首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the growth of interleukin 2 (IL-2)-dependent T cells IL-2 binding is followed by internalization of the complex between IL-2 and the high affinity IL-2 receptor (HA-IL-2R). The respective role of IL-2 binding to HA-IL-2R and internalization of the complex has been examined. Monoclonal antibody 7D4 (IgM) blocks IL-2-dependent T cell growth although it does not affect IL-2 binding to HA-IL-2R. We show here that 7D4 inhibits T cell growth by blocking IL-2 internalization by HA-IL-2R. In contrast, Fab fragments prepared from 7D4 neither block IL-2 internalization nor inhibit T cell growth. Monoclonal 5A2, that recognizes an epitope related to the IL-2 binding site as well as its Fab fragment, inhibits T cell growth and IL-2 internalization. Monoclonal antibody 7D4, because of its pentameric structure, probably aggregates the IL-2R at the T cell surface and therefore prevents it internalization. The data presented in this paper suggest that simple occupancy of HA-IL-2R by IL-2 is not sufficient to transduce the T cell growth signal; this signal is transmitted only after internalization of the IL-2/HA-IL-2R complex.  相似文献   

2.
The separate regulation mechanisms of cytokines on two classes of interleukin 2 receptors (IL-2R) on human peripheral T and B cells were analyzed by a flow cytometer using a double stain with IL-2R alpha (55 kilodalton Tac) and IL-2R beta (75 kilodalton mik beta 1, mik beta 3). Although the expression of IL-2R alpha by T cells was slightly enhanced by IL-2 and IL-4, expression of the beta chain was diminished by both cytokines. IL-5 by itself did not alter the expression of either IL-2R alpha or beta, but preculturing with IL-2 for 24 h followed by IL-5 for another 24 h induced an increase in IL-2R alpha expression and in simultaneous alpha/beta chain expression. Increased numbers of high-affinity IL-2R were confirmed by 125I binding assays. On B cells, IL-4 increased alpha, beta, and simultaneous alpha/beta chain expression, but IL-4-treated B cells did not show an increased number of high-affinity IL-2R.  相似文献   

3.
The interleukin 1 receptors (IL-1R) on the human B lymphoma RAJI and on the murine thymoma EL4-6.1 have been characterized. Equilibrium binding analysis using both 125I-labeled IL-1 alpha and IL-1 beta showed that RAJI cells have a higher number of binding sites/cell for IL-1 beta (2400, Kd 2.2 nM) than for IL-1 alpha (316, Kd 0.13 nM). On the other hand, EL4-6.1 cells have more receptors/cell for IL-1 alpha (22 656, Kd 1 nM) than for IL-1 beta (2988, Kd 0.36 nM). Dexamethasone (DXM) induced on RAJI cells a time-dependent increase in binding sites for both IL-1 beta and IL-1 alpha without affecting their binding affinities. However, while receptor-bound 125I-IL-1 alpha was displaced with equal efficiency by both IL-1 forms, only unlabeled IL-1 beta could effectively displace 125I-IL-1 beta. Cross-linking experiments indicated that RAJI cells have a predominant IL-1R of about 68 kDa, while EL4-6.1 cells have an IL-1-binding polypeptide of 80 kDa. These results suggest that B and T cells possess structurally different IL-1R with distinct binding properties for IL-1 alpha and IL-1 beta.  相似文献   

4.
Regulatory effects of IL-4 on human B-cell response to IL-2   总被引:1,自引:0,他引:1  
Interleukin-4 (IL-4) counteracts a number of the direct effects of interleukin-2 (IL-2) on B-cells. We here summarize and extend our results, obtained in two different experimental systems, on the antagonism between these two major interleukins. IL-4 inhibits the effect of IL-2 on the proliferation as well as the differentiation of B-type chronic lymphocytic leukemia (B-CLL) cells. When B-CLL cells are activated by anti-mu Ab in the presence of IL-4, this latter enhances the expression of the p55 as well as the p70/75 chain of the IL-2 receptor. In contrast IL-4 profoundly suppresses the number of high affinity binding sites for IL-2 on in vitro activated B-CLL cells. Such a discrepancy between the suppression of IL-2 binding sites and the enhancement of each component of the heterodimeric IL-2 receptor, is as far as we know, yet undescribed. The interaction of IL-4 with its own receptors might influence the state of p55-p70/75 complex association or act on a third subunit of the IL-2 receptor. When used alone, IL-4 enhances the expression of other activation molecules by B-CLL cells: CD23, DR antigen. Similarly IL-4 can concomitantly enhance the specific response of normal B-cells while suppressing the action of IL-2. When normal human B-cells are specifically stimulated by an insolubilized antigen, IL-4 alone induces an expansion of the number of specific antigen-binding cells. In contrast IL-4 profoundly suppresses the generation of antigen-induced IL-2-dependent specific IgM antibody forming cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
T Hara  A Miyajima 《The EMBO journal》1992,11(5):1875-1884
The human interleukin-3 receptor (IL-3R) is composed of an IL-3 specific alpha subunit (IL-3R alpha) and a common beta subunit (beta c) that is shared by IL-3, granulocyte/macrophage colony stimulating factor (GM-CSF) and IL-5 receptors. In contrast to the human, the mouse has two distinct but related genes, AIC2A and AIC2B, both of which are homologous to the human beta c gene. AIC2B has proved to encode a common beta subunit between mouse GM-CSF and IL-5 receptors. AIC2A is unique to the mouse and encodes a low affinity IL-3 binding protein. Based on the observation that the AIC2A protein is a component of a high affinity IL-3R, we searched for a cDNA encoding a protein which conferred high affinity IL-3 binding when coexpressed with the AIC2A protein in COS7 cells. We obtained such a cDNA (SUT-1) encoding a mature protein of 70 kDa that has weak homology to the human IL-3R alpha. The SUT-1 protein bound IL-3 with low affinity and formed high affinity receptors not only with the AIC2A protein but also with the AIC2B protein. Both high affinity IL-3Rs expressed on a mouse T cell line, CTLL-2, showed similar IL-3 binding properties and transmitted a growth signal in response to IL-3. Thus, the mouse has two distinct functional high affinity IL-3Rs, providing a molecular explanation for the differences observed between mouse and human IL-3Rs.  相似文献   

6.
A negative influence of IL-4 on the IL-2-induced B cell proliferation and differentiation has recently been reported. In this study, we have further investigated a role of IL-4 on human tonsillar B cell proliferation and IL-2R expression. IL-4 enhanced Staphylococcus aureus Cowan 1 strain (SAC)-induced B cell proliferation, reaching the peak on day 3. However, from day 4, IL-4 inhibited IL-2-induced proliferation. In the cross-linking study, IL-4 enhanced the density of 125I-IL-2-binding protein at low affinity binding condition (2 nM of 125I-IL-2) in SAC-activated B cells. However, IL-4 blocked the enhancement in the density of 125I-IL-2-binding proteins induced by IL-2, from day 3, in both high (50 pM of 125I-IL-2) and low affinity binding conditions, suggesting that IL-4 is able to block IL-2-induced IL-2R up-regulation. This was confirmed by a binding study: B cells that cultured for 3 days with SAC plus IL-2 expressed an average of 180 +/- 20 high affinity receptors/cell with a Kd of 12 pM and 5800 +/- 500 low affinity receptors/cell with a Kd of 980 pM. By coculturing with IL-4, high affinity receptors were almost undetectable and the expression of low affinity receptors was reduced by more than 80%. IL-4-mediated inhibition of IL-2-induced IL-2R expression does not seem to be due to the direct interaction between IL-4 and cell surface receptors, inasmuch as preincubation of cells with IL-4 for 60 min at 37 degrees C did not alter the binding of 125I-IL-2 to cells previously cultured for 3 days with SAC plus IL-2. These data suggest that IL-4 has a capacity to block the up-regulation of the high as well as low affinity IL-2R-induced by IL-2 in normal human B cells, and could provide a possible explanation for the decreased responsiveness of B cells to IL-2 in the presence of IL-4.  相似文献   

7.
8.
The expression of IL-1R on human peripheral B cells was analyzed by the binding assay with 125I-labeled human rIL-1 alpha and by the flow cytofluorometry by the use of FITC-conjugated IL-1 alpha. The proliferation and the differentiation of B cells stimulated with Staphylococcus aureus Cowan I (SAC) in the presence of T cell-derived factors were dependent on IL-1. By the binding experiment with 125I-labeled IL-1 alpha, B cells expressed only few IL-1R without any stimulations. When they were stimulated with SAC, IL-1R on B cells began to increase by only 1 h, reached the maximum level at 6 h. The binding of 125I-labeled IL-1 alpha to B cells was inhibited by the addition of either cold IL-1 alpha or IL-1 beta suggesting that IL-1R on B cells reactive for IL-1 alpha and IL-1 beta were identical. By Scatchard plot analysis, the existence of two classes of IL-1R on B cells was found. A major class of IL-1R (320 molecules/cell) has a lower affinity (Kd = 3.8 x 10(-10) M) and a minor class of IL-1R (70 molecules/cell) has a higher affinity (Kd = 4.4 x 10(-12) M). When B cells were stimulated with SAC, both lower and higher affinity IL-1R were increased to 1960 molecules/cell and 300 molecules/cell, respectively. Furthermore, IL-1R on B cells were also detected with FITC-conjugated IL-1 alpha by a flow cytofluorometer. Only 3 to 5% of B cells expressed IL-1R without any stimulations. When B cells were stimulated with SAC, IL-1R-positive B cells were increased to 20%. The addition of anti-class II antibodies inhibited B cell proliferation and differentiation induced with SAC, IL-1, and T cell-derived factors. Anti-class II antibodies also inhibited the number of IL-1R on B cells. These results suggest that the expression of IL-1R was induced as the initial stage of B cell activation and that class II Ag play an important role for the expression of IL-1R on B cells.  相似文献   

9.
Several lines of indirect evidence suggest that the number and/or affinity of IL-2R expressed by activated T lymphocytes declines with age and that this decline is implicated in the age-related proliferative impairment of Ag or mitogen-stimulated T cells. In an attempt to provide a direct demonstration of such a defect, various experimental approaches were used to analyze the expression of high and low affinity IL-2R as well as their functional properties in relation to age in purified populations of murine T lymphocytes. IL-2R were induced by Con A-activation which involves a transmembrane signaling mechanism or by exposure to phorbol dibutyrate (PDBu) which bypasses such a pathway. Consistent with the previously reported age-related defect in signal transduction, a major deficiency in the expression of high affinity IL-2R was observed in mitogen-activated cells derived from aged animals. As expected, PDBu-induction circumvented the transmembrane signaling defect and resulted in the restoration of a measurable amount of high affinity IL-2R expressed by cells from aged mice early after activation. The functional properties of the IL-2R expressed as a consequence of Con A or PDBu induction were investigated by assessing the proliferative response induced through the high affinity IL-2R as compared to that mediated by the beta-chain alone. Although Con A-induction resulted in a decreased expression of high affinity IL-2R by T lymphocytes derived from aged mice, the ability of these receptors as well as that of their beta-chain component to transmit a proliferative signal was identical in both age groups. In contrast, PDBu induced in both cell populations the expression of functionally aberrant IL-2R, unable to signal for proliferation unless excessively high concentrations of rIL-2 were available. The quantitative minimal estimate of the frequency of Con A-activated, IL-2-responsive cells showed a fourfold age-associated decrease, confirming the inability of a subpopulation of T lymphocytes from aged mice to express a sufficient density of high affinity IL-2R as a consequence of mitogenic activation.  相似文献   

10.
11.
Regulation of IL-5R expression in normal, non-Ly-1 (CD5) B cells was evaluated. Freshly isolated unfractionated spleen B cells express little or no detectable IL-5R. In contrast, B cells stimulated with anti-Ig-dextran conjugates express substantial numbers of IL-5R. Phenotypic analysis of the B cells responding to anti-Ig-dextran, and expressing IL-5R, demonstrates that these cells do not express Ly-1 or Mac-1. Scatchard analysis of B cells stimulated with anti-IgD-dextran reveals two classes of IL-5R: a high affinity receptor with a Kd of 17 pM and approximately 300 receptors/cell, and a low affinity receptor with a Kd of 0.6 nM and approximately 1000 receptors/cell. Peak receptor expression in response to anti-IgD-dextran is seen 72 h after stimulation and with a dose of 10 ng/ml. The induced receptors are functional, because both proliferation and Ig secretion by B cells treated with anti-IgD-dextran are enhanced by IL-5. Other B cell mitogens such as LPS, soluble anti-Ig/IL-4, or phorbol esters/ionomycin are poor inducers of the IL-5R. Finally, not only does LPS fail to induce significant IL-5R expression on spleen B cells, it suppresses both high and low affinity IL-5R expression induced by anti-IgD-dextran. These data indicate that normal, non-Ly-1 B cells are capable of expressing both high and low affinity IL-5R but that receptor expression is critically dependent on the type of stimulus provided to the B cell. A stimulus that produces extensive cross-linking of surface Ig on B cells, i.e., anti-Ig-dextran, is very effective in inducing IL-5R whereas a variety of other B cell mitogens are ineffective.  相似文献   

12.
The stimulation of activated human T lymphocytes with IL-2 results in increased tyrosine kinase activity. IL-2 treatment of Tac+ T cells stimulates the rapid phosphorylation of multiple protein substrates at M of 116, 100, 92, 70 to 75, 60, 56, 55, 33, and 32 kDa. Phosphorylation on tyrosine residues was detected by immunoaffinity purification of protein substrates with Sepharose linked antiphosphotyrosine mAb, 1G2. Although phorbol ester stimulated serine phosphorylation of the IL-2R alpha (p55) subunit recognized by alpha TAC mAb, IL-2 did not stimulate any detectable phosphorylation of IL-2R alpha or associated coimmune precipitated proteins. In fact, the tyrosine phosphorylated proteins did not coprecipitate with alpha Tac antibody and similar phosphoproteins were stimulated by IL-2 in IL-2R alpha- human large granular lymphocytes which express only the 70 to 75 kDa IL-2R beta subunit of the high affinity IL-2R. Anti-Tac mAb could inhibit IL-2-stimulated tyrosine phosphorylation in activated T cells, which express both IL-2R subunits that together form the high affinity receptor complex, but not in large granular lymphocytes expressing only the IL-2R beta subunit. The data suggest that IL-2 stimulation of tyrosine kinase activities requires only the IL-2R beta subunit.  相似文献   

13.
IL-2 receptors on T cells exist in at least three forms which differ in their ligand-binding affinity. The low-affinity IL-2 receptor (IL-2R) consists of the 55-kDa Tac protein (p55 alpha), the intermediate-affinity site corresponds to the 70-kDa molecule (p70 beta), and the high-affinity IL-2R consists of a noncovalent heterodimeric structure involving both p55 alpha and p70 beta. We studied 24 B cell lines (8 EBV-negative and 16 EBV-positive) for IL-2R expression in the presence or absence of the tumor promoter, teleocidin. 125I-IL-2 radioreceptor binding assays and crosslinking studies demonstrated the sole expression of p55 alpha in EBV-negative cell lines only, whereas p55 alpha present in EBV-positive cell lines was always associated with p70 beta to construct high-affinity IL-2R. p70 beta was not detected in any of the EBV-negative cell lines, but was expressed on most of the EBV-positive cell lines (13 of 16). Our data also indicate that the expression of p55 alpha and p70 beta by radiolabeling correlates with their expression in flow cytometry, and that a large excess of p55 alpha is required to construct high-affinity IL-2R. Coexpression of p55 alpha and p70 beta on human B cells contributed to constructing high-affinity IL-2R hybrid complex as shown by (i) rapid association rate contributed by p55 alpha and slow dissociation rate by p70 beta; (ii) teleocidin's ability to induce p55 alpha on cell lines which express p70 beta only, resulting in appearance of high-affinity IL-2R; (iii) blocking p55 alpha by anti-Tac mAb in cell lines which constitutively express high-affinity IL-2R eliminated both high- and low-affinity components. The existence of low, intermediate, and high IL-2R on human B cells bears important future implications for understanding the mechanism of IL-2 signaling and the role of IL-2 in B cell activation, proliferation, and differentiation.  相似文献   

14.
Interleukin-15 (IL-15) is crucial for the generation of multiple lymphocyte subsets (natural killer (NK), NK-T cells, and memory CD8 T cells), and transpresentation of IL-15 by monocytes and dendritic cells has been suggested to be the dominant activating process of these lymphocytes. We have previously shown that a natural soluble form of IL-15R alpha chain corresponding to the entire extracellular domain of IL-15R alpha behaves as a high affinity IL-15 antagonist. In sharp contrast with this finding, we demonstrate in this report that a recombinant, soluble sushi domain of IL-15R alpha, which bears most of the binding affinity for IL-15, behaves as a potent IL-15 agonist by enhancing its binding and biological effects (proliferation and protection from apoptosis) through the IL-15R beta/gamma heterodimer, whereas it does not affect IL-15 binding and function of the tripartite IL-15R alpha/beta/gamma membrane receptor. Our results suggest that, if naturally produced, such soluble sushi domains might be involved in the IL-15 transpresentation mechanism. Fusion proteins (RLI and ILR), in which IL-15 and IL-15R alpha-sushi are attached by a flexible linker, are even more potent than the combination of IL-15 plus sIL-15R alpha-sushi. After binding to IL-15R beta/gamma, RLI is internalized and induces a biological response very similar to the IL-15 high affinity response. Such hyper-IL-15 fusion proteins appear to constitute potent adjuvants for the expansion of lymphocyte subsets.  相似文献   

15.
16.
17.
Interleukin-5 (IL-5) regulates the production and function of B cells, eosinophils, and basophils. The IL-5 receptor (IL-5R) consists of two distinct membrane proteins, alpha and beta. The alpha chain (IL-5R alpha) is specific to IL-5. The beta chain is the common beta chain (beta c) of receptors for IL-3 and granulocyte-macrophage colony-stimulating factor (GM-CSF). The cytoplasmic domains of both alpha and beta chains are essential for signal transduction. In this study, we generated cDNAs of IL-5R alpha having various mutations in their cytoplasmic domains and examined the function of these mutants by expressing them in IL-3-dependent FDC-P1 cells. The membrane-proximal proline-rich sequence of the cytoplasmic domain of IL-5R alpha, which is conserved among the alpha chains of IL-5R, IL-3R, and GM-CSF receptor (GM-CSFR), was found to be essential for the IL-5-induced proliferative response, expression of nuclear proto-oncogenes such as c-jun, c-fos, and c-myc, and tyrosine phosphorylation of cellular proteins including JAK2 protein-tyrosine kinase. In addition, analysis using chimeric receptors which consist of the extracellular domain of IL-5R alpha and the cytoplasmic domain of beta c suggested that dimerization of the cytoplasmic domain of beta c may be an important step in activating the IL-5R complex and transducing intracellular growth signals.  相似文献   

18.
IL-15 and IL-2 are two structurally and functionally related cytokines whose high affinity receptors share the IL-2R beta-chain and gamma-chain in association with IL-15R alpha-chain (IL-15R alpha) or IL-2R alpha-chain, respectively. Whereas IL-2 action seems restricted to the adaptative T cells, IL-15 appears to be crucial for the function of the innate immune responses, and the pleiotropic expression of IL-15 and IL-15R alpha hints at a much broader role for the IL-15 system in multiple cell types and tissues. In this report, using a highly sensitive radioimmunoassay, we show the existence of a soluble form of human IL-15R alpha (sIL-15R alpha) that arises from proteolytic shedding of the membrane-anchored receptor. This soluble receptor is spontaneously released from IL-15R alpha-expressing human cell lines as well as from IL-15R alpha transfected COS-7 cells. This release is strongly induced by PMA and ionomycin, and to a lesser extent by IL-1 beta and TNF-alpha. The size of sIL-15R alpha (42 kDa), together with the analysis of deletion mutants in the ectodomain of IL-15R alpha, indicates the existence of cleavage sites that are proximal to the plasma membrane. Whereas shedding induced by PMA was abrogated by the synthetic matrix metalloproteinases inhibitor GM6001, the spontaneous shedding was not, indicating the occurrence of at least two distinct proteolytic mechanisms. The sIL-15R alpha displayed high affinity for IL-15 and behaved as a potent and specific inhibitor of IL-15 binding to the membrane receptor, and of IL-15-induced cell proliferation (IC(50) in the range from 3 to 20 pM). These results suggest that IL-15R alpha shedding may play important immunoregulatory functions.  相似文献   

19.
IL-12 receptor. II. Distribution and regulation of receptor expression.   总被引:23,自引:0,他引:23  
IL-12 is a heterodimeric lymphokine that induces IFN-gamma production by resting PBMC, enhances the lytic activity of NK/lymphokine activated killer cells, and causes the proliferation of activated T cells and NK cells. In this report, we have investigated the expression of IL-12R on mitogen- and IL-2-activated PBMC or tonsillar lymphocytes as well as on a variety of cell lines. The results of radiolabeled IL-12-binding assays indicated that high affinity IL-12R are present on PBMC activated by various T cell mitogens or by IL-2. High affinity IL-12R were also found to be expressed constitutively on a transformed marmoset NK-like cell line HVS.SILVA 40. At the time of peak IL-12R expression, mitogen- or IL-2-activated cells displayed approximately 1000 to 9000 IL-12 binding sites/cell with an apparent Kd of 100 to 900 pM. Kinetic studies revealed that maximum expression of IL-12R occurred earlier on PHA-activated PBMC as compared with PBMC activated by IL-2, and that expression of IL-12R on these cells correlated with their ability to proliferate in response to IL-12. Although IL-2 could up-regulate IL-12R expression on resting PBMC, the ability of mitogen-activated PBMC to up-regulate IL-12R was found to be independent of IL-2. Analysis of IL-12R expression by flow cytometry revealed that receptors for IL-12 are present on activated T cells of both the CD4+ and CD8+ subsets and on activated CD56+ NK cells. In contrast, neither resting PBMC or tonsillar B cells nor tonsillar B cells activated by anti-IgM/Dx, anti-IgM/Dx + IL-2, or SAC + IL-2 displayed IL-12R detectable by flow cytometry or by the radiolabeled IL-12-binding assay. In summary, these results indicate that activation of T cells or NK cells results in up-regulation of IL-12R expression; on the other hand, B cell activation, at least under some circumstances, appears not to be associated with enhanced expression of IL-12R.  相似文献   

20.
Human interleukin-2 (IL-2) interacts with two types of functional receptors (IL-2R alpha betagamma and IL-2R betagamma) and acts on a broad range of target cells involved in inflammatory reactions and immune responses. IL-2 is also used in different clinical trials aimed at improving the treatment of some cancers and the recovery of CD4 lymphocytes by HIV patients. The therapeutic index of IL-2 is limited by various side effects dominated by the vascular leak syndrome. We have shown that a chemically synthesised fragment of the IL-2 sequence can fold into a helical tetramer likely mimicking the quatemary structure of an hemopoietin. Indeed, peptide p1-30 (containing amino acids 1 to 30, including the sequence corresponding to the entire alpha helix A of IL-2) spontaneously folds into an alpha-helical homotetramer and stimulates the growth of T-cell lines expressing human IL-2R beta, whereas shorter versions of the peptide lack helical structure and are inactive. At the cellular level, p1-30 induces lymphokine-activated killer (LAK) cells and preferentially activates CD8 low lymphocytes and natural killer cells, which constitutively express IL-2R beta. A significant IFN-gamma production is also detected following p1-30 stimulation. A mutant form of p1-30 (Asp20-->Lys) which is likely unable to induce vascular leak syndrome remains capable to generate LAK cells like the original p1-30 peptide. Altogether our data suggest that p1-30 has therapeutic potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号