首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《FEBS letters》1995,360(3):266-270
The mechanism responsible for the ability of bradykinin to cause calcium-dependent release of glutamate from astrocytes in vitro was investigated. The glutamate transport inhibitor, dihydrokainate, did not block bradykinin-induced glutamate release, and bradykinin did not cause cell swelling. These data exclude the involvement of glutamate transporters or swelling mechanisms as mediating glutamate release in response to bradykinin. -Latrotoxin (3 nM), a component of black widow spider venom, stimulated calcium-independent glutamate release from astrocytes. Since -latrotoxin induces vesicle fusion and calcium-independent neuronal neurotransmitter release, our data suggest that astrocytes may release neurotransmitter using a mechanism similar to the neuronal secretory process.  相似文献   

2.
Abstract: The release of excitatory amino acids (EAAs) from neuron-free cultures of neocortical astrocytes was monitored using HPLC. The neuroligand bradykinin caused a dose-dependent receptor-mediated increase in release of the EAAs glutamate and aspartate from type 1 astrocyte cell cultures obtained from rat cerebral cortex. Removal of calcium from the extracellular fluid prevented the bradykinin-induced release of EAAs from astrocytes. The addition of the calcium ionophore ionomycin caused a calcium-dependent release of EAAs. Inhibitors of the glutamate transporters p -chloromercuriphenylsulfonic acid, l - trans -pyrrolidine-2,4-dicarboxylate, and dihydrokainate failed to impair the ability of bradykinin to stimulate glutamate release from astrocytes. α-Latrotoxin, an active compound of black widow spider venom, caused a significant increase of the release of glutamate in calcium-containing saline. In calcium-depleted saline, α-latrotoxin produced an initial increase in the concentration of glutamate followed by a decline in the concentration of glutamate indicating stimulation of exocytosis coupled with low calcium-induced inhibition of endocytosis. Taken together, these data suggest that astrocytes may release neurotransmitter through a mechanism that is similar to the neuronal secretory process. Given the important role of glutamate in the induction of long-term potentiation, learning, memory, and excitotoxicity, it will be important to determine external signals that control both the uptake and release of glutamate by astrocytes.  相似文献   

3.
Membrane rafts are domains enriched in sphingolipids, glycolipids and cholesterol that are able to compartmentalize cellular processes. Noteworthy, many proteins have been assigned to membrane rafts including those related to the control of the synaptic vesicle release machinery, which is a important step for neurotransmission between synapses. In this work, we have investigated the role of cholesterol in key steps of glutamate release in isolated nerve terminals (synaptosomes) from rat brain cortices. Incubation of synaptosomes with methyl-β-cyclodextrin (MβCD) induced glutamate release in a dose-dependent fashion. HγCD, a cyclodextrin with low affinity for cholesterol, had no significant effect on spontaneous glutamate release. When we evaluated the effects of MβCD on glutamate release induced by depolarizing stimuli, we observed that MβCD treatment inhibited the KCl-evoked glutamate release. The glutamate release induced by MβCD was not altered by treatment with EGTA nor with EGTA-AM. The KCl-evoked glutamate release was no further inhibited when synaptosomes were incubated with MβCD in the absence of calcium. We therefore investigated whether the cholesterol removal by MβCD changes intrasynaptosomal sodium and calcium levels. Our results suggested that the cholesterol removal effect on spontaneous and evoked glutamate release might be upstream to sodium and calcium entry through voltage-activated channels. We therefore tested if MβCD would have a direct effect on synaptic vesicle exocytosis and we showed that cholesterol removal by MβCD induced spontaneous exocytosis and inhibited synaptic vesicle exocytosis evoked by depolarizing stimuli. Lastly, we investigated the effect of protein kinase inhibitors on the spontaneous exocytosis evoked by MβCD and we observed a statistically significant reduction of synaptic vesicles exocytosis. In conclusion, our work shows that cholesterol removal facilitates protein kinase activation that favors spontaneous synaptic vesicles and consequently glutamate release in isolated nerve terminals.  相似文献   

4.
In addition to being refractive proteins in the vertebrate lens, the two α-crystallin polypeptides (αA and αB) are also molecular chaperones that can protect proteins from thermal aggregation. The αB-crystallin polypeptide, a functional member of the small heat shock family, is expressed in many tissues in a developmentally regulated fashion, is stress-inducible, and is overexpressed in many degenerative diseases and some tumors indicating that it plays multiple roles. One possible clue to α-crystallin functions is the fact that both polypeptides are phosphorylated on serine residues by cAMP-dependent and cAMP-independent mechanisms. The cAMP-independent pathway is an autophosphorylation that has been demonstrated in vitro, depends on magnesium and requires cleavage of ATP. Disaggregation of αA-, but not αB-crystallin into tetramers results in an appreciable increase in autophosphorylation activity, reminiscent of other heat shock proteins, and suggests the possibility that changes in the aggregation state of αA-crystallin are involved in yet undiscovered signal transduction pathways. The α-crystallin polypeptides differ with respect to their abilities to undergo cAMP-dependent phosphorylation, with preference given to the αB-crystallin chain. These differences and complexities in α-crystallin phosphorylations, coupled with the differences in expression patterns of the two α-crystallin polypeptides, are consistent with the idea that each polypeptide has distinctive structural and metabolic roles.  相似文献   

5.
Quinolinic acid (QA) is an endogenous neurotoxin involved in various neurological diseases, whose action seems to be exerted via glutamatergic receptors. However, the exact mechanism responsible for the neurotoxicity of QA is far from being understood. We have previously reported that QA inhibits vesicular glutamate uptake. In this work, investigating the effects of QA on the glutamatergic system from rat brain, we have demonstrated that QA (from 0.1 to 10mM) had no effect on synaptosomal L-[3H]glutamate uptake. The effect of QA on glutamate release in basal (physiological K+ concentration) or depolarized (40 mM KCl) conditions was evaluated. QA did not alter K+-stimulated glutamate release, but 5 and 10mM QA significantly increased basal glutamate release. The effect of dizolcipine (MK-801), a noncompetitive antagonist of N-methyl-D-aspartate (NMDA) receptor on glutamate release was investigated. MK-801 (5 microM) did not alter glutamate release per se, but completely abolished the QA-induced glutamate release. NMDA (50 microM) also stimulated glutamate release, without altering QA-induced glutamate release, suggesting that QA effects were exerted via NMDA receptors. QA (5 and 10mM) decreased glutamate uptake into astrocyte cell cultures. Enhanced synaptosomal glutamate release, associated with inhibition of glutamate uptake into astrocytes induced by QA could contribute to increase extracellular glutamate concentrations which ultimately lead to overstimulation of the glutamatergic system. These data provide additional evidence that neurotoxicity of QA may be also related to disturbances on the glutamatergic transport system, which could result in the neurological manifestations observed when this organic acid accumulates in the brain.  相似文献   

6.
Glutamate has been implicated as an intracellular messenger in the regulation of insulin secretion in response to glucose. Here we demonstrate by measurements of cell capacitance in rat pancreatic beta-cells that glutamate (1 mM) enhanced Ca2+-dependent exocytosis. Glutamate (1 mM) also stimulated insulin secretion from permeabilized rat beta-cells. The effect was dose-dependent (half-maximum at 5.1 mM) and maximal at 10 mM glutamate. Glutamate-induced exocytosis was stronger in rat beta-cells and clonal INS-1E cells compared to beta-cells isolated from mice and in parental INS-1 cells, which correlated with the expressed levels of glutamate dehydrogenase. Glutamate-induced exocytosis was inhibited by the protonophores FCCP and SF6847, by the vacuolar-type H+-ATPase inhibitor bafilomycin A(1) and by the glutamate transport inhibitor Evans Blue. Our data provide evidence that exocytosis in beta-cells can be modulated by physiological increases in cellular glutamate levels. The results suggest that stimulation of exocytosis is associated with accumulation of glutamate in the secretory granules, a process that is dependent on the transgranular proton gradient.  相似文献   

7.
Prostaglandin F2α (5μg/kg, i.v.) causes an increase in pulmonary arterial pressure, decrease in systemic arterial pressure, and reflex bradycardia in the anesthetized cat. The same dose of the 15-methyl analogue of PGF2α produces the same triad of effects but of greater magnitude and duration. Although prostaglandins F1α, F2β and F1β also cause the same cardiovascular effects as F2α, there is a decrease in potency for all parameters measured, with PGF2α>PGF1α>PGF2β>PGF1β. When compared to the actions of PGF2α in producing an increase in pulmonary arterial pressure, PGs F1α, F2β and F1β were less potent by approximately 10, 100, and 1000 fold respectively.  相似文献   

8.
Astrocytes, a stellate-shape glial population in the central nervous system (CNS), maintain glutamate homeostasis in adult CNS by undergoing glutamate uptake at the synapse through their glutamate transporter-1 (GLT-1). Peroxisome proliferator-activated receptor-α (PPARα) can be activated by endogenous saturated fatty acids to regulate astrocytic lipid metabolism and functions. However, it is unclear if PPARα can exert the regulatory action on GLT-1 expression in astrocytes. This study showed that treatment with palmitic acid (PA) and the other two PPARα agonists (GW 7647 and WY 14,643) caused no change in the morphology of astrocytes, whereas membranous GLT-1 protein levels in astrocytes were significantly decreased by PA and PPARα agonists. Through lentivirus-mediated overexpression of GLT-1 tagged with red fluorescent protein (GLT-1-RFP), we also observed that GLT-1-RFP puncta in the processes of astrocytes were inhibited by the PPARα agonists. This reduction was prevented by the addition of the PPARα antagonist, GW6471. GLT-1-RFP was co-localized to the early endosome marker–EEA1 in astrocytes treated with the PPARα agonists. Moreover, PPARα-induced inhibition in membranous GLT-1 expression was abolished by the addition of dynamin inhibitor (dynasore). Furthermore, the co-treatment of astrocytes with PPARα agonists and dynasore, or with PPARα agonists and protein kinase C (PKC) inhibitor bis-indolylmaleimide 1 (BIS1), prevented the endocytosis of GLT-1-RFP. Based on the results, we conclude that the PPARα agonists increased GLT-1 endocytosis in astrocytes possibly through the PKC signaling pathway. In addition, our findings provide important information of PPARα involvement in the downregulation of astrocytic glutamate uptake via the promoted GLT-1 endocytosis.  相似文献   

9.
Traumatic brain injury (TBI) is one of the important causes of mortality and morbidity. The pathogenesis of the underlying brain dysfunction is poorly understood. Recent data have suggested that oxygen free radicals play a key role in the primary and secondary processes of acute TBI. We report direct electron spin resonance (ESR) evidence of hydroxyl (·OH) radical generation in closed-head injury of rats. Moderate brain concussion was produced by controlled and reproducible mechanical, fixed, closed-head injury. A cortical cup was placed over one cerebral hemisphere within 20 min of the concussion, perfused with artificial cerebrospinal fluid (aCSF) containing the spin trap agent pyridyl-N-oxide-tert-butyl nitrone (POBN, 100 mM), and superfusate samples collected at 10 min intervals for a duration up to 130 min post brain trauma. In addition, POBN was administered systematically (50 mg/kg body wt.) 10 min pretrauma and 20 min posttrauma to improve our ability to detect free radicals. ESR analysis of the superfusate samples revealed six line spectra (αN = 15.4 and αβH = 2.5 G) characteristic of POBN-OH radical adducts, the intensity of which peaked 40 min posttrauma. The signal was undetectable after 120 min. Administration of α-phenyl-tert-butyl-nitrone (PBN), a spin adduct forming agent systemically (100 mg/kg body wt. IP 10 min prior to concussion) alone or along with topical PBN (100 mM PBN in aCSF),6significantly (P< 0.001) attenuated the ESR signal, suggesting its possible role in the treatment of TBI.  相似文献   

10.
The kinetics of Ca2(+)-dependent release of glutamate from guinea-pig cerebrocortical synaptosomes evoked by KCl or 4-aminopyridine are investigated using a continuous fluorimetric assay. Release by both agents is biphasic, with a rapid phase complete within 2 s followed by a more extensive slow phase with a half-maximal release in 52 s for KCl-evoked release and greater than 120 s for 4-aminopyridine-evoked release. The two phases of glutamate release may reflect a dual localization of releasable vesicles at the active zone and in the bulk cytoplasm. Decreasing depolarization depresses the extent rather than increasing the time for half-maximal Ca2(+)-dependent release. Both the fast and the slow phases of glutamate release require external Ca2+ and cytoplasmic ATP. KCl depolarization produces a transient "spike" of cytoplasmic free Ca2+ [( Ca2+]c), which recovers to a plateau; the major component of glutamate release occurs during this plateau. Predepolarization in the absence of added external Ca2+, to inhibit transient Ca2+ channels, does not affect the subsequent glutamate release evoked by Ca2+ readdition. Thus, release involves primarily noninactivating Ca2+ channels. For a given increase in [Ca2+]c, KCl and 4-aminopyridine cause equal release of glutamate, while ionomycin releases much less glutamate. This lowered efficiency is not due to ATP depletion. It is concluded that glutamate exocytosis is evoked by localized Ca2+ entering through noninactivating voltage-dependent Ca2+ channels and that nonlocalized Ca2+ entry with ionomycin is inefficient.  相似文献   

11.
Chitin is a novel biopolymer and has excellent biological properties such as biodegradation in the human body and biocompatible, bioabsorable, antibacterial and wound healing activities. In this work, α- and β-chitin membranes were prepared using α- and β-chitin hydrogel. The bioactivity studies were carried out using these chitin membranes with the simulated body fluid solution (SBF) for 7, 14 and 21 days. After 7, 14 and 21 days the membranes were characterized using SEM, EDS and FT-IR. The SEM, EDS and FT-IR studies confirmed the formation of calcium phosphate layer on the surface of the both chitin membranes. These results indicate that the prepared chitin membranes were bioactive. Cell adhesion studies were also carried out using MG-63 osteoblast-like cells. The cells were adhered and spread over the membrane after 24 h of incubation. These results indicated that the chitin membranes could be used for tissue-engineering applications.  相似文献   

12.
Laminin-5 and α3β1 integrin promote keratinocyte survival; however, the downstream signaling pathways for laminin-5/α3β1 integrin-mediated cell survival had not been fully established. We report the unexpected finding of multiple interactions between 14-3-3 isoforms and proapoptotic proteins in the survival signaling pathway. Ln5-P4 motif within human laminin-5 α3 chain promotes cell survival and anti-apoptosis by inactivating Bad and YAP. This effect is achieved through the formation of 14-3-3ζ/p-Bad and 14-3-3σ/p-YAP complexes, which is initiated by α3β1 integrin and FAK/PI3K/Akt signaling. These complexes result in cytoplasmic sequestration of Bad and YAP and their subsequent inactivation. An increase in Akt1 activity in cells induces 14-3-3ζ and σ, p-Bad, and p-YAP, promoting cell survival, whereas decreasing Akt activity suppresses the same proteins and inhibits cell survival. Suppression of 14-3-3ζ with RNA-interference inhibits cell viability and promotes apoptosis. These results reveal a new mechanism of cell survival whereby the formation of 14-3-3ζ/p-Bad and 14-3-3σ/p-YAP complexes is initiated by laminin-5 stimulation via the α3β1 integrin and FAK/PI3K/Akt signaling pathways, thereby resulting in cell survival and anti-apoptosis.  相似文献   

13.
Reduction in or dysfunction of glutamate transporter 1 (GLT1) is linked to several neuronal disorders such as stroke, Alzheimer’s disease, and amyotrophic lateral sclerosis. However, the detailed mechanism underlying GLT1 regulation has not been fully elucidated. In the present study, we first demonstrated the effects of mammalian target of rapamycin (mTOR) signaling on GLT1 regulation. We prepared astrocytes cultured in astrocyte-defined medium (ADM), which contains several growth factors including epidermal growth factor (EGF) and insulin. The levels of phosphorylated Akt (Ser473) and mTOR (Ser2448) increased, and GLT1 levels were increased in ADM-cultured astrocytes. Treatment with a phosphatidylinositol 3-kinase (PI3K) inhibitor or an Akt inhibitor suppressed the phosphorylation of Akt (Ser473) and mTOR (Ser2448) as well as decreased ADM-induced GLT1 upregulation. Treatment with the mTOR inhibitor rapamycin decreased GLT1 protein and mRNA levels. In contrast, rapamycin did not affect Akt (Ser473) phosphorylation. Our results suggest that mTOR is a downstream target of the PI3K/Akt pathway regulating GLT1 expression.  相似文献   

14.
Insulin release by pancreatic β-cells is regulated by diverse intracellular signals, including changes in Ca(2+) concentration resulting from Ca(2+) entry through voltage-gated (Ca(V)) channels. It has been reported that the Rab3 effector RIM1 acts as a functional link between neuronal Ca(V) channels and the machinery for exocytosis. Here, we investigated whether RIM1 regulates recombinant and native L-type Ca(V) channels (that play a key role in hormone secretion) and whether this regulation affects insulin release. Whole-cell patch clamp currents were recorded from HEK-293 and insulinoma RIN-m5F cells. RIM1 and Ca(V) channel expression was identified by RT-PCR and Western blot. RIM1-Ca(V) channel interaction was determined by co-immunoprecipitation. Knockdown of RIM1 and Ca(V) channel subunit expression were performed using small interference RNAs. Insulin release was assessed by ELISA. Co-expression of Ca(V)1.2 and Ca(V)1.3 L-type channels with RIM1 in HEK-293 cells revealed that RIM1 may not determine the availability of L-type Ca(V) channels but decreases the rate of inactivation of the whole cell currents. Co-immunoprecipitation experiments showed association of the Ca(V)β auxiliary subunit with RIM1. The lack of Ca(V)β expression suppressed channel regulation by RIM1. Similar to the heterologous system, an increase of current inactivation was observed upon knockdown of endogenous RIM1. Co-immunoprecipitation showed association of Ca(V)β and RIM1 in insulin-secreting RIN-m5F cells. Knockdown of RIM1 notably impaired high K(+)-stimulated insulin secretion in the RIN-m5F cells. These data unveil a novel functional coupling between RIM1 and the L-type Ca(V) channels via the Ca(V)β auxiliary subunit that contribute to determine insulin secretion.  相似文献   

15.
One subclass of B12-requiring enzymes is now known to bind their B12 coenzymes “base-off,” with a histidine residue from the protein supplying an imidazole ligand to the cobalt center. Recent results from Sirovatka and Finke (J.M. Sirovatka and R.G. Finke, J.Am. Chem. Soc. 119, (1997) 3057) show that imidazole has an extraordinary trans effect on the mode of carbon–cobalt bond cleavage in coenzyme B12 analogs, compared to pyridine or the natural 5,6-dimethylbenzimidazole ligand, and it was suggested that a differential steric effect could, in part, account for the uniqueness of the imidazole ligand. Such a differential steric effect for imidazole and pyridine is now demonstrated by studies of the thermodynamics of ligation of these ligands to the α and β diastereomers of two alkylcobinamides (RCbi+s, derivatives of cobalamins which lack the normal axial nucleotide) based on the known differences in steric crowding of the α (“lower”) and β (“upper”) axial ligand positions of cobalt corrinoids. Imidazole binds more tightly than pyridine to both diastereomers of NCCH2Cbi+ and CF3Cbi+, in all cases due to a more favorable entropy change, which is the result of lowered steric interference with corrin side chain thermal motions.  相似文献   

16.
The brain‐derived neurotrophic factor (BDNF) participates in the regulation of cortical neurons by influencing the release of glutamate. However, the specific mechanisms are unclear. Hence, we isolated and cultured the cortical neurons of Sprague Dawley rats. Specific inhibitors of TrkB, Src, PLC‐γ1, Akt, and MEK1/2 (i.e., K252a, PP2, U73122, LY294002, and PD98059, respectively) were used to treat cortical neurons and to detect the glutamate release from cortical neurons stimulated with BDNF. BDNF significantly increased glutamate release, and simultaneously enhanced phosphorylation levels of TrkB, Src, PLC‐γ, Akt, and Erk1/2. For BDNF‐stimulated cortical neurons, K252a inhibited glutamate release and inhibited the phosphorylation levels of TrkB, Src, PLC‐γ, Erk1/2, and Akt (P < 0.05). PP2 reduced the glutamate release from BDNF‐stimulated cortical neurons (P < 0.05) and inhibited the phosphorylation levels of TrkB and PLC‐γ1 (P < 0.05). However, PP2 had no effect on the phosphorylation levels of Erk1/2 or Akt (P > 0.05). U73122 inhibited the glutamate release from BDNF‐stimulated cortical neurons, but had no influence on the phosphorylation levels of TrkB, Src, Erk1/2, or Akt (P > 0.05). LY294002 and PD98059 did not affect the BDNF‐stimulated glutamate release and did not inhibit the phosphorylation levels of TrkB, Src, or PLC‐γ1. In summary, BDNF stimulated the glutamate release from cortical neurons via the TrkB/Src/PLC‐γ1 signaling pathway. J. Cell. Biochem. 114: 144–151, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
The effect of short-term hypoxia on the release of [3H]glutamate from preloaded hippocampal and cortical synaptosomes was studied in a rapid superfusion system. The technique minimised the loss of released glutamate by reuptake. The results indicated that the effects of short term hypoxia were qualitatively similar to those reported in previous studies using more long-term hypoxia, but were significantly smaller. The non-Ca2+-dependent efflux of glutamate from cortical synaptosomes was increased by hypoxia as was the Ca2+-dependent release from hippocampal tissue. Possible mechanisms for these findings were discussed. The small amplitude of these changes in comparison to the effects seen in slowly perfused tissue in vitro and in vivo indicated that the contribution made by changes in neuronal efflux to the overall increase in extracellular glutamate seen in hypoxia is relatively minor.  相似文献   

18.
Recent experimental studies have shown that astrocytes respond to external stimuli with a transient increase of the intracellular calcium concentration or can exhibit self-sustained spontaneous activity. Both evoked and spontaneous astrocytic calcium oscillations are accompanied by exocytosis of glutamate caged in astrocytes leading to paroxysmal depolarization shifts (PDS) in neighboring neurons. Here, we present a simple mathematical model of the interaction between astrocytes and neurons that is able to numerically reproduce the experimental results concerning the initiation of the PDS. The timing of glutamate release from the astrocyte is studied by means of a combined modeling of a vesicle cycle and the dynamics of SNARE-proteins. The neuronal slow inward currents (SICs), induced by the astrocytic glutamate and leading to PDS, are modeled via the activation of presynaptic glutamate receptors. The dependence of the bidirectional communication between neurons and astrocytes on the concentration of glutamate transporters is analyzed, as well. Our numerical results are in line with experimental findings showing that astrocyte can induce synchronous PDSs in neighboring neurons, resulting in a transient synchronous spiking activity.  相似文献   

19.
A monoclonal antibody against cis-3-hexen-1-ol was prepared and used to separate and/or concentrate Δ17-6-keto-prostaglandin F1α (PGF1α) in the human sera. cis-3-Hexen-1-ol was conjugated with the human serum albumin (HSA) according to the N-succinimidylester method and hyperimmunized to BALB/c mouse. The monoclonal afntibodies were obtained from hybridoma clones established by a fusion between SP2/0-Ag14-k13 mouse myeloma cells and splenocytes of a mouse. A monoclonal antibody, named 4G9-12B, recognized the epitope characteristic for ω3-olefin structure. The 4G9-12B antibody became more specific for Δ17-6-keto-PGF1α than 6-keto-PGF1α by applying inhibition ELISA using amino-residue coating plates. Using the prepared immunoaffinity columns of this antibody, Δ17-6-keto-PGF1α was clearly detected in 6 pg/ml of the human blood sera by GC/MS analysis. These results suggest that the monoclonal antibody to the partial structure of trienoic prostanoid, ω3-olefin unit, and that its immunoaffinity columns are useful in separating and concentrating Δ17-6-keto-PGF1α in the human blood or urine.  相似文献   

20.
The effects of α,β-amyrin, a pentacyclic triterpene isolated from Protium heptaphylum was investigated on rat model of orofacial pain induced by formalin or capsaicin. Rats were pretreated with α,β-amyrin (10, 30, and 100 mg/kg, i.p.), morphine (5 mg/kg, s.c.) or vehicle (3% Tween 80), before formalin (20 μl, 1.5%) or capsaicin (20 μl, 1.5 μg) injection into the right vibrissa. In vehicle-treated controls, formalin induced a biphasic nociceptive face-rubbing behavioral response with an early first phase (0–5 min) and a late second phase (10–20 min) appearance, whereas capsaicin produced an immediate face-rubbing (grooming) behavior that was maximal at 10–20 min. Treatment with α,β-amyrin or morphine significantly inhibited the face-rubbing response in both test models. While morphine produced significant antinociception in both phases of formalin test, α,β-amyrin inhibited only the second phase response, more prominently at 30 mg/kg, in a naloxone-sensitive manner. In contrast, α,β-amyrin produced much greater antinociceptive effect at 100 mg/kg in the capsaicin test, which was also naloxone-sensitive. These results provide first time evidence to show that α,β-amyrin attenuates orofacial pain atleast, in part, through a peripheral opioid mechanism but warrants further detailed study for its utility in painful orofacial pathologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号