated, phospholipid-dependent protein kinase (protein kinase C) were examined in mouse kidney cortex. Protein kinase C associated with the particulate, mitochondrial, and brush border membrane fractions was assayed after solubilization in 0.2% Triton X-100 under conditions shown to be noninhibitory to catalytic activity. Of recovered activity, 52% was associated with the cytosolic fraction; mitochondrial and brush border membrane associated protein kinase C constituted 12 and 3%, respectively, of the activity recovered in the particulate fraction. Protein kinase C associated with brush border membranes exhibited a high affinity for ATP (apparent Km = 62 +/- 10 microM) and the highest apparent maximal velocity (1146 +/- 116 pmol P/(mg protein.min] of the renal fractions examined. Maximal stimulation of protein kinase C by diacylglycerol (in the presence of phosphatidylserine) was achieved at both 25 and 300 microM calcium in all renal fractions. These results are consistent with previous reports demonstrating that diacylglycerol increases the apparent affinity of protein kinase C for calcium. Phorbol 12-myristate 13-acetate, but not 4 alpha-phorbol, was able to substitute for diacylglycerol and stimulate cytosolic and particulate renal protein kinase C. 1-(5-Isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride, a specific inhibitor of protein kinase C, led to significant inhibition of catalytic activity in all renal subcellular fractions. Endogenous substrates for protein kinase C were demonstrated in renal cytosolic (26, 45, 63, and 105 kilodaltons (kDa], particulate (26, 33, 68, and 105 kDa), mitochondrial (43 kDa), and brush border membrane (26, 41, 52, 88, and 105 kDa) fractions. The possible physiological significance of protein kinase C in mammalian kidney is discussed.  相似文献   

10.
Neutrophil guanine nucleotide-binding proteins are important components of receptor-mediated cellular responses such as degranulation, chemotaxis, and superoxide production. Because the cytoplasmic granules of neutrophils serve as an intracellular store of receptors and NADPH oxidase components, we investigated the subcellular distribution of substrates for ADP-ribosylation by both pertussis and cholera toxins. Cholera toxin substrates of Mr 43 and 52 kDa were present only in the plasma membrane fraction. A 39-kDa pertussis toxin substrate was present in the plasma membrane, cytosol, and a specific granule-enriched fraction. There were no substrates for either toxin in the primary granules. Quantitative GTP-gamma-5 binding was localized predominantly to the plasma membrane fraction (47%), but significant portions were found in the specific granule-enriched fractions (13%) and cytosol (34%) as well. Two-dimensional gel electrophoresis and chymotryptic digests of the pertussis toxin substrate from these three subcellular fractions suggested that they are highly homologous. Triton X-114 phase partitioning was used to investigate the hydrophobicity of the toxin substrates. The pertussis toxin substrates in the plasma membrane and granule fractions behaved like integral membrane proteins, whereas the cytosolic substrate partitioned into both lipophilic and aqueous fractions. ADP-ribosylation converted the substrates to a somewhat less lipophilic form. These data suggest that the specific granules or an organelle of similar density serve as an intracellular store of a G protein with a 39-kDa alpha-subunit and that the cytosolic fraction of neutrophils contains free alpha-subunits of the same size.  相似文献   

11.
High-density lipoprotein (HDL) binding protein (HBP) was isolated from the microsomal fraction of eel liver homogenate by affinity chromatography with a HDL-column. After SDS-PAGE and blotting, HBP on the PVDF membrane was detected by FITC-labeled HDL and apolipoprotein AI (apoAI) as a ligand. HBP in the microsomal fraction was most abundant among microsomal, mitochondrial and cytosolic fractions. The HBP isolated by a HDL-column consisted of at least three proteins with low molecular weights of 18.5, 14.5 and 13.5 kDa; the main component was 14.5 kDa. These proteins are not products of protease digestion, as the procedure was carried out in the presence of protease inhibitors including (p-aminophenyl) methansulfonyl fluoride, 4-(2-aminoethyl)-benzenesulfonyl fluoride, pepstatin A, E-64, bestatin, leupeptin, aprotinin and EDTA. The HBP specifically bound to FITC-apoAI and faintly bound or did not bind to FITC-apoAII. Furthermore, binding of HDL labeled with lipophilic fluorescence to isolated eel hepatocytes was inhibited by the antibody to apoAI, but not inhibited by the antibody to apolipoprotein AII (apoAII). These results strongly suggest that the HBP isolated from the microsomal fraction is present on the plasma membrane of eel liver and plays important roles for the lipid transport through the interaction with HDL.  相似文献   

12.
The binding of 64Cu to the water-soluble form of dopamine beta-monooxygenase from bovine adrenal medulla was studied in reconstitution and exchange experiments using high-performance size-exclusion gel chromatography. The reconstitution experiments provide evidence for a specific binding of four copper atoms/enzyme tetramer using either Cu(I) or Cu(II), but some weaker copper-binding sites were observed in the presence of a large excess of copper. The exchanges of both Cu(I) and Cu(II) in this protein are so rapid that exact half-lives for the exchange reactions can not be obtained by the present method. The results indicate, however, that the half-life for the exchange of the enzyme-bound copper in the holoenzyme with a twofold excess of 64Cu(II) at pH 6.1 was about 1 min, whereas the exchange of Cu(I) measured at similar conditions with ascorbate present, was complete in 1 min. This is by far the most rapid exchange reported for any copper-protein, and the results points to a unique copper-binding site in this enzyme.  相似文献   

13.
The thermodynamics of Cu(II) and Ni(II) binding to bovine serum albumin (BSA) have been studied by isothermal titration calorimetry (ITC). The Cu(II) binding affinity of the N-terminal protein site is quantitatively higher when the single free thiol, Cys-34, is reduced (mercaptalbumin), compared to when it is oxidized or derivatized with N-ethylmaleimide. This increased affinity is due predominantly to entropic factors. At higher pH (approximately 9), when the protein is in the basic (B) form, a second Cu(II) binds with high affinity to albumin with reduced Cys-34. The Cu(II) coordination has been characterized by UV-vis absorption, CD, and EPR spectroscopy, and the spectral data are consistent with thiolate coordination to a tetragonal Cu(II), indicating this is a type 2 copper site with thiolate ligation. Nickel(II) binding to the N-terminal site of BSA is also modulated by the redox/ligation state of Cys-34, with higher Ni(II) affinity for mercaptalbumin, the predominant circulating form of the protein.  相似文献   

14.
Nerve Growth Factor Receptors in Human Neuroblastoma Cells   总被引:4,自引:2,他引:2  
Receptors for the nerve growth factor protein (NGFR) present in the human neuroblastoma cell line LAN-1 were characterized. LAN-1 cells display high-affinity (type I, with KD value of 5.9 X 10(-11) M) and low-affinity (type II, with KD value of 9.2 X 10(-9) M) binding to NGF. NGFR were fractionated by preparative isoelectric focusing in a granulated gel (PEGG). High-affinity binding was found in the 5.9-6.2 pH region of the PEGG, and low-affinity binding in the 4.6-4.8 and 8.8-9.3 pH ranges. After further analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) we observed both 92.5- and 200-kDa molecular species associated with NGF binding activity. The 200-kDa protein was found in fractions displaying high-affinity NGF binding and the 92.5-kDa protein in fractions displaying low-affinity NGF binding. Equilibrium binding analysis of NGF in PEGG fractions confirmed the presence of two specific saturable binding sites with KD values similar to those observed for whole dissociated cells. When NGFR II activity from the acidic region of the PEGG chromatogram was incubated with NGFR II from the basic region of the PEGG chromatogram, there was no change in NGF binding or in the number of apparent NGF receptors. However, incubation of these same fractions with a fraction having only NGFR I showed an apparent increase in high-affinity NGF binding and a decrease in low-affinity NGF binding. Immunoprecipitation of this "mixed" fraction and analysis on SDS-PAGE under reduced and nonreduced conditions showed 200-kDa and 92.5-kDa proteins under nonreduced conditions and a 92.5-kDa protein under reduced conditions. Our findings are consistent with the hypothesis that there are two distinct NGF receptors in NGF-responsive cells. The interconvertibility of low- and high-affinity receptors and the possible existence of a modulator type protein or of "silent" type receptors are also in agreement with our findings.  相似文献   

15.
Three phospholipid transfer proteins, namely proteins I, II and III, were purified from the rabbit lung cytosolic fraction. The molecular masses of phospholipid transfer proteins I, II and III are 32 kilodaltons (kDa), 22 kDa and 32 kDa, respectively; their isoelectric point values are 6.5, 7.0 and 6.8, respectively. Phospholipid transfer proteins I and III transferred phosphatidylcholine (PC) and phosphatidylinositol (PI) from donor unilamellar liposomes to acceptor multilamellar liposomes; protein II transferred PC but not PI. All the three phospholipid transfer proteins transferred phosphatidylethanolamine poorly and showed no tendency to transfer triolein. The transfer of [14C]PC from unilamellar liposomes to multilamellar liposomes facilitated by each protein was affected differently by the presence of acidic phospholipids in the PC unilamellar liposomes. In an equal molar ratio of acidic phospholipid and PC, phosphatidylglycerol (PG) reduced the activities of proteins I and III by 70% (P = 0.0004 and 0.0032, respectively) whereas PI and phosphatidylserine (PS) had an insignificant effect. In contrast, the protein II activity was stimulated 2-3-times more by either PG (P = 0.0024), PI (P = 0.0006) or PS (P = 0.0038). In addition, protein II transferred dioleoylPC (DOPC) about 2-times more effectively than dipalmitoylPC (DPPC) (P = 0.0002), whereas proteins I and III transferred DPPC 20-40% more effectively than DOPC but this was statistically insignificant. The markedly different substrate specificities of the three lung phospholipid transfer proteins suggest that these proteins may play an important role in sorting intracellular membrane phospholipids, possibly including lung surfactant phospholipids.  相似文献   

16.
Calcium is necessary for secretion of pituitary hormones. Many of the biological effects of Ca2+ are mediated by the Ca2+-binding protein calmodulin (CaM), which interacts specifically with proteins regulated by the Ca2+-CaM complex. One of these proteins is myosin light chain kinase (MLCK), a Ca2+-calmodulin dependent enzyme that phosphorylates the regulatory light chains of myosin, and has been implicated in motile processes in both muscle and non-muscle tissues. We determined the content and distribution of CaM and CaM-binding proteins in bovine pituitary homogenates, and subcellular fractions including secretory granules and secretory granule membranes. CaM measured by radioimmunoassay was found in each fraction; although approximately one-half was in the cytosolic fraction, CaM was also associated with the plasma membrane and secretory granule fractions. CaM-binding proteins were identified by an 251-CaM gel overlay technique and quantitated by densitometric analysis of the autoradiograms. Pituitary homogenates contained nine major CaM-binding proteins of 146, 131, 90, 64, 58, 56, 52, 31 and 22 kilodaltons (kDa). Binding to all the bands was specific, Cat+-sensitive, and displaceable with excess unlabeled CaM. Severe heat treatment (100°C, 15 min), which results in a 75% reduction in phosphodiesterase activation by CaM, markedly decreased 251I-CaM binding to all protein bands. Secretory granule membranes showed enhancement for CaM-binding proteins with molecular weights of 184, 146, 131, 90, and 52000. A specific, affinity purified antibody to chicken gizzard MLCK bound to the 146 kDa band in homogenates, centrifugal subcellular fractions, and secretory granule membranes. No such binding was associated with the granule contents. The enrichment of MLCK and other CaM-binding proteins in pituitary secretory granule membranes suggests a possible role for CaM and/or CaM-binding proteins in granule membrane function and possibly exocytosis.  相似文献   

17.
Becker TW  Carrayol E  Hirel B 《Planta》2000,211(6):800-806
 Mesophyll cells (MCs) and bundle-sheath cells (BSCs) of leaves of the C4 plant maize (Zea mays L.) were separated by cellulase digestion to determine the relative proportion of the glutamine synthetase (GS; EC 6.3.1.2) or the NADH-glutamate dehydrogenase (GDH; EC 1.4.1.2) isoforms in each cell type. The degree of cross-contamination between our MC and BSC preparations was checked by the analysis of marker proteins in each fraction. Nitrate reductase (EC 1.6.6.1) proteins (110 kDa) were found only in the MC fraction. In contrast, ferredoxin-dependent glutamate synthase (Fd-GOGAT; EC 1.4.7.1) proteins (160 kDa) were almost exclusively present in the BSC fraction. These results are consistent with the known intercellular distribution of nitrate reductase and Fd-GOGAT proteins in maize leaves and show that the cross-contamination between our MC and BSC fractions was very low. Proteins corresponding to cytosolic GS (GS-1) or plastidic GS (GS-2) were found in both the MC and BSC fractions. While equal levels of GS-1 (40 kDa) and GS-2 (44 kDa) polypeptides were present in the BSC fraction, the GS-1 protein level in the MC fraction was 1.8-fold higher than the GS-2 protein pool. Following separation of the GS isoforms by anion-exchange chromatography of MC or BSC soluble protein extracts, the relative GS-1 activity in the MC fraction was found to be higher than the relative GS-2 activity. In the BSC fraction, the relative GS-1 activity was very similar to the relative GS-2 activity. Two isoforms of GDH with apparent molecular weights of 41 kDa and 42 kDa, respectively, were detected in the BSC fraction of maize leaves. Both GDH isoenzymes appear to be absent from the MC fraction. In the BSCs, the level of the 42-kDa GDH isoform was 1.7-fold higher than the level of the 41-kDa GDH isoform. A possible role for GS-1 and GDH co-acting in the synthesis of glutamine for the transport of nitrogen is discussed. Received: 25 January 2000 / Accepted: 30 March 2000  相似文献   

18.
Interleukin-1 (IL-1) is synthesized as a 31 kDa precursor protein, whose multiple extracellular activities are attributed to receptor binding of a processed, carboxy-terminal 17 kDa peptide. Unlike other secreted proteins, the IL-1 precursor lacks a hydrophobic leader sequence and is not found in organelles composing the classical secretory pathway. In order to further clarify the intracellular processing of IL-1, we studied its site of synthesis in human monocytes. Secreted and integral membrane proteins are translated on membrane-bound polyribosomes, while intracellular proteins are translated on free polyribosomes. Free and membrane-bound polysomes were isolated from Lipid A-stimulated monocyte lysates and immunoblotted using antibodies specific to the N-terminal regions of the IL-1 alpha and beta precursors. Free polysome fractions showed multiple small bands consistent with nascent peptide chains; membrane-bound polysomes yielded no detectable IL-1. Polysome fractions were then analyzed by immunoelectron microscopy; nascent IL-1 alpha and beta peptide chains were readily seen emerging from cytoskeletal-associated free polyribosomes, but not membrane-bound polyribosomes. Electron microscopic in situ hybridization revealed IL-1 mRNA chains attached to cytoskeletal-associated free, but not membrane-bound polyribosomes. The intracellular distribution of the fully synthesized IL-1 beta precursor was studied in human mesangial cells (HMC), whose cytoskeletal organization is more readily evaluated than that of monocytes. Dual immunofluorescence microscopy of these cells revealed a complex intracellular distribution of the fully synthesized 31 kDa IL-1 precursors. IL-1 was asymmetrically distributed between cytosolic, microtubule, and nuclear compartments, without association with actin or intermediate filaments. This demonstration of the sites of IL-1 synthesis and patterns of intracellular distribution provide further evidence for an extracellular release mechanism which is clearly distinct from the classical secretory pathway.  相似文献   

19.
The copper-transporting ATPases are 165-175 kDa membrane proteins, composed of 8 transmembrane segments and two large cytosolic domains, the N-terminal copper-binding domain and the catalytic ATP-hydrolyzing domain. In ATP7B, the Wilson disease protein, the N-terminal domain is made up of six metal-binding sub-domains containing the MXCXXC motif which is known to coordinate copper via the two cysteine residues. We have expressed the N-terminal domain of ATP7B as a soluble C-terminal fusion with the maltose binding protein. This expression system produces a protein which can be reconstituted with copper without recourse to the harsh denaturing conditions or low pH reported by other laboratories. Here we describe the reconstitution of the metal binding domains (MBD) with Cu(I) using a number of different protocols, including copper loading via the chaperone, Atox1. X-ray absorption spectra have been obtained on all these derivatives, and their ability to bind exogenous ligands has been assessed. The results establish that the metal-binding domains bind Cu(I) predominantly in a bis cysteinate environment, and are able to bind exogenous ligands such as DTT in a similar fashion to Atox1. We have further observed that exogenous ligand binding induces the formation of a Cu-Cu interaction which may signal a conformational change of the N-terminal domain.  相似文献   

20.
Ash MR  Chong LX  Maher MJ  Hinds MG  Xiao Z  Wedd AG 《Biochemistry》2011,50(43):9237-9247
The bacterium Cupriavidus metallidurans CH34 is resistant to high environmental concentrations of many metal ions. Upon copper challenge, it upregulates the periplasmic protein CopK (8.3 kDa). The function of CopK in the copper resistance response is ill-defined, but CopK demonstrates an intriguing cooperativity: occupation of a high-affinity Cu(I) binding site generates a high-affinity Cu(II) binding site, and the high-affinity Cu(II) binding enhances Cu(I) binding. Native CopK and targeted variants were examined by chromatographic, spectroscopic, and X-ray crystallographic probes. Structures of two distinct forms of Cu(I)Cu(II)-CopK were defined, and structural changes associated with occupation of the Cu(II) site were demonstrated. In solution, monomeric Cu(I)Cu(II)-CopK features the previously elucidated Cu(I) site in Cu(I)-CopK, formed from four S(δ) atoms of Met28, -38, -44, and -54 (site 4S). Binding of Cu(I) to apo-CopK induces a conformational change that releases the C-terminal β-strand from the β-sandwich structure. In turn, this allows His70 and N-terminal residues to form a large loop that includes the Cu(II) binding site. In crystals, a polymeric form of Cu(I)Cu(II)-CopK displays a Cu(I) site defined by the S(δ) atoms of Met26, -38, and -54 (site 3S) and an exogenous ligand (modeled as H(2)O) and a Cu(II) site that bridges dimeric CopK molecules. The 3S Cu(I) binding mode observed in crystals was demonstrated in solution in protein variant M44L where site 4S is disabled. The intriguing copper binding chemistry of CopK provides molecular insight into Cu(I) transfer processes. The adaptable nature of the Cu(I) coordination sphere in methionine-rich clusters allows copper to be relayed between clusters during transport across membranes in molecular pumps such as CusA and Ctr1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号