首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A cDNA encoding mature porcine heart aconitase was over-expressed in Escherichia coli under the control of a phage T7 promoter. Recombinant aconitase purified from E. coli was identical to the enzyme from pig and beef heart in size, [3Fe-4S] and [4Fe-4S] cluster structure and enzymatic activity. Nine amino acid residues in close proximity to the Fe-S cluster and bound substrate (Lauble, H., Kennedy, M.C., Beinert, H., and Stout, C.D. (1992) Biochemistry, in press) were replaced by site-directed mutagenesis. Fe-S cluster environment as indicated by the EPR spectrum, tight binding of substrate, and enzymatic activity were compared for the mutant and wild type enzymes. Significant perturbations were detected for all of the mutant enzymes. Replacements for Asp100, His101, Asp165, Arg580, and Ser642 result in a 10(3)-10(5)-fold drop in activity, which suggests that these residues are involved in critical aspects of the reaction. Arg580 appears to be a key residue for substrate binding, as shown by a 30-fold increased Km and loss of tight substrate binding. Results of mutagenesis support the interpretation of the x-ray model, namely that Asp100 and His101 form an ion pair for elimination of the substrate hydroxyl and Ser642 may function as a general base for proton abstraction from citrate or isocitrate in the dehydration step and protonation of cis-aconitate in the hydration step. Asp165 appears to play a critical role in the interaction of Fea with substrate.  相似文献   

2.
To characterize the binding of substrate to aconitase, we have made 17O electron nuclear double resonance (ENDOR) measurements on reduced active ([4Fe-4S]1+) beef heart aconitase, both in H216O and H217O, in the presence of substrate and the inhibitors, tricarballylate, trans-aconitate, and 1-hydroxy-2-nitro-1, 3-propanedicarboxylate, referred to here as nitroisocitrate; the hydroxyl of the latter also was isotypically labeled with 17O. The hydroxyl oxygen of citrate and isocitrate is exchanged with solvent water by aconitase, but the hydroxyl of nitroisocitrate is not. Thus, the isotopic composition of nitroisocitrate can be chemically controlled, allowing direct identification of any 17O ENDOR signal associated with it. 17O ENDOR signals were observed from Hx17O (mean = 1 or 2) bound to the [4Fe-4S]1+ cluster in samples prepared with trans-aconitate and unlabeled nitroisocitrate. 17O-Labeled nitroisocitrate in H216O bound to the cluster showed a signal from the 17OH group; in H217O it showed 17O ENDOR resonances due to both Hx17O and 17OH of substrate. This result demonstrates that the cluster participates in substrate binding and can simultaneously coordinate the hydroxyl of a substrate (or analogue) and water (or hydroxyl). The sample with citrate in H217O showed only the Hx17O signal, although aconitase exchanges the hydroxyl of substrate with solvent water. The mechanism of action of aconitase is discussed in light of this observation. Comparison shows the ENDOR study to be in agreement with previous M?ssbauer and EPR spectroscopic results.  相似文献   

3.
The structure of aconitase   总被引:15,自引:0,他引:15  
A H Robbins  C D Stout 《Proteins》1989,5(4):289-312
The crystal structure of the 80,000 Da Fe-S enzyme aconitase has been solved and refined at 2.1 A resolution. The protein contains four domains; the first three from the N-terminus are closely associated around the [3Fe-4S] cluster with all three cysteine ligands to the cluster being provided by the third domain. Association of the larger C-terminal domain with the first three domains creates an extensive cleft leading to the Fe-S cluster. Residues from all four domains contribute to the active site region, which is defined by the Fe-S cluster and a bound SO4(2-) ion. This region of the structure contains 4 Arg, 3 His, 3 Ser, 2 Asp, 1 Glu, 3 Asn, and 1 Gln residues, as well as several bound water molecules. Three of these side chains reside on a three-turn 3(10) helix in the first domain. The SO4(2-) ion is bound 9.3 A from the center of the [3Fe-4S] cluster by the side chains of 2 Arg and 1 Gln residues. Each of 3 His side chains in the putative active site is paired with Asp or Glu side chains.  相似文献   

4.
17O electron nuclear double resonance (ENDOR) studies at X-band (9-GHz) and Q-band (35-GHz) microwave frequencies reveal that the [4Fe-4S]+ cluster of substrate-free aconitase [citrate (isocitrate) hydro-lyase, EC 4.2.1.3] binds solvent, HxO (x = 1, 2). Previous 17O ENDOR studies [Telser et al. (1986) J. Biol. Chem. 261, 4840-4846] had disclosed that Hx17O binds to the enzyme-substrate complex and also to complexes of enzyme with the substrate analogues trans-aconitate and nitroisocitrate (1-hydroxy-2-nitro-1,3-propanedicarboxylate). We have used 1H and 2H ENDOR to characterize these solvent species. We propose that the fourth ligand of Fea in substrate-free enzyme is a hydroxyl ion from the solvent; upon binding of substrate or substrate analogues at this Fea site, the solvent species becomes protonated to form a water molecule. Previous 17O and 13C ENDOR studies [Kennedy et al. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 8854-8858] showed that only a single carboxyl, at C-2 of the propane backbone of cis-aconitate or at C-1 of the inhibitor nitroisocitrate, coordinates to the cluster. Together, these results imply that enzyme-catalyzed interconversion of citrate and isocitrate does not involve displacement of an endogenous fourth ligand, but rather addition of the anionic carboxylate ligand and a change in protonation state of a solvent species bound to Fea. We further report the 17O hyperfine tensor parameters of the C-2 carboxyl oxygen of substrate bound to the cluster as determined by the field dependence of the 17O ENDOR signals. 17O ENDOR studies also show that the carboxyl group of the inhibitor trans-aconitate binds similarly to that of substrate.  相似文献   

5.
The amino acid sequence of a protease inhibitor isolated from the hemolymph of Sarcophaga bullata larvae was determined by tandem mass spectrometry. Homology considerations with respect to other protease inhibitors with known primary structures assisted in the choice of the procedure followed in the sequence determination and in the alignment of the various peptides obtained from specific chemical cleavage at cysteines and enzyme digests of the S. bullata protease inhibitor. The resulting sequence of 57 residues is as follows: Val Asp Lys Ser Ala Cys Leu Gln Pro Lys Glu Val Gly Pro Cys Arg Lys Ser Asp Phe Val Phe Phe Tyr Asn Ala Asp Thr Lys Ala Cys Glu Glu Phe Leu Tyr Gly Gly Cys Arg Gly Asn Asp Asn Arg Phe Asn Thr Lys Glu Glu Cys Glu Lys Leu Cys Leu.  相似文献   

6.
The amino acid sequences of both the alpha and beta subunits of human chorionic gonadotropin have been determined. The amino acid sequence of the alpha subunit is: Ala - Asp - Val - Gln - Asp - Cys - Pro - Glu - Cys-10 - Thr - Leu - Gln - Asp - Pro - Phe - Ser - Gln-20 - Pro - Gly - Ala - Pro - Ile - Leu - Gln - Cys - Met - Gly-30 - Cys - Cys - Phe - Ser - Arg - Ala - Tyr - Pro - Thr - Pro-40 - Leu - Arg - Ser - Lys - Lys - Thr - Met - Leu - Val - Gln-50 - Lys - Asn - Val - Thr - Ser - Glu - Ser - Thr - Cys - Cys-60 - Val - Ala - Lys - Ser - Thr - Asn - Arg - Val - Thr - Val-70 - Met - Gly - Gly - Phe - Lys - Val - Glu - Asn - His - Thr-80 - Ala - Cys - His - Cys - Ser - Thr - Cys - Tyr - Tyr - His-90 - Lys - Ser. Oligosaccharide side chains are attached at residues 52 and 78. In the preparations studied approximately 10 and 30% of the chains lack the initial 2 and 3 NH2-terminal residues, respectively. This sequence is almost identical with that of human luteinizing hormone (Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537). The amino acid sequence of the beta subunit is: Ser - Lys - Glu - Pro - Leu - Arg - Pro - Arg - Cys - Arg-10 - Pro - Ile - Asn - Ala - Thr - Leu - Ala - Val - Glu - Lys-20 - Glu - Gly - Cys - Pro - Val - Cys - Ile - Thr - Val - Asn-30 - Thr - Thr - Ile - Cys - Ala - Gly - Tyr - Cys - Pro - Thr-40 - Met - Thr - Arg - Val - Leu - Gln - Gly - Val - Leu - Pro-50 - Ala - Leu - Pro - Gin - Val - Val - Cys - Asn - Tyr - Arg-60 - Asp - Val - Arg - Phe - Glu - Ser - Ile - Arg - Leu - Pro-70 - Gly - Cys - Pro - Arg - Gly - Val - Asn - Pro - Val - Val-80 - Ser - Tyr - Ala - Val - Ala - Leu - Ser - Cys - Gln - Cys-90 - Ala - Leu - Cys - Arg - Arg - Ser - Thr - Thr - Asp - Cys-100 - Gly - Gly - Pro - Lys - Asp - His - Pro - Leu - Thr - Cys-110 - Asp - Asp - Pro - Arg - Phe - Gln - Asp - Ser - Ser - Ser - Ser - Lys - Ala - Pro - Pro - Pro - Ser - Leu - Pro - Ser-130 - Pro - Ser - Arg - Leu - Pro - Gly - Pro - Ser - Asp - Thr-140 - Pro - Ile - Leu - Pro - Gln. Oligosaccharide side chains are found at residues 13, 30, 121, 127, 132, and 138. The proteolytic enzyme, thrombin, which appears to cleave a limited number of arginyl bonds, proved helpful in the determination of the beta sequence.  相似文献   

7.
The complete amino acid sequence of the β-subunit of protocatechuate 3,4-dioxygenase was determined. The β-subunit contained four methionine residues. Thus, five peptides were obtained after cleavage of the carboxymethylated β-subunit with cyanogen bromide, and were isolated on Sephadex G-75 column chromatography. The amino acid sequences of the cyanogen bromide peptides were established by characterization of the peptides obtained after digestion with trypsin, chymotrypsin, thermolysin, or Staphylococcus aureus protease. The major sequencing techniques used were automated and manual Edman degradations. The five cyanogen bromide peptides were aligned by means of the amino acid sequences of the peptides containing methionine purified from the tryptic hydrolysate of the carboxymethylated β-subunit. The amino acid sequence of all the 238 residues was as follows: ProAlaGlnAspAsnSerArgPheValIleArgAsp ArgAsnTrpHis ProLysAlaLeuThrPro-Asp — TyrLysThrSerIleAlaArg SerProArgGlnAla LeuValSerIleProGlnSer — IleSerGluThrThrGly ProAsnPheSerHisLeu GlyPheGlyAlaHisAsp-His — AspLeuLeuLeuAsnPheAsn AsnGlyGlyLeu ProIleGlyGluArgIle-Ile — ValAlaGlyArgValValAsp GlnTyrGlyLysPro ValProAsnThrLeuValGluMet — TrpGlnAlaAsnAla GlyGlyArgTyrArg HisLysAsnAspArgTyrLeuAlaPro — LeuAspProAsn PheGlyGlyValGly ArgCysLeuThrAspSerAspGlyTyrTyr — SerPheArg ThrIleLysProGlyPro TyrProTrpArgAsnGlyProAsnAsp — TrpArgProAla HisIleHisPheGlyIle SerGlyProSerIleAlaThr-Lys — LeuIleThrGlnLeuTyr PheGluGlyAspPro LeuIleProMetCysProIleVal — LysSerIleAlaAsn ProGluAlaValGlnGln LeuIleAlaLysLeuAspMetAsnAsn — AlaAsnProMet AsnCysLeuAlaTyr ArgPheAspIleValLeuArgGlyGlnArgLysThrHis PheGluAsnCys. The sequence published earlier in summary form (Iwaki et al., 1979, J. Biochem.86, 1159–1162) contained a few errors which are pointed out in this paper.  相似文献   

8.
Active beef heart aconitase contains a [4Fe-4S] cluster. One iron of the cluster, Fea, is labile and can be removed easily by oxidation in air to yield the [3Fe-4S]1+ cluster of inactive aconitase. We have previously shown that substrate binds to Fea. We have continued our M?ssbauer studies by further investigating the active and inactive forms of the enzyme. When active aconitase, [4Fe-4S]2+, is mixed with substrate, two species (substrates or intermediates bound to Fea) labeled S1 and S2 are obtained. With the nitroanalogs of citrate and isocitrate, thought to be transition state analogs, and fluorocitrate, species S2, but not S1, is observed, suggesting that S2 represents a carbanion transition state complex. We have prepared M?ssbauer samples by rapid mix/rapid freeze techniques. Using either citrate, isocitrate or cis-aconitate, the natural substrates, we have been able to detect at 0 degree C reaction intermediates in the 5-35 ms time range and, studying enzyme substrate interactions at subzero temperatures in a water/methanol/ethylene glycol solvent, we have observed new species when substrates were added at -60 degrees C. Details of these experiments are given, although in neither case can unique interpretations be offered at this time. We have also investigated reduced active aconitase ([4Fe-4S]1+; EPR at g = 1.94) in the presence of substrate with material selectively enriched with 57Fe in either Fea or the other three cluster sites. The spectra were analyzed with a spin Hamiltonian, and the results are discussed and interpreted in terms of three inequivalent Fe sites in the cluster. Finally, we have studied enzyme containing the reduced [3Fe-4S]0 cluster. There is no indication that citrate binds to the 3Fe cluster, and since no significant activity was observed, we conclude that aconitase containing a 3Fe cluster is not active in either oxidation state.  相似文献   

9.
The crystal structure of the S642A mutant of mitochondrial aconitase (mAc) with citrate bound has been determined at 1.8 A resolution and 100 K to capture this binding mode of substrates to the native enzyme. The 2.0 A resolution, 100 K crystal structure of the S642A mutant with isocitrate binding provides a control, showing that the Ser --> Ala replacement does not alter the binding of substrates in the active site. The aconitase mechanism requires that the intermediate product, cis-aconitate, flip over by 180 degrees about the C alpha-C beta double bond. Only one of these two alternative modes of binding, that of the isocitrate mode, has been previously visualized. Now, however, the structure revealing the citrate mode of binding provides direct support for the proposed enzyme mechanism.  相似文献   

10.
Chan JM  Wu W  Dean DR  Seefeldt LC 《Biochemistry》2000,39(24):7221-7228
One molecule of MgATP binds to each subunit of the homodimeric Fe protein component of nitrogenase. Both MgATP molecules are hydrolyzed to MgADP and P(i) in reactions coupled to the transfer of one electron into the MoFe protein component. As an approach to assess the contributions of individual ATP binding sites, a heterodimeric Fe protein was produced that has an Asn substituted for residue 39 in the ATP binding domain in one subunit, while the normal Asp(39) residue within the other subunit remains unchanged. Separation of the heterodimeric Fe protein from a mixed population with homodimeric Fe proteins contained in crude extracts was accomplished by construction of a seven His tag on one subunit and a differential immobilized-metal-affinity chromatography technique. Three forms of the Fe protein (wild-type homodimeric Fe protein [Asp(39)/Asp(39)], altered homodimeric Fe protein [Asn(39)/Asn(39)], and heterodimeric Fe protein [Asp(39)/Asn(39)]) were compared on the basis of the biochemical and biophysical changes elicited by nucleotide binding. Among those features examined were the MgATP- and MgADP-induced protein conformational changes that are manifested by the susceptibility of the [4Fe-4S] cluster to chelation and by alterations in the electron paramagnetic resonance, circular dichroism, and midpoint potential of the [4Fe-4S] cluster. The results indicate that changes in the [4Fe-4S] cluster caused by nucleotide binding are the result of additive conformational changes contributed by the individual subunits. The [Asp(39)/Asn(39)] Fe protein did not support substrate reduction activity but did hydrolyze MgATP and showed MgATP-dependent primary electron transfer to the MoFe protein. These results support a model where each MgATP site contributes to the rate acceleration of primary electron transfer, but both MgATP sites must be functioning properly for substrate reduction. Like the altered homodimeric [Asn(39)/Asn(39)] Fe protein, the heterodimeric [Asp(39)/Asn(39)] Fe protein was found to form a high affinity complex with the MoFe protein, revealing that alteration on one subunit is sufficient to create a tight complex.  相似文献   

11.
从织锦芋螺中克隆α芋螺毒素序列   总被引:13,自引:0,他引:13  
为了从我国南海产织锦芋螺(Conustextile)中分离新的毒素序列并研究其应用价值,进行了织锦芋螺毒素基因的分离工作.从织锦芋螺毒管中提取mRNA,以A族芋螺毒素的信号肽编码部分和3′端非翻译部分的保守序列为引物,通过RT-PCR扩增和序列分析方法获得新的芋螺毒素序列.结果得到两种不同的α芋螺毒素序列,两者都属于α4/7亚型芋螺毒素,预测其成熟肽序列分别为Pro-Glu-Cys-Cys-Ser-Asp-Pro-Arg-Cys-Asn-Ser-Ser-His-Pro-Glu-Leu-Cys-Gly(C端Gly可能被酰胺化)和Pro-Glu-Cys-Cys-Ser-His-Pro-Ala-Cys-Asn-Val-Asp-His-Pro-Glu-Ile-Cys-Arg.采用传统的生化分离手段尚未从织锦芋螺中获得过α芋螺毒素序列,这两种α芋螺毒素作用的种属特异性、受体类型特异性和在小细胞肺癌的诊断和治疗中的应用价值有待进一步研究  相似文献   

12.
Structurally conserved water molecules in ribonuclease T1   总被引:4,自引:0,他引:4  
In the high resolution (1.7-1.9 A) crystal structures of ribonuclease T1 (RNase T1) in complex with guanosine, guanosine 2'-phosphate, guanylyl 2',5'-guanosine, and vanadate, there are 30 water sites in nearly identical (+/- 1 A) positions that are considered conserved. One water is tightly bound to Asp76(O delta), Thr93(O gamma), Cys6(O), and Asn9(N); another bridges two loops by hydrogen-bonding to Tyr68(O eta) and to Ser35(N), Asn36(N); a loop structure is stabilized by two waters coordinated to Gly31(O) and His27(N delta), and by water bound to cis-Pro39(O). Most notable is a hydrogen-bonded chain of 10 water molecules. Waters 1-5 of this chain are inaccessible to solvent, are anchored at Trp59(N), and stitch together the loop formed by segments 60-68; waters 5-8 coordinate to Ca2+, and waters 9 and 10 hydrogen-bond to N-terminal side chains of the alpha-helix. The water chain and two conserved water molecules are bound to amino acids adjacent to the active site residues His40, Glu58, Arg77, and His92; they are probably involved in maintaining their spatial orientation required for catalysis. Water sites must be considered in genetic engineering; the mutation Trp59Tyr, which probably influences the 10-water chain, doubles the catalytic activity of RNase T1.  相似文献   

13.
We examined the effects of orally administrated amino acids on myfibrillar proteolysis in food-deprived chicks. Plasma N(tau)-methylhistidine concentration, as an index of myofibrillar proteolysis, was decreased by the administration of Glu, Gly, Ala, Leu, Ile, Ser, Thr, Met, Trp, Asn, Gln, Pro, Lys and Arg but not by Asp, Val, Phe, Tyr or His to chicks. Orally administrated Cys was fatal to chicks. These results indicate that oral Glu, Gly, Ala, Leu, Ile, Ser, Thr, Met, Trp, Asn, Gln, Pro, Lys and Arg administration suppressed myofibrillar proteolysis in chicks.  相似文献   

14.
Chen D  Frey PA  Lepore BW  Ringe D  Ruzicka FJ 《Biochemistry》2006,45(42):12647-12653
Lysine 2,3-aminomutase (LAM) from Clostridium subterminale SB4 catalyzes the interconversion of (S)-lysine and (S)-beta-lysine by a radical mechanism involving coenzymatic actions of S-adenosylmethionine (SAM), a [4Fe-4S] cluster, and pyridoxal 5'-phosphate (PLP). The enzyme contains a number of conserved acidic residues and a cysteine- and arginine-rich motif, which binds iron and sulfide in the [4Fe-4S] cluster. The results of activity and iron, sulfide, and PLP analysis of variants resulting from site-specific mutations of the conserved acidic residues and the arginine residues in the iron-sulfide binding motif indicate two classes of conserved residues of each type. Mutation of the conserved residues Arg134, Asp293, and Asp330 abolishes all enzymatic activity. On the basis of the X-ray crystal structure, these residues bind the epsilon-aminium and alpha-carboxylate groups of (S)-lysine. However, among these residues, only Asp293 appears to be important for stabilizing the [4Fe-4S] cluster. Members of a second group of conserved residues appear to stabilize the structure of LAM. Mutations of arginine 130, 135, and 136 and acidic residues Glu86, Asp165, Glu236, and Asp172 dramatically decrease iron and sulfide contents in the purified variants. Mutation of Asp96 significantly decreases iron and sulfide content. Arg130 or Asp172 variants display no detectable activity, whereas variants mutated at the other positions display low to very low activities. Structural roles are assigned to this latter class of conserved amino acids. In particular, a network of hydrogen bonded interactions of Arg130, Glu86, Arg135, and the main chain carbonyl groups of Cys132 and Leu55 appears to stabilize the [4Fe-4S] cluster.  相似文献   

15.
You YO  van der Donk WA 《Biochemistry》2007,46(20):5991-6000
Lantibiotic synthetases catalyze the dehydration of Ser and Thr residues in their peptide substrates to dehydroalanine (Dha) and dehydrobutyrine (Dhb), respectively, followed by the conjugate addition of Cys residues to the Dha and Dhb residues to generate the thioether cross-links lanthionine and methyllanthionine, respectively. In this study ten conserved residues were mutated in the dehydratase domain of the best characterized family member, lacticin 481 synthetase (LctM). Mutation of His244 and Tyr408 did not affect dehydration activity with the LctA substrate whereas mutation of Asn247, Glu261, and Glu446 considerably slowed down dehydration and resulted in incomplete conversion. Mutation of Lys159 slowed down both steps of the net dehydration: phosphorylation of Ser/Thr residues and the subsequent phosphate elimination step to form the dehydro amino acids. Mutation of Arg399 to Met or Leu resulted in mutants that had phosphorylation activity but displayed greatly decreased phosphate elimination activity. The Arg399Lys mutant retained both activities, however. Similarly, the Thr405Ala mutant phosphorylated the LctA substrate but had compromised elimination activity. Finally, mutation of Asp242 or Asp259 to Asn led to mutant enzymes that lacked detectable dehydration activity. Whereas the Asp242Asn mutant retained phosphate elimination activity, the Asp259Asn mutant was not able to eliminate phosphate from a phosphorylated substrate peptide. A model is presented that accounts for the observed phenotypes of these mutant enzymes.  相似文献   

16.
F Faustinella  L C Smith  L Chan 《Biochemistry》1992,31(32):7219-7223
Lipoprotein lipase (LPL), hepatic lipase, and pancreatic lipase show high sequence homology to one another. The crystal structure of pancreatic lipase suggests that it contains a trypsin-like Asp-His-Ser catalytic triad at the active center, which is shielded by a disulfide bridge-bounded surface loop that must be repositioned before the substrate can gain access to the catalytic residues. By sequence alignment, the homologous catalytic triad in LPL corresponds to Asp156-His241-Ser132, absolutely conserved residues, and the homologous surface loop to residues 217-238, a poorly conserved region. To verify these assignments, we expressed in vitro wild-type LPL and mutant LPLs having single amino acid mutations involving residue Asp156 (to His, Ser, Asn, Ala, Glu, or Gly), His241 (to Asn, Ala, Arg, Gln, or Trp), or Ser132 (to Gly, Ala, Thu, or Asp) individually. All 15 mutant LPLs were totally devoid of enzyme activity, while wild-type LPL and other mutant LPLs containing substitutions in other positions were fully active. We further replaced the 22-residue LPL loop which shields the catalytic center either partially (replacing 6 of 22 residues) or completely with the corresponding hepatic lipase loop. The partial loop-replacement chimeric LPL was found to be fully active, and the complete loop-replacement mutant had approximately 60% activity, although the primary sequence of the hepatic lipase loop is quite different. In contrast, replacement with the pancreatic lipase loop completely inactivated the enzyme. Our results are consistent with Asp156-His241-Ser132 being the catalytic triad in lipoprotein lipase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The structures of nitrogenase Fe proteins with defined amino acid substitutions in the previously implicated nucleotide-dependent signal transduction pathways termed switch I and switch II have been determined by X-ray diffraction methods. In the Fe protein of nitrogenase the nucleotide-dependent switch regions are responsible for communication between the sites responsible for nucleotide binding and hydrolysis and the [4Fe-4S] cluster of the Fe protein and the docking interface that interacts with the MoFe protein upon macromolecular complex formation. In this study the structural characterization of the Azotobacter vinelandii nitrogenase Fe protein with Asp at position 39 substituted by Asn in MgADP-bound and nucleotide-free states provides an explanation for the experimental observation that the altered Fe proteins form a trapped complex subsequent to a single electron transfer event. The structures reveal that the substitution allows the formation of a hydrogen bond between the switch I Asn39 and the switch II Asp125. In the structure of the native enzyme the analogous interaction between the side chains of Asp39 and Asp125 is precluded due to electrostatic repulsion. These results suggest that the electrostatic repulsion between Asp39 and Asp125 is important for dissociation of the Fe protein:MoFe protein complex during catalysis. In a separate study, the structural characterization of the Fe protein with Asp129 substituted by Glu provides the structural basis for the observation that the Glu129-substituted variant in the absence of bound nucleotides has biochemical properties in common with the native Fe protein with bound MgADP. Interactions of the longer Glu side chain with the phosphate binding loop (P-loop) results in a similar conformation of the switch II region as the conformation that results from the binding of the phosphate of ADP to the P-loop.  相似文献   

18.
Theil R  Scheit KH 《The EMBO journal》1983,2(7):1159-1163
Analytical ultracentrifugation of highly purified seminalplasmin revealed a molecular mass of 6300. Amino acid analysis of the protein preparation indicated the absence of sulfur-containing amino acids cysteine and methionine. The amino acid sequence of seminalplasmin was determined by manual Edman degradation of peptides obtained by proteolytic enzymes trypsin, chymotrypsin and thermolysin: NH2-Ser Asp Glu Lys Ala Ser Pro Asp Lys His His Arg Phe Ser Leu Ser Arg Tyr Ala Lys Leu Ala Asn Arg Leu Ser Lys Trp Ile Gly Asn Arg Gly Asn Arg Leu Ala Asn Pro Lys Leu Leu Glu Thr Phe Lys Ser Val-COOH. The number of amino acids according to the sequence were 48, the molecular mass 6385. As predicted from the sequence, seminalplasmin very likely contains two α-helical domains in which residues 8-17 and 40-48 are involved. No evidence for the existence of β-sheet structures was obtained. Treatment of seminalplasmin with the above proteases as well as with amino peptidase M and carboxypeptidase Y completely eliminated biological activity.  相似文献   

19.
Thermal denaturation of eukaryotic class-1 translation termination factor eRF1 and its mutants was examined using differential scanning microcalorimetry (DSK). Changes of free energy caused by mutants in the N domain of human eRF1 were calculated. Melting of eRF1 molecule composed of three individual domains is cooperative. Some amino acid substitutions did not affect protein thermostability and in some other cases even slightly stabilize the protein globule. These imply that these amino acid residues are not involved in maintenance of the 3D structure of human eRF1. Thus, in Glu55Asp, Tyr125Phe, Asn61Ser, Glu55Arg, Glu55A1a, Asn61Ser + Ser64Asp, Cys127Ala and Ser64Asp mutants selective inactivation of release activity is not caused by a destabilization of protein 3D structure and, most likely, is associated with local stereochemical changes introduced by substitutions of amino acid side chains in the functionally essential sites of N-domain molecule. Some residues (Asn129, Phe131) as shown by calorimetric measurements are essential for preservation of stable protein structure, but at the same time they affect selective stop codon recognition probably via their neighboring amino acids. Recognition of UAG and UAA stop codons in vitro is more sensitive to preservation of protein stability than the UGA recognition.  相似文献   

20.
Using highly purified recombinant mitochondrial aconitase, we determined the kinetics and mechanisms of inactivation mediated by nitric oxide (*NO), nitrosoglutathione (GSNO), and peroxynitrite (ONOO(-)). High *NO concentrations are required to inhibit resting aconitase. Brief *NO exposures led to a reversible inhibition competitive with isocitrate (K(I)=35 microM). Subsequently, an irreversible inactivation (0.65 M(-1) s(-1)) was observed. Irreversible inactivation was mediated by GSNO also, both in the absence and in the presence of substrates (0.23 M(-1) s(-1)). Peroxynitrite reacted with the [4Fe-4S] cluster, yielding the inactive [3Fe-4S] enzyme (1.1 x 10(5) M(-1) s(-1)). Carbon dioxide enhanced ONOO(-)-dependent inactivation via reaction of CO(3)*(-) with the [4Fe-4S] cluster (3 x 10(8) M(-1) s(-1)). Peroxynitrite also induced m-aconitase tyrosine nitration but this reaction did not contribute to enzyme inactivation. Computational modeling of aconitase inactivation by O(2)*(-) and *NO revealed that, when NO is produced and readily consumed, measuring the amount of active aconitase remains a sensitive method to detect variations in O(2)*(-) production in cells but, when cells are exposed to high concentrations of NO, aconitase inactivation does not exclusively reflect changes in rates of O(2)*(-) production. In the latter case, extents of aconitase inactivation reflect the formation of secondary reactive species, specifically ONOO(-) and CO(3)*(-), which also mediate m-aconitase tyrosine nitration, a footprint of reactive *NO-derived species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号