首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Laiho  Raija  Sallantaus  Tapani  Laine  Jukka 《Plant and Soil》1999,207(2):169-181
Vertical distributions of total N, P, K, Ca and Mg in a 0–60 cm surface peat layer were studied at 80 pine mire sites in southern Finland. The sites fell into two categories according to the soil nutrient regime: Meso-oligotrophic and oligo-ombrotrophic, and formed a chronosequence from undrained sites to sites drained 55 years ago. A statistically significant drainage age effect on the gravimetric (mg g-1) concentration profile forms was detected for all nutrients except K. In oligo-ombrotrophic sites the concentration of N increased following drainage in the topmost layer (0–10 cm) and that of P in all layers. In meso-oligotrophic sites the changes in N and P profiles were obscure. The concentration profiles of K remained clearly surface-enriched in both site type groups, but there was a general drop in the concentration values immediately after drainage. Ca and Mg decreased, especially in the 10–20 and 25–35 cm layers in both site type groups. The volumetric (kg m-3) nutrient concentrations clearly reflected the increase in the bulk density of the surface peat occurring after drainage. The compaction of peat had compensated for the effect of the processes removing nutrients from the soil (increased tree stand uptake, leaching); for Ca and Mg to a lesser degree than for the other nutrients. It was concluded that the N, P and K profiles did not show changes that would be likely to affect site productivity, whereas the net loss of Ca and Mg may cause problems in the longer term. As the total K capital of the sites was in general rather small, a disturbance in the biological cycle, such as cutting of the tree stand, may be critical. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Selected chemical, biochemical and biological properties of mineral soil (0–30 cm) were measured under a 19 year old forest stand (mixture of Pinus ponderosa and Pinus nigra) and adjacent unimproved grassland at a site in South Island, New Zealand. The effects of afforestation on soil properties were confined to the 0–10 cm layer, which reflected the distribution of fine roots (< 2 mm) in the soil profile. Concentrations of organic C, total N and P and all organic forms of P were lower under the forest stand, while concentrations of inorganic P were higher under forest compared with grassland, supporting the previously described suggestion that afforestation may promote mineralisation of soil organic matter and organic P. On the other hand, microbial biomass C and P, soil respiration and phosphatase enzyme activity were currently all lower and the metabolic quotient was higher in soil under forest compared with grassland, which is inconsistent with increased mineralisation in the forest soil. Reduced biological fertility by afforestation may be mainly attributed to changes in the quantity, quality and distribution of organic matter, and reduction in pH of the forest soil compared with the grassland soil. We hypothesize that the lower levels of C, N and organic P found in soil under forest are due to enhanced microbial and phosphatase activity during the earlier stages of forest development. Forest floor material (L and F layer) contained large amounts of C, N and P, together with high levels of microbial and phosphatase enzyme activity. Thus, the forest floor may be an important source of nutrients for plant growth and balance the apparent reduction in C, N and P in mineral soil through mineralisation and plant uptake. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Despite the extensive literature on the effect on soil properties of afforestation of former arable land, we still lack full understanding of whether the changes proceed in the same direction and at the same rate, and of how long is required to achieve a state of soil equilibrium typical of a natural forest ecosystem. Therefore, as part of a study comparing post-arable sandy soils (Dystric Arenosols) afforested with Scots pine (Pinus silvestris L.) with arable soils and soils of continuous coniferous forests, the range and direction of changes in pH, organic carbon (Corg), total nitrogen (Ntot), ammonium (N-NH4) and nitrates (N-NO3) in soil solution, total (Ptot) and available (Pav) phosphorus were determined. The studies were carried out in south-east Poland (51°30′-51°37′N, 22°20′-22°35′E). Ten paired sites of afforested soils (five with 14- to 17-year-old stands and five with 32- to 36-year-old stands) with adjacent cultivated fields, and five sites of continuous forest with present stands of ca. 130–150 years old were selected. Soil samples were taken from the whole thickness of master horizons and, in the case of the A horizon of the afforested soils, from three layers: 0–5 (A0–5), 5–10 (A5–10) and 10–20 cm (A10–20). The cultivated soils in the Ap horizon showed higher pH (by ca. 1.0 unit), lower Corg and C:N, similar Ntot, lower N-NH4, higher N-NO3, higher Ptot and Pav contents compared with the Ah horizon of continuous forest soils. The results indicated decreased soil pH in the former plough layer of the afforested soils, with the greatest decrease observed in the 0–5 cm layer. In these soils, the Corg content was considerably higher in the A0–5 layer, but lower in the two deeper layers and in the whole A horizon (0–20 cm) compared with the Ap horizon of the arable soils. The results indicate that the Corg content, after an initial phase of decline, again achieved a level characteristic of arable soils. The Ntot content in all layers of the A horizon of the afforested soils was lower than in the Ap horizon of the arable soils, and showed a reduction with stand age, especially in deeper layers. The C:N ratios in the mineral topsoil increased with stand age. N-NH4 content increased and N-NO3 decreased after afforestation. The Ptot and Pav contents in all layers and in the whole A horizon of the afforested soils, on stands of both ages, was lower than in the Ap of the cultivated soils. From the results, it could be concluded that, after more than 30 years of tree growth, the soils of the A horizon were still more similar to arable than to continuous forest soils with respect to Corg, Ptot and Pav. With respect to pH, N-NH4 and N-NO3, especially in the 0–5 cm layer, they were more similar to continuous forest soils than to cultivated soils, but with respect to Ntot and C:N ratio they were somewhere in between.  相似文献   

4.
Despite the extensive literature on the effect of afforestation of former arable land on soil properties, we still do not fully understand whether the changes proceed in the same direction and at the same rate or how long it takes to achieve a state of soil equilibrium typical of a natural forest ecosystem. Therefore, as part of a comparative study of post-arable sandy soils (Distric Arenosols) afforested with Scots pine (Pinus silvestris L.) with respect to arable soils and soils of continuous coniferous forests, a range and direction of the changes in some of their physical and sorptive properties were determined. The studies were carried out in SE Poland, 51°30′–51°37′N, 22°20′–22°35′E. Ten paired sites of the afforested soils (five with 14- to 17-year-old stands and five with 32- to 36-year-old stands) with adjacent cultivated fields and five sites of continuous forests with present stands of ca. 150 years were selected. For the physical properties, undisturbed soil cores were sampled from the upper part of each horizon while in the case of A horizon of the afforested soils, from two layers: 0–5 cm and 10–15 cm. For the remaining analyses, soil was taken from the whole thickness of the master horizons and in the case of A horizon of the afforested soils, from three layers: 0–5, 5–10 and 10–20 cm. The following properties were analysed: texture, bulk density (BD), total porosity (TP), water content at potential of −0.098, −9.81 and −49.03 kPa, hydrolytic acidity (Ha), base exchangeable cations: Ca2+, Mg2+, K+, Na+, total exchangeable bases (TEB), cation exchange capacity (CEC) and base saturation (BS). Afforestation caused a decrease in BD, an increase in TP and had no affect on water properties when compared with the cultivated soils. The changes referred to the A horizon, particularly to its 0–5 cm layer, and were related to the stand age. The CEC gradually rose in the former plough layer, beginning from the uppermost part, but during the first two decades its increase in the 0–5 cm layer was offset by a decline in the deeper layers. No substantial increase in CEC, in the whole A horizon, was recorded until three to four decades of afforestation. Afforestation also invoked an increase in Ha, a drop in TEB, particularly Ca2+, Mg2+ and K+, and reduction in BS. No differences between soils for all the studied properties for B and C horizons were observed. It was noted that more than 30 years after afforestation, the TEB and BS as well as Ca2+, Mg2+ and K+ content differed substantially, but in most cases not significantly, from their values in the cultivated soils and reached a level more similar to the soils of continuous coniferous forests. With respect to the water properties, Ha and CEC of the afforested soils still resembled arable soils, whereas regarding the TP and BD, they were somewhere in the middle. This implies that to understand changes in the soil properties resulting from afforestation and to predict future trends, long-term research is needed.  相似文献   

5.
秦岭地区华北落叶松人工林地土壤养分和酶活性变化   总被引:8,自引:0,他引:8  
以秦岭地区不同林龄(5年生、10年生、20年生、30年生和40年生)华北落叶松人工林为研究对象,采用野外调查采样和室内分析相结合的方法,研究了不同林龄华北落叶松人工林地土壤剖面p H值、有机质养分和酶活性的变化。结果表明:土壤p H值随着林龄有降低趋势,随着土层深度的增加有升高趋势。土壤有机质和土壤速效氮、速效磷和速效钾在近熟龄期显著高于幼龄期。土壤中的磷酸酶、脲酶、蔗糖酶和过氧化氢酶活性随着林龄都呈"高—低—高"的趋势,幼龄期的土壤蔗糖酶活性显著高于近熟龄的,而磷酸酶、脲酶和过氧化氢酶活性是近熟龄期的显著高于中幼龄。土壤速效养分和酶活性都随着土层深度的增加有显著的降低。相关分析表明磷酸酶活性与有机质、速效氮、速效磷、速效钾和脲酶活性呈极显著的正相关性(P0.01),脲酶与有机质、速效氮和速效钾呈极显著正相关。蔗糖酶与过氧化氢酶活性显著负相关(P0.05),与p H值有一定的正相关性。秦岭地区华北落叶松人工林进入近熟林之后土壤肥力有一定的恢复,而在中幼龄阶段土壤养分比较缺乏,尤其是氮磷。  相似文献   

6.
通过田间试验,研究地膜覆盖、秸秆还田和种植绿肥对冬小麦籽粒产量和土壤肥力的影响.结果表明: 与传统模式相比,地膜覆盖并不总能提高旱地小麦产量,3年平均产量无显著变化,但降低20~40 cm土壤全氮、有效磷、速效钾、有效硫、有效锌和有效锰含量,对土壤有机质、硝态氮、有效铁和有效铜含量无显著影响.秸秆还田的小麦产量3年平均降低12.1%,收获期0~20 cm土层全氮提高5.8%,20~40 cm土层有效铜含量提高6.2%,而有效磷和有效锰分别降低36.1%和10.2%,对开花期和收获期土壤有机质、硝态氮、速效钾、有效硫、有效锌和有效铁无显著影响.种植绿肥的籽粒产量降低12.1%,同时土壤pH、有效磷和有效硫含量降低,有机质、全氮、硝态氮、有效锌和有效锰均增加,对土壤速效钾、有效铁和有效铜均无显著影响.综上,在旱地土壤肥力较低的条件下,地膜覆盖和秸秆还田不利于土壤肥力的提升,使小麦增产受到限制;种植绿肥培肥效果最好,但应考虑区域降水情况,注意其带来的减产问题.  相似文献   

7.
Fallows improve soil fertility and allow sustainable agriculture. Soil fertility was assessed under different types of fallow through pH, nutrient concentrations and particulate organic matter (POM) quantity and quality. The two year-fallows were under Chromolaena odorata, Calliandra calothyrsus and Pueraria phaseoloides on a Typic Kandiudult. Soils were sampled from 0–10 cm and 10–20 cm depth. The weight of POM was 2 mg g−1 of soil under Calliandra, 3.9 mg g−1 under Chromolaena and 3.7 mg g−1 under Pueraria in the 0–10 cm layer. The tPOM-C (proportion of C in the total POM) and tPOM-N (proportion of N in total POM) were 26.1% and 14.5% under Calliandra, 39.6% and 18.8% under Chromolaena and 37.0% and 16.7% under Pueraria. However, despite the improvement of soil fertility under Pueraria as compared to planted Calliandra, the effect of Pueraria on nutrient concentration and POM status remained similar to that of Chromolaena. Calliandra increased soil acidity and allowed a deterioration of nutrient concentration (Ca, K), ECEC and an impoverishment of POM status.  相似文献   

8.
渤海泥质海岸典型防护林土壤微生物量季节动态变化   总被引:6,自引:0,他引:6  
土壤微生物生物量碳、氮是研究土壤肥力、土壤养分转化、循环以及环境变化的重要指标。研究渤海泥质海岸白榆、刺槐、白蜡、群众杨、辽宁杨纯林和辽宁杨刺槐混交林及当地自然生灌草地土壤微生物生物量碳、氮的季节动态及与土壤养分含量变化的关系,以期为沿海防护林树种的选择及林地管理提供科学依据。结果表明:造林能显著增加土壤微生物生物量含量,其中白榆(25 a)土壤微生物生物量碳、氮最高,是对照的2.50倍和2.09倍。0—10 cm土壤层微生物生物量碳、氮大于10—30 cm土层,季节动态变化差异显著。在0—10 cm土层内,渤海泥质海岸典型防护林土壤微生物生物量碳、氮季节动态多表现为春秋两季较高,夏季较低的"V"字型变化;在10—30 cm土层内,防护林土壤微生物生物量碳季节变化规律与0—10 cm土层一致,表现为夏季较低春秋较高的"V"字型,微生物生物量氮主要表现有"V"字型、倒"V"字型与直线型3种变化形式。在0—30 cm土层内,白榆(25 a)、刺槐、白蜡、群众杨、辽宁杨刺槐混交林、白榆(10 a)、辽宁杨及灌草地微生物生物量碳对土壤有机碳的平均贡献率分别为1.59%、1.68%、1.42%、1.54%、2.29%、1.80%、2.02%和1.12%,土壤微生物生物量氮对土壤全氮的平均贡献率分别为1.85%、1.30%、1.08%、1.35%、2.49%、1.57%、2.08%和2.32%。不同类型防护林地土壤微生物量碳、氮之间显著正相关,它们与土壤全氮、有机碳显著正相关,与土壤电导率显著负相关,另外,土壤微生物量碳还与土壤速效磷含量显著正相关。从不同土层微生物量碳、氮季节动态来看,造林可以增加泥质海岸土壤微生物生物量,但是夏季地下水位升高,盐碱上扬,加之树木生长大量利用养分,土壤微生物生物量夏季较低。综合分析土壤微生物生物量和土壤营养库的贡献率,白榆纯林和辽宁杨刺槐混交林更有利于泥质海岸土壤微生物群落功能恢复和营养固定。  相似文献   

9.
A field experiment was conducted for 5 years to examine the effects of non-flooded mulching cultivation on crop yield, internal nutrient efficiency and soil properties in rice–wheat (R–W) rotations of the Chengdu Plain, southwest China. Compared with traditional flooding (TF), non-flooded plastic film mulching (PM) resulted in 12 and 11% higher average rice (Oryza sativa L.) yield and system productivity (combined rice and wheat yields), and the trends in rice and wheat (Triticum aestivum L.) yields under PM were stable over time. However, non-flooded wheat straw mulching (SM) decreased average rice yield by 11% compared with TF, although no significant difference in system productivity was found between SM and TF. Uptakes of N and K by rice under PM were higher than those under TF and SM, but internal nutrient efficiency was significantly lower (N) or similar (K) under PM compared to SM and TF. This implies that more N and K accumulated in rice straw under PM. After 5-year rice–wheat rotation, apparent P balances (112–160 kg ha−1) were positive under all three cultivation systems. However, the K balances were negative under PM (−419 kg ha−1) and TF (−90 kg ha−1) compared with SM (45 kg ha−1). This suggests that higher K inputs from fertilizer, straw or manure may be necessary, especially under PM. After five rice seasons and four wheat seasons, non-flooded mulching cultivation led to similar (PM) or higher (SM) soil organic carbon (SOC), total N (TN) and alkali hydrolyzable N (AH-N) in the top 0–5 and 5–12 cm layers compared with TF. SOC, TN, AH-N and Olsen-P (OP) in the sub-surface layer (12–24 cm) were significantly higher under PM or SM than under TF, indicating that rice under non-flooded mulching conditions may fail to make use of nutrients from the subsoil. Thus, the risk of decline in soil fertility under non-flooded mulching cultivation could be very low if input levels match crop requirements. Our data indicate that PM and SM may be alternative options for farmers using R–W rotations for enhancement or maintenance of system productivity and soil fertility.  相似文献   

10.
Understanding mulching influences on nitrogen (N) availability is important for developing N management strategies in plantations at the upland sites of the southwestern China. Dynamics of biomass loss and nutrient release of mulching material, N availability in the soil and N mineralization in situ were evaluated for the treatments with different mulch quantity in degraded agricultural soil. The time taken for 95% decomposition of the initial biomass of Cogon grass (Imperata cylindrical L. Beauv. var. major) was 17 months with a half-life (t 1/2) of about 4.8 months. During the first 4 months about 55.2% of N was released, and after 1-year decomposition about 71.6% of N was released from the mulch material. The fresh grass mulch increased the available N in the soil as they decomposed. Compared to no mulch treatment, mulch treatments with 2.5, 5.0 and 7.5 kg m−2 mulching grass increased available N by about 13.1, 40.8 and 56.4% in the top soil (0–5 cm), and about 23.6, 78.0 and 139.3% in the middle layer (5–20 cm), respectively. The mean annual net N mineralization in the mulched plots had 9.0–40.9% higher cumulative rate than that in no-mulch plots, and the majority of the accumulated N in the incubated soils existed as NO3–N. There was a positive relationship between the rate of N mineralization and the available N in both the top soil and the middle layer. Mulch improves soil nutrients and this improvement increased with increasing mulching quantity. The increment of net N mineralization was approximately 69, 161 and 322 kg N ha−1 year−1 in the soil of 0–20 cm depth for the 2.5, 5.0 and 7.5 kg m−2 grass mulch treatments, respectively. The results from this study will provide a basis to optimize mulching techniques for poplar plantations in degraded agricultural soils of southwestern China.  相似文献   

11.
Soil samples from mature and secondary forests and agricultural sites in three subtropical life zones of Puerto Rico and the US Virgin Islands were collected to determine the effects of forest conversion to agriculture and succession on soil organic carbon (C) and nitrogen (N) contents. Site characteristics that may affect soil C and N (slope, elevation, aspect, and texture) were as uniform as possible. Carbon contents (to 50 cm depth or bedrock) of cultivated sites, as a percent of corresponding mature forests, were lower in the wet (44%) and moist (31%) than in the dry (86%) life zones whereas N contents were relatively high regardless of life zone (60–130% of the mature forests). Conversion of forests to pasture resulted in less soil C and N loss than conversion to crops. The time for recovery of soil C and N during succession was approximately the same in all three life zones, about 40–50 yr for C about 15–20 yr for N. However, the rate of recovery of soil C was faster in the wet and moist life zone, whereas N appeared to recover faster in the dry life zone. Evidence for loss of soil C during cultivation and gain during succession to soil depths of 50–100 cm is presented.  相似文献   

12.
Eva Ritter 《Plant and Soil》2007,295(1-2):239-251
Afforestation has become an important tool for soil protection and land reclamation in Iceland. Nevertheless, the harsh climate and degraded soils are growth-limiting for trees, and little is know about changes in soil nutrients in maturing forests planted on the volcanic soils. In the present chronosequence study, changes in C, N and total P in soil (0–10 and 10–20 cm depth) and C and N in foliar tissue were investigated in stands of native Downy birch (Betula pubescens Enrh.) and the in Iceland introduced Siberian larch (Larix sibirica Ledeb.). The forest stands were between 14 and 97 years old and were established on heath land that had been treeless for centuries. Soils were Andosols derived from basaltic material and rhyolitic volcanic ash. A significant effect of tree species was only found for the N content in foliar tissue. Foliar N concentrations were significantly higher and foliar C/N ratios significantly lower in larch needles than in birch leaves. There was no effect of stand age. Changes in soil C and the soil nutrient status with time after afforestation were little significant. Soil C concentrations in 0–10 cm depth in forest stands older than 30 years were significantly higher than in heath land and forest stands younger than 30 years. This was attributed to a slow accumulation of organic matter. Soil N concentrations and soil Ptot were not affected by stand age. Nutrient pools in the two soil layers were calculated for an average weight of soil material (400 Mg soil ha−1 in 0–10 cm depth and 600 Mg soil ha−1 in 10–20 cm depth, respectively). Soil nutrient pools did not change significantly with time. Soil C pools were in average 23.6 Mg ha−1 in the upper soil layer and 16.9 Mg ha−1 in the lower soil layer. The highest annual increase in soil C under forest compared to heath land was 0.23 Mg C ha−1 year−1 in 0–10 cm depth calculated for the 53-year-old larch stand. Soil N pools were in average 1.0 Mg N ha−1 in both soil layers and did not decrease with time despite a low N deposition and the uptake and accumulation of N in biomass of the growing trees. Soil Ptot pools were in average 220 and 320 kg P ha−1 in the upper and lower soil layer, respectively. It was assumed that mycorrhizal fungi present in the stands had an influence on the availability of N and P to the trees. Responsible Editor: Hans Lambers.  相似文献   

13.
In the highlands of Western Kenya, we investigated the reversibility of soil productivity decline with increasing length of continuous maize cultivation over 100 years (corresponding to decreasing soil organic carbon (SOC) and nutrient contents) using organic matter additions of differing quality and stability as a function of soil texture and inorganic nitrogen (N) additions. The ability of additions of labile organic matter (green and animal manure) to improve productivity primarily by enhanced nutrient availability was contrasted with the ability of stable organic matter (biochar and sawdust) to improve productivity by enhancing SOC. Maize productivity declined by 66% during the first 35 years of continuous cropping after forest clearing. Productivity remained at a low level of 3.0 t grain ha-1 across the chronosequence stretching up to 105 years of continuous cultivation despite full N–phosphorus (P)–potassium (K) fertilization (120–100–100 kg ha−1). Application of organic resources reversed the productivity decline by increasing yields by 57–167%, whereby responses to nutrient-rich green manure were 110% greater than those from nutrient-poor sawdust. Productivity at the most degraded sites (80–105 years since forest clearing) increased in response to green manure to a greater extent than the yields at the least degraded sites (5 years since forest clearing), both with full N–P–K fertilization. Biochar additions at the most degraded sites doubled maize yield (equaling responses to green manure additions in some instances) that were not fully explained by nutrient availability, suggesting improvement of factors other than plant nutrition. There was no detectable influence of texture (soils with either 11–14 or 45–49% clay) when low quality organic matter was applied (sawdust, biochar), whereas productivity was 8, 15, and 39% greater (P < 0.05) on sandier than heavier textured soils with high quality organic matter (green and animal manure) or only inorganic nutrient additions, respectively. Across the entire degradation range, organic matter additions decreased the need for additional inorganic fertilizer N irrespective of the quality of the organic matter. For low quality organic resources (biochar and sawdust), crop yields were increasingly responsive to inorganic N fertilization with increasing soil degradation. On the other hand, fertilizer N additions did not improve soil productivity when high quality organic inputs were applied. Even with the tested full N–P–K fertilization, adding organic matter to soil was required for restoring soil productivity and most effective in the most degraded sites through both nutrient delivery (with green manure) and improvement of SOC (with biochar).  相似文献   

14.
Afforestation has been accepted as a key measure for preventing soil erosion on the Chinese Loess Plateau for 40 years. In this study, we assessed the ecological success of afforestation by comparing afforested with pre‐afforested (croplands) and natural recovery sites in a typical watershed on the Loess Plateau. We evaluated the ecosystem response in terms of vegetation structure, plant diversity, and several key ecological processes of soil moisture, soil nutrients, and soil anti‐erodibility. Compared with the croplands, we found that the following indexes were significantly enhanced in afforested sites: vegetation structure and species diversity (species richness, Margalef index, Shannon–Wiener index, and Sorensen's similarity index), soil nutrients (organic carbon, total nitrogen, extractable ammonium nitrogen, available potassium, and available phosphorous), and soil anti‐erodibility indexes (water‐stable soil aggregates, mean weight diameter, and the ratio of soil structure dispersion). Afforestation offered few additional advantages when compared with natural recovery sites. More importantly, afforestation had significant negative effects on soil desiccation, with negative impacts on the long‐term sustainability of these ecosystems. In order to develop self‐sustaining and functional ecosystems, our results suggest that natural revegetation offers a more adaptive and appropriate method of ecological restoration on the Loess Plateau.  相似文献   

15.
为更好地理解高寒草原土壤团聚体结构及其养分含量对氮(N)、磷(P)沉降增加的响应,于2018年开始依托全球营养网络(Nutrient Network)在巴音布鲁克草原生态系统研究站开展模拟氮磷沉降的短期(<5年)氮磷添加控制实验,设置对照(CK)、N添加、P添加、NP交互添加4个处理。N、P添加量均为10 g m-2 a-1。于2021年8月采集植物与土壤样品,采用湿筛法分析土壤水稳定性团聚体组成,测定全土和各粒级团聚体有机碳(SOC)、总氮(TN)、总磷(TP)、速效氮(AN)和速效磷(AP)含量。研究结果表明:(1)巴音布鲁克高寒草原各粒级土壤团聚体比例从低到高依次为:0.053—0.25 mm、<0.053 mm、0.25—2 mm、和>2 mm,以>2 mm团聚体占主导,其比例在45.48%—71.81%之间。(2)N添加显著降低了0—10 cm土壤层>2 mm团聚体比例和团聚体稳定性,而P添加则显著降低了10—20 cm土壤层>2 mm团聚体比例和团聚体稳定性。(3)0—10 cm土壤层各粒级团聚...  相似文献   

16.
Summary The effect of cropping systems of wheat-maize (WM), wheat-rice (WR), wheat-groundnut (WG), gram-bajra (GrB), potato-guara (PGu), and raya-mash (RaMa) in combination with treatments of dummy (uncultivated area) and applied Zn 0.0 (Zn0), 2.8 (Zn1), 5.6 (Zn2) 11.2 (Zn3) kg/ha was studied on the transformation of labile Zn fractions: exchangeable (Exch.), adsorbed (TAd) [weakly (WAd), moderately (MAd), strongly (SAd)], and organic matter (OM) in different layers of sandy loam soil. The added Zn stayed largely in the 0–30 cm layer and was associated with the WAd- and OM-Zn fractions. About 70% of the total labile Zn (PAv) remained in the WAd- and OM-Zn, that is, 33 and 39% in 0–15 cm layer, and 33–39% and 31–36% in 16–150 cm layer. All the Zn fractions in 0–15 cm layer, and only of WAd in 16–30 cm layer, significantly increased with rates of Zn addition. These were also significantly higher in Zn1–3 than Zn0 and dummy treatments because of the residual Zn. Diverse effects of cropping systems on soil properties, residual Zn, and labile Zn fractions were found. The influence was strong in 0–15 cm layer decreasing gradually with soil depth due largely to differences in Zn requirement, crop intake of various Zn fractions and the cultural practices of the systems. All the crops and rotations appreciabilly responded to Zn application. Uptake of Zn by crops markedly and successively increased with increasing rates of Zn application. The WR caused a significant increase in soil organic matter whereas WR and WM in CaCO3. The WR, WM and GrB resulted in a decrease in pH while WG and GrB in CaCO3. The RaMa and PGu maintained much higher residual Zn than other systems. The systems which caused the maximum decrease in Zn fractions were: cereal-cereal (WM) in Exch. legume-millet (GrB) in all the adsorbed, PAv and the Zn associated with CaCO3, vegetable-legume (PGu) also in MAd and SAd; and cereal-legume (WG) in OM and PAv. Hence GrB, WG and WM in that order will cause the deficiency of Zn much earlier than the other systems due to greater use and or transformation of WAd- andOM-Zn. Such effects were least under RaMa because it increased the WAd-, MAd- and OM-Zn.  相似文献   

17.
以我国亚热带东部地区48年生樟树人工林为对象,并以未抚育林分为对照,分析了不同林下植被处理对两种林分0~60 cm土层土壤活性有机碳含量及其比率的影响.结果表明: 与对照相比,抚育林分土壤总有机碳和易氧化碳含量均下降,且在0~10和10~20 cm土层之间的差异达到显著水平;而水溶性有机碳(0~10 和10~20 cm土层除外)和轻组有机质含量升高,但差异不显著.抚育林分土壤水溶性有机碳占总有机碳的比率高于对照,而易氧化碳占总有机碳的比率则相反.两种林分土壤中水溶性有机碳、易氧化碳、轻组有机质与总有机碳含量均呈显著或极显著相关,其中,抚育林分的易氧化碳和轻组有机质与总有机碳的相关系数大于对照,而水溶性有机碳与总有机碳则相反.两种林分中,易氧化碳、轻组有机质、总有机碳与土壤养分的相关性均达到显著或极显著水平,而抚育林分土壤水溶性有机碳与水解氮、速效磷、交换性钙和交换性镁的相关性不显著.  相似文献   

18.
Chemical changes along headwater streams at the Hubbard Brook Experimental Forest in New Hampshire suggest that important differences exist in biogeochemical cycles along an altitudinal gradient within small watershed ecosystems. Using data collected during the period 1982–92, we have constructed element budgets [Ca, Mg, K, Na, Si, Al, dissolved organic carbon (DOC), S, and N] for three subcatchments within watershed 6, a forested watershed last logged around 1917–20. The biogeochemistry of the high-elevation spruce-fir–white birch subcatchment was dominated by processes involving naturally occuring organic compounds. Stream water and soil solutions in this zone had elevated concentrations of organic acidity, DOC, and organically bound monomeric aluminum (Alo), relative to lower-elevation sites. The middle-elevation subcatchment, dominated by hardwood vegetation, had the greatest net production of inorganic-monomeric aluminum (Ali), and exhibited net immobilization of DOC and Alo. The low-elevation subcatchment, also characterized by deciduous vegetation, had the highest rates of net production of base cations (Ca2+, Mg2+, K+, Na+) among the subcatchments. Living biomass of trees declined slightly in the spruce-fir–white birch subcatchment during the study period, remained constant in the middle-elevation zone, and increased by 5% in the low-elevation subcatchment. Coupling the corresponding changes in biomass nutrient pools with the geochemical patterns, we observed up to 15-fold differences in the net production of Ca, Mg, K, Na, and Si in soils of the three subcatchments within this 13.2-ha watershed. Release of Ca, Na, and dissolved Si in the highest-elevation subcatchment could be explained by the congruent dissolution of 185 mol ha−1 y−1 of plagioclase feldspar. The rate of plagioclase weathering, based on the net output of Na, increased downslope to 189 and 435 mol ha−1 y−1 in the middle-elevation and low-elevation subcatchments, respectively. However, the dissolution of feldspar in the hardwood subcatchments could account for only 26%–37% of the observed net Ca output. The loss of Ca from soil exchange sites and organic matter is the most likely source of the unexplained net export. Furthermore, this depletion appears to be occurring most rapidly in the lower half of watershed 6. The small watersheds at the Hubbard Brook Experimental Forest occupy a soil catena in which soil depth and soil-water contact time increase downslope. By influencing hydrologic flowpaths and acid neutralization processes, these factors exert an important influence on biogeochemical fluxes within small watersheds, but their influence on forest vigor is less clear. Our results illustrate the sensitivity of watershed-level studies to spatial scale. However, it appears that much of the variation in element fluxes occurs in the first 10–20 ha of drainage area. Received 13 August 1998; accepted 7 September 1999.  相似文献   

19.
The fate of sheep urine sulphate in the soil and its plant uptake was monitored using 35S-labelled sulphate-S in undisturbed pasture microplots in two glasshouse experiments. The extent of macropore flow of simulated urine immediately following a sheep urination was also investigated at 5 pasture sites in the field. Immediately following urination to pasture microplots in the glasshouse, the amounts of urinederived 35S recovered in the 0–2.5, 2.5–7.5, 7.5–15 and 15–30 cm soil layers were 38, 28, 18 and 9%, respectively. In the field study on 5 contrasting soils, a similar pattern was found with 55–70, 20–35 and 13–20% of simulated urine being recovered in the 0–5, 5–10 and 10–15 cm soil layers, respectively. There was insignificant loss below 15 cm. If urine had moved via simple displacement in these soils the wetting front would have reached only 2.0–2.5 cm in depth suggesting that significant downward movement of urine via macropore flow occurs after urination. In a 15-day period following urine application to a pasture soil there was a rapid rate of incorporation of 35S into organic forms, while between 15 and 64 days the rate of incorporation declined. After 7 days, 27% of added 35S had been incorporated into organic forms with 19% being C-bonded S and 8% Hl-reducible S. This rapid incorporation was attributed to the large and active microbial biomass present in the rhizosphere. Since urine application depressed pasture growth, due to ‘urine burn’, less than 10% of applied 35S was absorbed by pasture plants over a 64-day period. A second experiment using microplots of contrasting soil types, confirmed that the majority of the 35S incorporated into the organic form was present as C-bonded S. Results showed that of the 35S remaining in the 0–2.5 cm layer 35 days after application, 20–40% was present as sulphate, 10–20% as Hl-reducible S and 50–60% as C-bonded S. Plant uptake of S accounted for only 7–12% of applied 35S over the 35-day period.  相似文献   

20.
不同林龄马尾松凋落物基质质量与土壤养分的关系   总被引:9,自引:0,他引:9  
凋落物的质量、数量及分解速率在一定程度上代表了土壤的营养状况。为了精确估算凋落物分解对土壤碳库的年净归还量及凋落物-土壤生物化学连续体的深层理解,从凋落物基质质量的角度分析了三峡库区不同林龄马尾松凋落物基质质量与土壤养分的作用关系,结果表明:中龄林、近熟林、成熟林马尾松凋落物基质质量中的C、C/N比、C/P比、木质素/N比、木质素/P比差异显著,其中近熟林凋落物叶木质素/N分别比中龄林和成熟林的高33.65%、39.24%,N、P、K、木质素含量差异不显著;但各组织器官的N、P、K含量差异显著,均是皮<枝<叶<杂物,C/N比、C/P比的变化则相反。不同林龄马尾松0-20 cm(0-5 cm、5-10 cm、10-20 cm)土壤有机质、总氮、有效磷含量均表现出近熟林<中龄林<成熟林,0-5 cm最大,10-20 cm最小,且随着土壤深度的增加而明显降低,总磷则是中林龄最低,成熟林最大,pH值则各土层均表现为中龄林<成熟林<近熟林,平均pH值为4.55-5.51。凋落物基质质量指标与土壤养分之间冗余分析(RDA)表明:马尾松凋落物基质质量和土壤养分之间关系紧密,N、P、纤维素、半纤维素、木质素、木质素/N比、C/N比对土壤养分影响比较大;凋落物中木质素/N比、C/N比与土壤有机质呈显著负相关,其含量越高越不利于土壤有机质的形成,土壤养分积累的越慢;凋落物基质质量氮含量与土壤氮含量呈显著正相关;土壤pH值、容重与N含量呈显著负相关,与凋落物C/N比、木质素/N比呈显著正相关。马尾松土壤表面有机质、N、P养分含量与凋落物基质质量对应养分含量变化规律一致,土壤养分高,凋落物基质质量相对较高,土壤贫瘠,凋落物基质质量相对较低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号