首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The N-terminal substance P fragment SP1-7 is known to modulate hyperalgesia and opioid withdrawal in animal models. This study examined the effects of intraperitoneal (i.p.) injections of SP1-7 on chronic morphine tolerance and on the levels of dynorphin B (DYN B) and nociceptin/orphanin FQ (N/OFQ) in various brain areas of male Sprague-Dawley rats. Morphine tolerance was induced by subcutaneous injections of the opioid (10 mg/kg) twice daily for 7 days. SP1-7 injected i.p. (185 nmol/kg) 30 min prior to morphine reduced the development of morphine tolerance. Immunoreactive (ir) DYN B and N/OFQ peptide levels were measured in several areas of the central nervous system. Levels of ir DYN B in rats treated with SP1-7 and morphine were decreased in the nucleus accumbens, substantia nigra and ventral tegmental area and increased in the frontal cortex. The ir N/OFQ levels were increased in the periaqueductal gray and decreased in the nucleus accumbens. Since the concentration profiles of the two peptides were altered by SP1-7 in the areas that are implicated in the modulation of opioid tolerance and analgesia, it is suggested that DYN B and N/OFQ systems may be involved in the effects of SP1-7 on opioid tolerance.  相似文献   

2.
Opioid peptides injected into the circulation of rats evoke a vagally mediated bradycardia. The intravenous ED50 of morphine for producing a greater than or equal to 10% fall in heart rate was determined in urethane-anesthetized rats. Hypophysectomy, or adrenalectomy plus treatment with dexamethasone (0.5 microgram/h, s.c., 1 day), procedures that remove endogenous sources of opioid peptides, increased the sensitivity of the animal to morphine bradycardia by 6-10-fold. Conversely, stressing the animals by exposure to cold (4-6 degrees C for two days) elevated the ED50 for morphine sulfate and for beta h-endorphin by about 5-fold. Dexamethasone infusions prevented the cold-induced desensitization to morphine. Intravenous administration of rat corticotropin-releasing factor (CRF) also desensitized the animals to morphine. CRF alone produced a fall in blood pressure and heart rate. The bradycardia was prevented by pretreatment with naloxone. These results indicate that the sensitivity of vagal opioid chemoreceptors is influenced by endogenous sources of opioid peptides. This phenomenon can be called 'endogenous tolerance'.  相似文献   

3.
The role of the opioid peptides in the regulation of adrenocorticotropin (ACTH) secretion remains unclear. In rats, morphine and the enkephalins exert a stimulatory effect on the hypothalamic-pituitary-adrenal axis, while beta-endorphin (beta-E) and dynorphin (DYN) are reported to have stimulatory or inhibitory activity. Alternatively, data from human studies indicate a clear inhibitory role of opiates. In the present studies, secretion of immunoreactive corticotropin releasing factor (irCRF) into the hypophysial-portal circulation was directly measured before and after intracerebroventricular administration of beta-E, DYN and naltrexone (NTX). Both beta-E and DYN were equipotent in their dose-related inhibition of irCRF secretion. The inhibitory action of beta-E was reversed by NTX, while the action of DYN was only partially blocked. Administration of NTX alone resulted in a significant elevation of spontaneous and stimulated irCRF secretion. Finally, injection (icv) of 1.0 nmol beta-E or DYN blocked the nitroprusside-hypotension induced elevation of irCRF. These observations suggest, that under the conditions of these experiments, exogenous beta-E acting primarily via mu opioid receptors and DYN acting via kappa and mu receptors exert tonic inhibitory effects on the activity of CRF secreting cells. Furthermore, it appears that beta-E and DYN are capable of modulating (inhibiting) stimulated secretion of irCRF and thus activity of the hypothalamic-pituitary-adrenal axis.  相似文献   

4.
C A Paronis  S G Holtzman 《Life sciences》1992,50(19):1407-1416
Chronic opioid antagonist administration increases opioid binding sites and potentiates behavioral responses to morphine. Conversely, chronic opioid agonist administration attenuates behavioral responses to morphine, though this is not necessarily accompanied by a parallel loss of binding sites. We examined the possibility that the in vivo affinity of the mu receptors might be altered as a consequence of the continuous administration of either naloxone or morphine. Rats were implanted sc with naloxone- or morphine-filled osmotic pumps; control animals were implanted with sham pumps. One week later, 24 hr after removing the osmotic pumps, cumulative dose-response curves for fentanyl analgesia were generated in the presence of 0.0, 0.03, 0.1, or 0.3 mg/kg naltrexone, using a tail-flick procedure. The analgesic ED50 (with 95% C. L.) of fentanyl in sham implanted animals, following saline pretreatment was 0.027 mg/kg (0.019, 0.039). The potency of fentanyl was decreased in rats infused with morphine, ED50 = 0.051 mg/kg (0.028, 0.093), and increased in rats that received naloxone, ED50 = 0.018 mg/kg (0.015, 0.022). The mean apparent pA2 value for naltrexone (with 95% C.L.) in the control group was 7.7 (7.5, 7.9). No differences were detected in animals that had received either naloxone or morphine for 7 days, pA2 = 7.8 (7.5, 8.1) and 7.4 (7.3, 7.6), respectively. Our results indicate that there is no change in the apparent affinity of the mu-receptor following continuous exposure to either an opioid agonist or antagonist, at a time when the analgesic potency of the agonist is decreased or increased, respectively.  相似文献   

5.
Intravenous injection of opioid agonists in rats evokes a vagal reflex resulting in a fall in heart rate and blood pressure. Three opioid antagonists, naloxone, SMS 201-995, and ICI 154,129 were used to assess the nature of the opioid receptors that mediate the vagal reflex. The agonists used were morphine, Tyr-Pro-NMePhe-d-Pro-NH2 (PLO17), and d-Ala2-Leu5-enkephalin (DADL). At challenge doses of morphine, PLO17, and DADL at five times the ED50 for bradycardia, the naloxone ED50 for DADL was nine times greater than that for morphine and PLO17. The pA2 value of naloxone against DADL was significantly less than that for morphine and PLO17. The antagonist properties of SMS 201-995 were similar to those of naloxone. ICI 154,129, a putative delta receptor antagonist, was not, however, selective in its antagonism of opioid bradycardia. Both SMS 201-995 and ICI 154,129, when injected alone, produced changes in heart rate and blood pressure. The cardiovascular actions of the peptide antagonists were not affected by naloxone hydrochloride at doses up to 4 mg/kg i.v.  相似文献   

6.
It is known that under some conditions the administration of opioid agonists will stimulate food intake. However, the lack of receptor selectivity of some of the agonists which produce this effect leaves open the question of which receptor types are actually involved. In the experiments presented here, rats were given intracerebroventricular injections of Dynorphin 1-17 (DYN), [D-ala2MePhe4,-Gly-ol5]enkephalin (DAGO), and [D-ser2, leu5]enkephalin-thr6 (DSLET); these peptides are thought to be selective agonists at kappa, mu and delta opioid receptors, respectively. All three peptides stimulated food intake in non-deprived rats at doses in the 3-10 nmol range; water intake was also increased in some cases. Generally, DYN stimulated feeding at a lower dose than DAGO or DSLET and the magnitude of the effect tended to be greater. On the other hand, DAGO more consistently increased water intake. In some cases, DYN also caused episodes of "barrel-rolling" and postural abnormalities, whereas DAGO had sedative and/or cataleptic effects. These results are interpreted as an involvement of more than one opioid receptor types in the regulation of appetite, possibly with separate opioid systems contributing to food and water intake.  相似文献   

7.
The opioid peptides enkephalin (ENK) and dynorphin (DYN), when injected into the hypothalamus, are known to stimulate feeding behavior and preferentially increase the ingestion of a high-fat diet. Studies of another peptide, galanin (GAL), with similar effects on feeding demonstrate that a high-fat diet, in turn, can stimulate the expression of this peptide in the hypothalamus. The present study tested different diets and variable periods of high- vs. low-fat diet consumption to determine whether the opioid peptides respond in a similar manner as GAL. In six experiments, the effects of dietary fat on ENK and DYN were examined in three hypothalamic areas: the paraventricular nucleus (PVN), perifornical hypothalamus (PFH), and arcuate nucleus (ARC). The results demonstrated that the ingestion of a high-fat diet increases gene expression and peptide levels of both ENK and DYN in the hypothalamus. The strongest and most consistent effect is seen in the PVN. In this nucleus, ENK and DYN are increased by 50-100% after 1 wk, 1 day, 60 min, and even 15 min of high-fat diet consumption. While showing some effect in the PFH, these peptides in the ARC are considerably less responsive, exhibiting no change in response to the briefer periods of diet intake. This effect of dietary fat on PVN opioids can be observed with diets equal in caloric density and palatability and without a change in caloric intake, body weight, fat pad weight, or levels of insulin or leptin. The data reveal a strong and consistent association between these peptides and a rise in circulating levels of triglycerides, supporting a role for these lipids in the fat-induced stimulation of opioid peptides in the PVN, similar to GAL.  相似文献   

8.
B A Gosnell  M Grace  A S Levine 《Life sciences》1987,40(15):1459-1467
beta-Chlornaltrexamine (beta-CNA) is a non-equilibrium opioid receptor antagonist which alkylates and inactivates opioid receptors. Because opioid peptides are thought to contribute to the regulation of food intake, we examined the effects of intracerebroventricular (icv) injections of beta-CNA on the food intake and body weight of male rats. We also tested the ability of beta-CNA to block food intake stimulated by selective agonists of kappa, mu and delta opioid receptors: dynorphin A2 (DYN), Tyr-D-Ala-Gly-(Me)Phe-Gly-ol (DAGO), and [(D-Ser2,Leu5]-enkephalin-Thr6 (DSLET). Treatment with beta-CNA caused a long-term (2-4 days) reduction in daily food intake and a concomitant reduction in body weight. An additional experiment indicated that the weight loss after beta-CNA treatment could be completely accounted for by the reduction in intake. beta-CNA treatment also abolished or greatly attenuated the feeding effects of DAGO, DSLET and DYN, even when these peptides were tested 26 hours after beta-CNA administration. The long duration of the effects of beta-CNA suggests that this compound will be a useful pharmacological tool in further study of the opioid feeding system.  相似文献   

9.
Choi S  Jung SY  Rhim H  Jeong SW  Lee SM  Nah SY 《Life sciences》2000,67(8):969-975
The analgesic effect of ginsenosides or morphine was first determined following intrathecal (i.t.) administration in rat tail-flick test. The effect of chronic i.t. co-administration of ginsenosides with morphine on the development of opioid tolerance were also examined using rat tail-flick test. Administration of ginsenosides (i.t.) produced a weak antinociception in a dose-dependent manner. Administration of morphine (i.t.) also produced antinociception in a dose-dependent manner. The ED50 was 1.20 microg (1.14-1.29 microg). However, acute i.t. co-administration of ginsenosides with morphine was not additive in antinociception. Repeated i.t. co-administration of 200 microg ginsenosides with 10 microg morphine inhibited the development of tolerance induced by 10 microg morphine in rat tail-flick test, although i.t. co-administration of 50 or 100 microg ginsenosides with morphine was without effect. In conclusion, these results indicate that i.t. administered ginsenosides produce an antinociception in rat tail-flick test and also prevent opioid tolerance caused by chronic treatment with morphine at the spinal sites.  相似文献   

10.
M Pairet  Y Ruckebusch 《Life sciences》1984,35(16):1653-1658
Myoelectrical activity was recorded in the proximal and distal colon of rabbits using chronically implanted electrodes. The motility in both the proximal and distal colon was inhibited by the intravenous (IV) administration of the following opioid agonists for mu receptors: morphine and fentanyl, kappa receptors: ethylketazocine (EKC) and U 50 488 H, and delta receptors: D-Ala2 D-Leu5-enkephalin (DADLE) and D-Ser2 Leu-enkephalin-Thr6 (DSLET). In contrast, the myoelectric activity in the distal colon was increased during the infusion of an endogenous kappa opioid agonist, dynorphin (DYN). All of these effects were prevented by naloxone pretreatment. During in vitro studies using extraluminal force transducers, fentanyl, U 50 488 H and DSLET inhibited spontaneous contractions of the proximal colon, but U 50 488 H and DSLET caused a substantial increase in the motility of the distal colon. The observed motor responses in the proximal and distal colon following opioid agonist administration indicate that the control of these two intestinal segments may be different. It is suggested that the stimulatory effect of dynorphin on the distal colon is peripherally-mediated while inhibition of the whole colon by opioid agonists regardless of subtypes seems to be centrally-mediated.  相似文献   

11.
Implantation of rats with prolonged-release naltrexone pellets increased both morphine's analgesic potency in the tailflick assay and radiolabeled opioid binding in the brain. The increases in both radiolabeled opioid binding and morphine potency were time-dependent. Implantation for 24 hours did not increase binding, whereas increases of approximately 45% were seen following 8 days of implantation. Similarly, morphine's analgesic potency, measured as ED50 values, was increased by 50% following 8 days of exposure to naltrexone while a 24 hour exposure had no significant effect.  相似文献   

12.
The effects of naloxone pretreatment on opiate agonist-induced depressions in serum luteinizing hormone (LH) levels were examined in male rats. Our results demonstrated a pronounced enhancement of morphine's actions 6 hours after the administration of naloxone (0.5 mg/kg). This effect was characterized by a 10 fold reduction in the ED50 (1.26 mg/kg versus 0.13 mg/kg in saline- and naloxone-pretreated rats, respectively) and much greater depressions in serum LH levels at each dose of morphine. The actions of naloxone were not confined to morphine, since similar increased potencies were found for opioid agonists with selectivity for a variety of opioid receptor subtypes. Because naloxone did not alter the uptake of subsequently administered morphine into brain, our results cannot be explained on the basis of an increased availability of the agonist. Rather, it appears that naloxone pretreatment induces a change in the sensitivity of those receptors involved in the effects of opioid agonists on LH.  相似文献   

13.
Previously, we have demonstrated that intrathecally (i.t.) administered corticotropin-releasing factor (CRF) in mice produces stimulus-specific antinociception and modulation of morphine-induced antinociception by mechanisms involving spinal kappa opioid receptors. Recently, we also have found that CRF releases immunoreactive dynorphin A, a putative endogenous kappa opioid receptor agonist, from superfused mice spinal cords in vitro. Dynorphin A administered intracerebroventricularlly (i.c.v.) to mice has been shown to modulate the expression of morphine tolerance. In the present study, the possible modulatory effects of i.t. administered CRF as well as dynorphin A on morphine tolerance were studied in an acute tolerance model. Subcutaneous administration of 100 mg/kg of morphine sulfate (MS) to mice caused an acute tolerance to morphine-induced antinociception. The antinociceptive ED50 of MS was increased from 4.4 mg/kg (naive mice) to 17.9 mg/kg (4 hours after the injection of 100 mg/kg MS). To study the modulatory effects of spinally administered CRF and dynorphin A on the expression of morphine tolerance, CRF and dynorphin A were injected i.t. at 15 min and 5 min, respectively, before testing the tolerant mice by the tail-flick assay. The antinociceptive ED50 of MS in tolerant mice was decreased to 8.8 mg/kg and 7.1 mg/kg, respectively, after i.t. administration of CRF (0.1 nmol) and dynorphin A (0.2 nmol). In contrast, 0.5 nmol of alpha-helical CRF (9-41), a CRF antagonist and 0.4 nmol of norbinaltorphimine, a highly selective kappa opioid receptor antagonist, when administered i.t. at 15 min before the tail-flick test in tolerant mice, increased the antinociceptive ED50 of MS to 56.6 mg/kg and 88.8 mg/kg, respectively. These data confirmed the modulatory effect of dynorphin A on morphine tolerance and suggested that CRF, which releases dynorphin A in several central nervous system regions, also plays a modulatory role in the expression of morphine tolerance.  相似文献   

14.
Two series of N-3-arylpropenyl-N-9-propionyl-3,9-diazabicyclo[3.3.1]nonanes (1b-j) and of the reverted N-3-propionyl-N-9-arylpropenyl isomers (2b-j) as analogues of the previously reported analgesic N-3(9)-cinnamyl-N-9(3)-propionyl-3,9-diazabicyclo[3.3.1]nonanes (DBN) (1a, 2a) were synthesised and their affinity and selectivity towards opioid mu-, delta- and kappa-receptors were evaluated. Several compounds (1e,i,j-2d,e,f,g,j) exhibited a mu-affinity in the low nanomolar range with moderate or negligible affinity towards delta- and kappa-receptors. The representative term N-9-(3,3-diphenylprop-2-enyl)-N-3-propionyl-DBN (2d) displayed in vivo (mouse) a potent analgesic effect (ED(50) 3.88 mg/kg ip) which favourably compared with that of morphine (ED(50) 5 mg/kg ip). In addition, 2d produced in mice tolerance after a period twice as long with morphine.  相似文献   

15.
The involvement of opioid peptides in the regulation of food intake has been postulated. However, it is not known how they are involved in this regulation and which brain region is responsible for the mediation of their effects. We studied the effect of a microinjection of opioid agonists and antagonists into the nucleus accumbens septi (NAS) on the food intake in rats, as this area is known to be important for motivation. Male Wistar rats were implanted stereotaxically with guide cannulae. Rats were not allowed food prior to drug treatment and solutions (1 microliter) were microinjected bilaterally. Food intake was measured throughout a 2 hr period after the drug injection. Infusions into the NAS of 2, 5 and 10 nmol of morphine, D-ala2, D-Leu5-enkephalin (DADLE), and beta-endorphin (beta E), or of 5 and 10 nmol of alpha-neoendorphin (ANEO) induced a dose-dependent increase in the food intake. Dynorphin (DYN) also increased the food intake, but only at a 10 nmol dose. The new, highly selective delta agonist D-Pen2,5-enkephalin (DPDPE) induced a dose-dependent increase in the food intake. Naloxone in doses of 2 and 10 nmol antagonized the increased food intake induced by morphine, beta E, ANEO and DYN in a dose-dependent manner, but only partly antagonized the effect of DADLE on the food intake. The selective mu-receptor antagonist beta-funaltrexamine (beta-FNA), in a dose of 5 nmol completely blocked the increase in the food intake induced by morphine but not by DADLE.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Food intake and physical activity are regulated by multiple neuropeptides, including orexin and dynorphin (DYN). Orexin-A (OXA) is one of two orexin peptides with robust roles in regulation of food intake and spontaneous physical activity (SPA). DYN collectively refers to several peptides, some of which act through opioid receptors (opioid DYN) and some whose biological effects are not mediated by opioid receptors (non-opioid DYN). While opioid DYN is known to increase food intake, the effects of non-opioid DYN peptides on food intake and SPA are unknown. Neurons that co-express and release OXA and DYN are located within the lateral hypothalamus. Limited evidence suggests that OXA and opioid DYN peptides can interact to modulate some aspects of behaviors classically related to orexin peptide function. The paraventricular hypothalamic nucleus (PVN) is a brain area where OXA and DYN peptides might interact to modulate food intake and SPA. We demonstrate that injection of des-Tyr-dynorphin (DYN-A2−17, a non opioid DYN peptide) into the PVN increases food intake and SPA in adult mice. Co-injection of DYN-A2−17 and OXA in the PVN further increases food intake compared to DYN-A2−17 or OXA alone. This is the first report describing the effects of non-opioid DYN-A2−17 on food intake and SPA, and suggests that DYN-A2−17 interacts with OXA in the PVN to modulate food intake. Our data suggest a novel function for non-opioid DYN-A2−17 on food intake, supporting the concept that some behavioral effects of the orexin neurons result from combined actions of the orexin and DYN peptides.  相似文献   

17.
S J Henriksen  G Chouvet  F E Bloom 《Life sciences》1982,31(16-17):1785-1788
Recent immunohistochemical and radioimmunochemical observations have demonstrated a differential distribution of immunoreactive dynorphin (DYN) in rat brain. The presence of DYN immunoreactivity in a major intrinsic fiber pathway within the rat hippocampus (the mossy fiber system) has led us to evaluate the possible role of DYN and other closely related peptides in this structure. Single cell activity and hippocampal field potentials have been recorded from the CA1-CA3 cellular fields in halothane or urethane anesthetized rats. DYN, DYN1-13, DYN1-8, and alpha-neo-endorphin had an excitatory effect on most CA1-CA3 neurons encountered as has been previously observed for opiates and other opioid peptides. This response could be blocked by naloxone or by co-administration of Mg++ ion suggesting an indirect (synaptic) mechanism of excitation similar to that hypothetized for enkephalin. A significant number of CA3 neurons, however, exhibited a non-naloxone sensitive inhibitory response to DYN, related opioid peptides, and the kappa agonist WIN 35-197 (ethylketocyclazocine). Field potential analysis of CA1-CA3 neuronal responses to mossy fiber activation also indicated an excitatory, Mg++ reversible, action of iontophoretically applied DYN. These observations support our cytochemical and assay studies indicating diverse opioid systems within the rat hippocampus. In addition, these functional studies are congruent with other evidence suggesting multiple opioid mechanisms in this structure.  相似文献   

18.
Liu ZH  Jin WQ  Dai QY  Chen XJ  Zhang HP  Chi ZQ 《Life sciences》2003,73(2):233-241
Compound trans-4-(p-bromophenyl)-4-(dimethylamino)-1-(2-thiophen-2-yl-ethyl)-cyclohexanol (C8813), structurally unrelated to morphine, is a novel analgesic. The present study examined the antinociception, opioid receptor selectivity and in vitro activity of C8813. The antinociceptive activity was evaluated using mouse hot plate and acetic acid writhing tests. In mouse hot plate test, the antinociceptive ED(50) of C8813 was 11.5 microg/kg, being 591 times and 3.4 times more potent than morphine and fentanyl respectively. In mouse writhing test, the antinociceptive ED(50) of C8813 was 16.9 microg/kg, being 55 times and 2.3 times more active than morphine and fentanyl respectively. In the opioid receptor binding assay, C8813 showed high affinity for mu-opioid receptor (K(i) = 1.37 nM) and delta-opioid receptor (K(i) = 3.24 nM) but almost no affinity for kappa-opioid receptor (at 1 microM). In the bioassay, the inhibitory effect of C8813 in the guinea-pig ileum (GPI) was 16.5 times more potent than in the mouse vas deferens (MVD). The inhibitory effects of C8813 in the GPI and MVD could be antagonized by mu-opioid receptor antagonist naloxone and delta-opioid receptor antagonist ICI174,864 respectively. However, the inhibitory effect of C8813 in the rabbit vas deferens was very weak. These results indicated that C8813 was a potent analgesic and a high affinity agonist for the mu- and delta-opioid receptors.  相似文献   

19.
Guo GW  Liu ZH  Jin WQ  Zhang HP  Chen XJ  Zhu YC  Chi ZQ 《Life sciences》2001,68(21):2383-2390
Differences of analgesia and withdrawal response among ohmefentanyl stereoisomers have been studied. In the present study, Quantitative comparison of reinforcing effects of ohmefentanyl stereoisomers and morphine was performed by using a conditioned place preference design in mice. Results showed that morphine and ohmefentanyl stereoisomers were able to increase significantly the time spent in the drug-paired side with respect to vehicle treated animals. A good linear correlation between doses of drugs and number of mice with place preference was found within a given dose range. On the basis of the dose-response curve analysis, ohmefentanyl stereoisomers displayed a significant difference in place preference ED50. The addictive index (analgesic ED50/place preference ED50) was used to assess the addictive potential of drugs. It was demonstrated that the addictive potential of ohmefentanyl stereoisomers did not exhibit a large difference as addictive index. Among these stereoisomers, the addictive potential of compound F9208 was markedly lower than that of morphine.  相似文献   

20.
The ability of acute environmental or intraperitoneal (i.p.) ethanol to influence morphine antinociceptive effect was studied in mice. In order to induce tolerance to morphine analgesia, mice received daily injections of 10 mg/Kg morphine over a period of 10 days. Mice were divided into three groups: i.p. ethanol (E), environmental ethanol (E*), and control saline (M). During the induction of tolerance these groups were treated identically except on days 1 and 11. On these days, 10 minutes prior to morphine injection, mice received either i.p. ethanol (1g/Kg), environmental ethanol (a bottle of 10% ethanol placed next to the animals cage during the experiments), or an equivalent volume of saline. Analgesia was assessed using a standard hot plate protocol and dose-response cumulative curves for morphine analgesia were obtained on days 1 and 11. On day 1, both the i.p. and environmental administration of ethanol showed similar morphine-potentiation effects [Mean Effective Dose: ED50 (M1)=4.5 mg/kg; ED50 (E1)=2.4 mg/kg; ED50 (E*1)=2.1 mg/kg]. On day 11, control group mice showed a reduction of morphine analgesia at test [ED50 (M11)=14.1 mg/kg]. Mice receiving i.p. and environmental ethanol again showed a leftward shift in dose-response cumulative curves for morphine antinociception with respect to controls [ED50 (E11)=9.1 mg/kg; ED50 (E*11)=4.7 mg/kg]. I.p. ethanol administration at non-antinociceptive doses enhances the morphine antinociception effect similarly in tolerant and non-tolerant (naive) mice. The presence of environmental ethanol can also induce a similar pattern of increase in morphine antinociception effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号