共查询到20条相似文献,搜索用时 0 毫秒
1.
A Blinkowa W G Haldenwang J A Ramsey J M Henson D A Mullin J R Walker 《Journal of bacteriology》1983,153(1):66-75
Suppressors of a temperature-sensitive dnaZ polymerization mutant of Escherichia coli have been identified by selecting temperature-insensitive revertants. Those suppressed strains which concomitantly became cold sensitive were chosen for further study. Intragenic suppressor mutations, which caused cold-sensitive defects in DNA polymerization, were located in dnaZ by transduction with lambda dnaZ+ phages. Extragenic suppressor mutations were mapped within the initiation gene dnaA. These suppressor-containing strains were defective in initiation at low temperature as determined by measurements of DNA synthesis in vivo and in toluene-treated cells. The occurrence of suppressor mutations of dnaZ(Ts) within the dnaA gene is considered evidence that the dnaA and dnaZ products interact in vivo. A second indication of a dnaA-dnaZ protein-protein interaction was provided by the observation that the introduction of additional copies of the dnaZ+ gene into a strain carrying the dnaA suppressor mutation was lethal [whether the strain was dnaZ+ or dnaZ(Ts)]. 相似文献
2.
3.
4.
5.
6.
Bacteriophage phiX174 single-stranded viral DNA synthesis in temperature-sensitive dnaB and dna C mutants of Escherichia coli. 总被引:1,自引:1,他引:1 下载免费PDF全文
We asked if phiX174 single-stranded DNA synthesis could reinitiate at the nonpermissive temperature in dnaB and dnaC temperature-sensitive host mutants. The rates of single-stranded DNA synthesis were measured after the removal of chlorampheicol that had been added at various times after infection to specifically stop this stage of phiX174 DNA synthesis. Reinitiation was not defective in either mutant host. Our data suggested that the reinitiation of the single-stranded stage of phiX174 DNA synthesis in these experiments was analogous to the normal initiation of this stage of phiX174 DNA synthesis in infections without chloramphenicol. Assuming this to be the case, we conclude that the host cell dnaB and dnaC proteins are not essential for the normal initiation of the single-stranded synthesis stage of phiX174 DNA synthesis. In related experiments we observed that in the dnaC mutant host at the permissive temperature, phiX174 replicative form DNA synthesis continued at its initial rate even during the single-stranded DNA synthesis stage. This indicates that these two stages of phiX174 DNA synthesis are not necessarily mutually exclusive. 相似文献
7.
8.
9.
T Baba A Jacq E Brickman J Beckwith T Taura C Ueguchi Y Akiyama K Ito 《Journal of bacteriology》1990,172(12):7005-7010
Mutations which cause poor growth at a low temperature, which affect aspects of protein secretion, and which map in or around secY (prlA) were characterized. The prlA1012 mutant, previously shown to suppress a secA mutation, proved to have a wild-type secY gene, indicating that this mutation cannot be taken as genetic evidence for the secA-secY interaction. Two cold-sensitive mutants, the secY39 and secY40 mutants, which had been selected by their ability to enhance secA expression, contained single-amino-acid alterations in the same cytoplasmic domain of the SecY protein. Protein export in vivo was partially slowed down by the secY39 mutation at 37 to 39 degrees C, and the retardation was immediately and strikingly enhanced upon exposure to nonpermissive temperatures (15 to 23 degrees C). The rate of posttranslational translocation of the precursor to the OmpA protein (pro-OmpA protein) into wild-type membrane vesicles in vitro was only slightly affected by reaction temperatures ranging from 37 to 15 degrees C, and about 65% of OmpA was eventually sequestered at both temperatures. Membrane vesicles from the secY39 mutant were much less active in supporting pro-OmpA translocation even at 37 degrees C, at which about 20% sequestration was attained. At 15 degrees C, the activity of the mutant membrane decreased further. The rapid temperature response in vivo and the impaired in vitro translocation activity at low temperatures with the secY39 mutant support the notion that SecY, a membrane-embedded secretion factor, participates in protein translocation across the bacterial cytoplasmic membrane. 相似文献
10.
Escherichia coli supH suppressor: temperature-sensitive missense suppression caused by an anticodon change in tRNASer2. 总被引:7,自引:5,他引:7 下载免费PDF全文
S Thorbjarnardttir H Uemura T Dingermann T Rafnar S Thorsteinsdttir D Sll G Eggertsson 《Journal of bacteriology》1985,161(1):207-211
We describe the cloning and the DNA sequence of the Escherichia coli supH missense suppressor and of the supD60(Am) suppressor genes. supH is a mutant form of serU which codes for tRNASer2. The supH coding sequence differs from the wild-type sequence by a single nucleotide change which corresponds to the middle position of the anticodon. The CGA anticodon of wild-type tRNA and CUA anticodon of supD tRNA is changed to CAA in supH tRNA, which is expected to recognize the UUG leucine codon. We propose that the supH suppressor causes the insertion of serine in response to this codon. The temperature sensitivity caused by supH may be due to a conformation of the CAA anticodon in the supH tRNASer that is slightly different than that in the corresponding tRNALeu species. 相似文献
11.
The interference of dnaB mutations of Escherichia coli with thymineless death is described. All the isogenic Thy- dnaB mutants of E. coli we have tested show a remarkable immunity towards cell death induced by thymine deprivation at the nonpermissive temperature. We have also constructed and tested an isogenic double dnaB dnaG mutant. It loses its viability in the absence of thymine at both permissive and nonpermissive temperatures. The role of the dnaB gene product is discussed. 相似文献
12.
Mechanism of dnaB protein action. I. Crystallization and properties of dnaB protein, an essential replication protein in Escherichia coli 总被引:18,自引:0,他引:18
Purification and crystallization of dnaB protein from Escherichia coli was performed on a large scale by a simple procedure. From 1.5 kg of cells, 520 mg of dnaB protein were obtained in a 58% yield with a purity greater than 99%. The E. coli cells harbor a high copy-number plasmid carrying the dnaB gene and overproduce the enzyme over 200-fold. The subunit molecular weight determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis is 50,000. Based on a native Mr = 290,000 and cross-linking studies that yielded six bands, dnaB protein is judged to be a hexamer, confirming the results of Reha-Krantz, L. J., and Hurwitz, J. (1978) J. Biol. Chem. 253, 4043-4050. 相似文献
13.
Strain of Escherichia coli with a temperature-sensitive mutation affecting ribosomal ribonucleic acid accumulation. 总被引:2,自引:0,他引:2 下载免费PDF全文
A mutant of Escherichia coli has been isolated that has a temperature-sensitive mutation that results in specific loss of ribosomal ribonucleic acid (RNA) synthesis and some reduction in messenger RNA synthesis. When the strain was grown in glucose medium at a restrictive temperature, RNA accumulation ceased, but both messenger RNA and protein synthesis continued for an extended time. Because carbon metabolism was slowed drastically when strain AA-157 was placed at the restrictive temperature, this phenotype can be compared with carbon depletion conditions present during diauxic lag. However, the phenotype of mutant AA-157 differs from shift-down conditions in that guanosine-3',5'-tetraphosphate levels are unaffected; therefore, a different site is affected. This mutant strain (AA-157) thus shows many characteristics similar to an aldolase mutant previously reported (Böck and Neidhardt, 1966). However, the mutation occurred in a different position on the E. coli genetic map, and furthermore, aldolase was not temperature sensitive in strain AA-157. In this paper we present a study of macromolecular biosynthesis in this mutant. 相似文献
14.
15.
Isolation and characterization of a temperature-sensitive amber suppressor mutant of Escherichia coli K12 总被引:18,自引:0,他引:18
Summary By mutagenizing an E. coli strain carrying an amber suppressor supD
- (or su
I
+), we isolated a mutant whose amber suppressor activity was now temperature-sensitive. The mutant suppressor gene was named sup-126, which was found to be cotransduced with the his gene by phage P1vir at the frequency of ca. 20%. At 30° C it suppresses many amber mutations of E. coli, phage T4, and phage . At 42° C, however, it can suppress none of over 30 amber mutations tested so far. The sup-126 mutation is unambiguous and stable enough to be useful for making production of an amber protein temperature-sensitive. 相似文献
16.
Mutations in the secretory (sec) genes in Escherichia coli compromise protein translocation across the inner membrane and often confer conditional-lethal phenotypes. We have found that overproduction of the chaperonins GroES and GroEL from a multicopy plasmid suppresses a wide array of cold-sensitive sec mutations in E. coli. Suppression is accompanied by a stimulation of precursor protein translocation. This multicopy suppression does not bypass the Sec pathway because a deletion of secE is not suppressed under these conditions. Surprisingly, progressive deletion of the groE operon does not completely abolish the ability to suppress, indicating that the multicopy suppression of cold-sensitive sec mutations is not dependent on a functional groE operon. Indeed, overproduction of proteins unrelated to the process of protein export suppresses the secE501 cold-sensitive mutation, suggesting that protein overproduction, in and of itself, can confer mutations which compromise protein synthesis and the observation that low levels of protein synthesis inhibitors can suppress as well. In all cases, the mechanism of suppression is unrelated to the process of protein export. We suggest that the multicopy plasmids also suppress the sec mutations by compromising protein synthesis. 相似文献
17.
E Lanka C Edelbluth M Schlicht H Schuster 《The Journal of biological chemistry》1978,253(16):5847-5851
The purification of the Escherichia coli dnaB protein by affinity chromatography on nucleotides bound to agarose is described. The dnaB protein, which contains an associated ribonucleoside triphosphatase activity (Wickner, S., Wright, M., and Hurwitz, J. (1974) Proc. Natl. Acad. Sci. U. S. A. 71, 783-787) binds to immobilized ATP, ADP, and UDP, but not to AMP. The type of linkage of ATP to agarose influences the adsorption, elution, and purification of the enzyme. Optimal purification is achieved using ATP bound to agarose via its oxidized ribose moiety. By this means, the dnaB protein can be obtained at least 95% electrophoretically pure after only three purification steps. The enzyme can be eluted from immobilized nucleoside-5'-di- and -triphosphates by ATP, ADP, and pyrophosphate, but not by AMP or orthophosphate. ADP and pyrophosphate, as well as the substrate ATP in high concentration are at the same time inhibitors of the ribonucleoside triphosphatase. The dnaB complementing and ribonucleoside triphosphatase activities could not be separated from each other by affinity chromatography, supporting the finding of others that they both reside on the same protein complex, namely a dnaB multimer. The results indicate that the dnaB protein binds to immobilized nucleotides by means of its ribonucleoside triphosphatase, and that at least the pyrophosphate moiety is essential for adsorption as well as elution of the enzyme. 相似文献
18.
Mutation that suppresses the protein export defect of the secY mutation and causes cold-sensitive growth of Escherichia coli. 总被引:9,自引:6,他引:3 下载免费PDF全文
A cold-sensitive mutant was isolated among temperature-resistant revertants of the secY24 mutant defective in secretion of envelope proteins across the cytoplasmic membrane at 42 degrees C. A single mutation, designated ssyA3, is responsible both for the extragenic suppression of secY and for the cold-sensitive growth. In contrast to the parental secY24 mutant, the suppressed cells do not accumulate precursors of envelope proteins at any temperatures. The cells containing the ssyA3 mutation, whether in combination with secY24 or not, show an optimal growth at 42 degrees C and a very poor growth at 30 degrees C. At the low temperature, protein synthesis is generally slowed down, probably at the step of chain elongation. The gene ssyA was mapped at a new locus between hisS and glyA on the chromosome. It is possible that the product of this gene interacts both with the protein secretion system and the protein synthesizing system. 相似文献
19.
The dnaB protein of Escherichia coli groPB mutants 总被引:1,自引:0,他引:1
E Günther E Lanka M Mikolajczyk H Schuster 《The Journal of biological chemistry》1981,256(20):10712-10716
20.
S. J. Hong Y. S. Yi S. S. Koh O. K. Park H. S. Kang 《Molecular genetics and genomics : MGG》1998,259(4):404-413
The small GTPase Ran is essential for nucleocytoplasmic transport of macromolecules. In the yeast Saccharomyces cerevisiae, Rna1p functions as a Ran-GTPase activating protein (RanGAP1). Strains carrying the rna1-1 mutation exhibit defects in nuclear transport and, as a consequence, accumulate precursor tRNAs. We have isolated two recessive suppressors of the rna1-1 mutation. Further characterization of one of the suppressor mutations, srn10-1, reveals that the mutation (i) can not bypass the need for Rna1p function and (ii) suppresses the accumulation of unspliced pre-tRNA caused by rna1-1. The SRN10 gene is not essential for cell viability and encodes an acidic protein (pI?=?5.27) of 24.8?kDa. Srn10p is located in the cytoplasm, as determined by indirect immunofluorescence microscopy. Two-hybrid analysis reveals that there is a physical interaction between Srn10p and Rna1p in vivo. Our results identify a protein that interacts with the yeast RanGAP1. 相似文献