首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, the effects of the thiol oxidising agent diamide upon the properties of rat brain beta1-adrenergic and human platelet serotonin2A receptor recognition sites have been investigated using [3H](-)CGP-12177 (in the presence of ICI-118551) and [3H]LSD as ligands. (-)Isoprenaline inhibited [3H](-)CGP-12177 binding with nH values of 0.87, 0.67, and 0.56 for added Mg2+ concentrations of 0, 2.5, and 25 mM, respectively. Pretreatment with diamide increased the nH to above unity for the inhibition of the binding by (-)isoprenaline, without a concomitant effect on the inhibition of the binding by (-)propranolol. In contrast, diamide reduced the affinity of human platelet serotonin2A-receptors for antagonists, but did not consistently induce nH values above unity for the inhibition of antagonist binding by serotonin. These results suggest that cooperative interactions reported for cardiac muscarinic receptors may also occur for beta1-adrenergic receptors in the rat brain.  相似文献   

2.
Pressure-jump (p-jump)-induced relaxation kinetics was used to explore the energy landscape of protein folding/unfolding of Y115W, a fluorescent variant of ribonuclease A. Pressure-jumps of 40 MPa amplitude (5 ms dead-time) were conducted both to higher (unfolding) and to lower (folding) pressure, in the range from 100 to 500 MPa, between 30 and 50 degrees C. Significant deviations from the expected symmetrical protein relaxation kinetics were observed. Whereas downward p-jumps resulted always in single exponential kinetics, the kinetics induced by upward p-jumps were biphasic in the low pressure range and monophasic at higher pressures. The relative amplitude of the slow phase decreased as a function of both pressure and temperature. At 50 degrees C, only the fast phase remained. These results can be interpreted within the framework of a two-dimensional energy surface containing a pressure- and temperature-dependent barrier between two unfolded states differing in the isomeric state of the Asn-113-Pro-114 bond. Analysis of the activation volume of the fast kinetic phase revealed a temperature-dependent shift of the unfolding transition state to a larger volume. The observed compensation of this effect by glycerol offers an explanation for its protein stabilizing effect.  相似文献   

3.
The trp RNA-binding Attenuation Protein (TRAP) from Bacillus subtilis is an 11-subunit protein that binds a series of 11 GAG and UAG repeats separated by two to three-spacer nucleosides in trp leader mRNA. The structure of TRAP bound to an RNA containing 11 GAG repeats shows that the RNA wraps around the outside of the protein ring with each GAG interacting with the protein in nearly identical fashion. The only direct hydrogen bond interactions between the protein and the RNA backbone are to the 2'-hydroxyl groups on the third G of each repeat. Replacing all 11 of these guanosines with deoxyriboguanosine eliminates measurable binding to TRAP. In contrast, a single riboguanosine in an otherwise entirely DNA oligonucleotide dramatically stabilizes TRAP binding, and facilitates the interaction of the remaining all-DNA portion with the protein. Studies of TRAP binding to RNAs with between 2 and 11 GAGs, UAGs, AAGs, or CAGs showed that the stability of a TRAP-RNA complex is not directly proportional to the number of repeats in the RNA. These studies also showed that the effect of the identity of the residue in the first position of the triplet, with regard to binding to TRAP, is dependent on the number of repeats in the RNA. Together these data support a model in which TRAP binds to RNA by first forming an initial complex with a small subset of the repeats followed by a cooperative interaction with the remaining triplets.  相似文献   

4.
We have studied at a molecular level the interaction of heparins on bothropstoxin-I (BthTx-I), a phospholipase A2 toxin. The protein was monitored using gel filtration chromatography, dynamic light scattering (DLS), circular dichroism (CD), attenuated total reflectance Fourier transform infrared (ATR-FTIR) and intrinsic tryptophan fluorescence emission (ITFE) spectroscopy. The elution profile of the protein presents a displacement of the protein peak to larger complexes when interacting with higher concentration of heparin. The DLS results shows two Rh at a molar ratio of 1, one to the distribution of the protein and the second for the action of heparin on BthTx-I structures, and a large distribution with the increase of protein. The interaction is accompanied by significant changes in the CD spectra, showing two common features: a decrease in signal at 208 nm (3 and 6 kDa heparins) and an isodichroic point near 226 nm (3 kDa heparin). FTIR spectra indicate that only a few amino acid residues are involved in this interaction. Alterations in the ITFE by binding heparins suggest that the initial binding occurs on the ventral face of BthTx-I. Together, these results add an experimental and structural basis on the action mechanism of the heparins over the phospholipases A2 and provide a molecular model to elucidate the interaction of the enzyme-heparin complex at a molecular level.  相似文献   

5.
Solutions are obtained that describe the time dependence of the reversible binding of a ligand to a two-site lattice. The binding may be cooperative. Three methods are used to obtain these solutions: the separation of on/off processes with a variable transformation, the asymptotic series analysis, and the singular perturbation procedure. Applications to parameter calculation from experimental data are presented. This kinetic system is such that it is difficult to extract all kinetic parameters from data analysis, and the implications for each method are also discussed.  相似文献   

6.
Sinomenine, an herbal ingredient isolated from Sinomenium acutum, is used for the amelioration of arthritis. It has been found that this molecule could bind to human serum transferrin (Tf), the iron (III) transport protein in the blood, by using fluorescence, circular dichroism (CD) spectroscopy, and molecular modeling methods. The results provide possible usage of transferrin to transport sinomenine.  相似文献   

7.
A few drug-like molecules have recently been found to bind poly(A) and induce a stable secondary structure (Tm ≈ 60°C), even though this RNA homopolymer is single-stranded in the absence of a ligand. Here, we report results from experiments specifically designed to explore the association of small molecules with poly(A). We demonstrate that coralyne, the first small molecule discovered to bind poly(dA), binds with unexpectedly high affinity (Ka >107 M−1), and that the crescent shape of coralyne appears necessary for poly(A) binding. We also show that the binding of similar ligands to poly(A) can be highly cooperative. For one particular ligand, at least six ligand molecules are required to stabilize the poly(A) self-structure at room temperature. This highly cooperative binding produces very sharp transitions between unstructured and structured poly(A) as a function of ligand concentration. Given the fact that junctions between Watson–Crick and A·A duplexes are tolerated, we propose that poly(A) sequence elements and appropriate ligands could be used to reversibly drive transitions in DNA and RNA-based molecular structures by simply diluting/concentrating a sample about the poly(A)-ligand ‘critical concentration’. The ligands described here may also find biological or medicinal applications, owing to the 3′-polyadenylation of mRNA in living cells.  相似文献   

8.
The ubiquitous and abundant cytoplasmic poly(A) binding protein (PABP) is a highly conserved multifunctional protein, many copies of which bind to the poly(A) tail of eukaryotic mRNAs to promote translation initiation. The N-terminus of PABP is responsible for the high binding specificity and affinity to poly(A), whereas the C-terminus is known to stimulate PABP multimerization on poly(A). Here, we use single-molecule nanopore force spectroscopy to directly measure interactions between poly(A) and PABPs. Both electrical and biochemical results show that the C-C domain interaction between two consecutive PABPs promotes cooperative binding. Up to now, investigators have not been able to probe the detailed polarity configuration (i.e., the internal arrangement of two PABPs on a poly(A) streak in which the C-termini face toward or away from each other). Our nanopore force spectroscopy system is able to distinguish the cooperative binding conformation from the noncooperative one. The ~50% cooperative binding conformation of wild-type PABPs indicates that the C-C domain interaction doubles the cooperative binding probability. Moreover, the longer dissociation time of a cooperatively bound poly(A)/PABP complex as compared with a noncooperatively bound one indicates that the cooperative mode is the most stable conformation for PABPs binding onto the poly(A). However, ~50% of the poly(A)/PABP complexes exhibit a noncooperative binding conformation, which is in line with previous studies showing that the PABP C-terminal domain also interacts with additional protein cofactors.  相似文献   

9.
Annexin A1 is a multifunctional, calcium-dependent phospholipid binding protein involved in a host of processes including inflammation, regulation of neuroendocrine signaling, apoptosis, and membrane trafficking. Binding of annexin A1 to glycans has been implicated in cell attachment and modulation of annexin A1 function. A detailed characterization of the glycan binding preferences of annexin A1 using carbohydrate microarrays and surface plasmon resonance served as a starting point to understand the role of glycan binding in annexin A1 function. Glycan array analysis identified annexin A1 binding to a series of sulfated oligosaccharides and revealed for the first time that annexin A1 binds to sulfated non-glycosaminoglycan carbohydrates. Using heparin/heparan sulfate microarrays, highly sulfated heparan sulfate/heparin were identified as preferred ligands of annexin A1. Binding of annexin A1 to heparin/heparan sulfate is calcium- but not magnesium-dependent. An in-depth structure-activity relationship of annexin A1-heparan sulfate interactions was established using chemically defined sugars. For the first time, a calcium-dependent heparin binding protein was characterized with such an approach. N-Sulfation and 2-O-sulfation were identified as particularly important for binding.  相似文献   

10.
Mercuric-ion promoted condensation of 6-chloropurine with acetylated dimethyl dithioacetals of D-ribose and D-arabinose in nitromethane afforded a separable mixture of 1'(S)-2,3,4,5-tetra-O-acetyl-1-(6-chloropurin-9-yl)-1-S-methyl-1-thio-D-ribitol (4) and its 1'(R) diastereomer, and the corresponding 1'(R)-arabinitol analogue (5); the structure of 4 was confirmed by X-ray crystallography. Desulfurization of 4 and 5 by tributylstannane in toluene gave 2,3,4,5-tetra-O-acetyl-1-(6-chloropurin-9-yl)-1-deoxy-D-ribitol (7) and the arabinitol analogue 8, convertible by the action of thiourea into the 1,6-dihydro-6-thioxopurin-9-yl analogues 9 and 10, which on deacetylation furnished the corresponding acyclic-sugar nucleosides 11 and 12.  相似文献   

11.
12.
p-Hydroxybenzoate hydroxylase catalyzes the hydroxylation of an aromatic substrate and uses flavin as a cofactor. The reaction probably occurs via a flavin 4a-hydroperoxide intermediate. In this study the crystal structure of 4a,5-epoxyethano-3-methyl-4a,5-dihydrolumiflavin, an analogue of the flavin 4a-hydroperoxide intermediate, was fitted to the active site in the crystal structure of the p-hydroxybenzoate hydroxylase-3,4-dihydroxybenzoate complex. This model of an important catalytic intermediate fitted very well in the active site of p-hydroxybenzoate hydroxylase. The most striking result was that whereas with the normal flavin, the 0-4 of the flavin ring makes only poor hydrogen bonds with the protein, with the flavin 4a-hydroperoxide analogue, the same 0-4 makes strong hydrogen bonds with the NH groups of Gly-46 and Val-47. These two NH groups form a carbonyl oxygen binding pocket which has a geometry almost identical to the oxyanion hole found in several proteases. The possible consequences of this model for the reaction mechanism of p-hydroxybenzoate hydroxylase are discussed.  相似文献   

13.
The diprotonated form of histamine binds site-specifically to heparin, a highly sulfated 1-->4 linked repeating copolymer comprised predominantly of 2-O-sulfo-alpha-L-iduronic acid (the I ring) and 2-deoxy-2-sulfamido-6-O-sulfo-alpha-D-glucopyranosyl (the A ring). The binding is mediated by electrostatic interactions. The structural features of histamine and heparin, which are required for the site-specific binding, have been identified from the results of (1)H NMR studies of the binding of histamine by six heparin-derived oligosaccharides and four chemically modified heparins and molecular modeling studies. The results indicate that the imidazolium ring of diprotonated histamine is critical for directing site-specific binding, while the ammonium group increases the binding affinity. The imidazolium ring binds within a cleft, with the A ring of an IAI triad at the top of the cleft, and the I rings forming the two sides. The H3 proton of the A ring is in the shielding cone of the imidazolium ring. The carboxylate group of the I-ring at the reducing end of the IAI triad and possibly the sulfamido group of the A-ring are essential for site-specific binding, whereas the 2-O-sulfate group of the I ring and the 6-O-sulfate group of the A ring are not. The results indicate that histamine binds to the IAI triad with the I rings in the (1)C(4) conformation. Also, the configuration of the carboxylate group is critical, as indicated by the absence of site-specific binding of histamine by the related IAG sequence, where G is alpha-D-glucuronic acid. The molecular modeling results indicate that the N1H and N3H protons of the imidazolium ring of site-specifically bound histamine are hydrogen bonded to the carboxylates of the I rings at the nonreducing and reducing ends of the IAI trisaccharide sequence.  相似文献   

14.
Payne VA  Chang YT  Loew GH 《Proteins》1999,37(2):176-190
The CYP2C subfamily of human liver P450 isozymes is of major importance in drug metabolism. The most abundant 2C isozyme, CYP2C9, regioselectively hydroxylates a wide variety of substrates. A major obstacle to understanding this specificity in human CYP2C9 is the absence of a 3D structure. A 3D model of CYP2C9 was built, assessed, and used to characterize explicit enzyme-substrate complexes using methods previously developed in our laboratory. The 3D model was assessed by determining its stability to unconstrained molecular dynamics and by comparison of specific properties with those of known protein structures. The CYP2C9 model was then used to characterize explicit enzyme complexes with three structurally and chemically diverse substrates: (S)-naproxen, phenytoin, and progesterone. Each substrate was found to bind to the enzyme with a favorable interaction energy and to remain in the binding site during unconstrained molecular dynamics. Moreover, the mode of binding of each substrate led to calculated preferred hydroxylation sites consistent with experiment. Binding-site residues identified for the models included Arg 105 and Arg97 as key cationic residues, as well as Asn 202, Asp 293, Pro 101, Leu 102, Gly 296, and Phe 476. Site-specific mutations are proposed for further integrated computational and experimental study.  相似文献   

15.
IGFBP-3 proteolysis clears IGFBP-3 from body fluids and increases IGF bioavailability. As shown here, native human IGFBP-3 was cleaved by proteases in media conditioned by hamster and insect cells. This proteolysis was less pronounced for IGFBP-3 containing a mutated heparin binding domain, and was prevented by purifying IGFBP-3 on an IGF-I affinity column in the presence of 2 M sodium chloride, suggesting that the responsible protease(s) binds the IGFBP-3 heparin binding domain. To determine if any human proteases act this way, we first studied plasma prekallikrein since it can copurify with IGFBP-3, and found: 1) [125]IGFBP-3 binds to prekallikrein immobilized either on nitrocellulose or on immunocapture plates; 2) the IGFBP-3 heparin binding domain participates in forming the IGFBP-3/prekallikrein complex; 3) the binary IGFBP-3/prekallikrein complex can bind IGF-I to form a ternary complex; and 4) activation of prekallikrein to alpha-kallikrein by Factor XIIa resulted in proteolysis of bound IGFBP-3. This work suggests: 1) cleavage of IGFBP-3 by a protease may be aided by the ability of the protease zymogen to directly bind the IGFBP-3 heparin binding domain; and 2) direct binding of protease zymogens to IGFBP-3 may explain some instances where IGFBP-3 is preferentially proteolyzed in the presence of other IGFBPs.  相似文献   

16.
Latent transforming growth factor (TGF)-β binding proteins are extracellular matrix (ECM) proteins involved in the regulation of TGF-β sequestration and activation. In this study, we have identified binding domains in LTBP-4, which mediate matrix targeting and cell adhesion. LTBP-4 was found to possess heparin binding activity, especially in its N-terminal region. The C-terminal domain of LTBP-4 supported fibroblast adhesion, a property reduced by soluble heparin. In addition, we found that LTBP-4 binds directly to fibronectin (FN), which was indispensable for the matrix assembly of LTBP-4. The FN binding sites were also located in the N-terminal region. Interestingly, heparin was able to reduce the binding of LTBP-4 to FN. In fibroblast cultures, LTBP-4 colocalized first with FN and subsequently with fibrillin-1, pointing to a role for FN in the early assembly of LTBP-4. In FN −/− fibroblasts, LTBP-mediated ECM targeting was disturbed, resulting in increased TGF-β activity. These results revealed new molecular interactions which are evidently important for the ECM targeting, but which also are evidence of novel functions for LTBP-4 as an adhesion molecule.  相似文献   

17.
A 53-residue peptide corresponding to the variable region 16-68 of the heavy chain of phosphocholine binding mouse myeloma M603 protein was synthesized by a solid-phase fragment strategy. The homogeneity of the VH(16-68) peptide was confirmed by high-performance liquid chromatography, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, amino acid analysis, and mass spectrometry. Synthetic VH(16-68) associated with the M603 light chain, and about 27% of the recombination mixture bound to phosphocholine immobilized on Sepharose as compared to a 28% binding yield obtained for the recombined natural light and heavy chains under the same conditions. The binding yield for the recombinant of the light chain with previously prepared VH(27-68) fragment was about 11%. These semisynthetic antibodies VH(27-68) and VH(16-68) light chain recombinants are forerunners of structural variants designed to study the antigen binding pocket of the M603 immunoglobulin.  相似文献   

18.
In order to understand the mechanisms of ligand binding and the interaction between the ligand and the bovine phenol sulfotransferase, (bSULT1A1, EC 2.8.2.1) a three-dimensional (3D) model of the bSULT1A1 is generated based on the crystal structure of the estrogen sulfotransferase (PDB code 1AQU) by using the InsightII/Homology module. With the aid of the molecular mechanics and molecular dynamics methods, the final refined model is obtained and is further assessed by Profile-3D and ProStat, which show that the refined model is reliable. With this model, a flexible docking study is performed and the results indicate that 3-phosphoadenosine-5- phosphosulfate (PAPS) is a more preferred ligand than coenzyme A (CoA), and that His108 forms hydrogen bond with PAPS, which is in good agreement with the experimental results. From these docking studies, we also suggest that Phe255, Phe24 and Tyr169 in bSULT1A1 are three important determinant residues in binding as they have strong van-der-Waals contacts with the ligand. The hydrogen–bonding interactions also play an important role for the stability of the complex. Our results may be helpful for further experimental investigations.Figure The final 3D-structure of bSULT1A1. The structure is obtained by energy minimizing an average conformation over the last 100 ps of MD simulation. The -helix is represented in red and the -sheet in yellow.  相似文献   

19.
The kinetics of iron and copper binding to hen's-egg apo-ovotransferrin were studied by using citrate chelates of these metals at pH9.3 in borate buffer in the presence of bicarbonate. The kinetics of the absorbance change associated with the formation of the final product show a fast process, which is pseudo-first-order, where the reagents are in excess with respect to the protein, and the citrate concentration is higher than 25mM. At lower citrate concentration, the progress curves are clearly biphasic. There is marked dependence of the rate of the reaction on bicarbonate concentration, which may be interpreted as a displacement reaction of the ligand-metal-protein ternary complex. The kinetics have been interpreted in the framework of a reaction scheme which involves bimolecular reaction of a metal chelate to the protein and subsequent colour development by displacement of the chelator by bicarbonate. The pH-dependence of this reaction supports the belief that tyrosine residues are involved in the process of iron-binding. The overall similarity of kinetics for iron and copper binding, notwithstanding their different co-ordination preferences, suggests that the process of metal-binding or chromophore development for the two metal complexes must be similar.  相似文献   

20.
The crystal structure of a dimeric 2:2:2 FGF:FGFR:heparin ternary complex at 3 A resolution has been determined. Within each 1:1 FGF:FGFR complex, heparin makes numerous contacts with both FGF and FGFR, thereby augmenting FGF-FGFR binding. Heparin also interacts with FGFR in the adjoining 1:1 FGF:FGFR complex to promote FGFR dimerization. The 6-O-sulfate group of heparin plays a pivotal role in mediating both interactions. The unexpected stoichiometry of heparin binding in the structure led us to propose a revised model for FGFR dimerization. Biochemical data in support of this model are also presented. This model provides a structural basis for FGFR activation by small molecule heparin analogs and may facilitate the design of heparin mimetics capable of modulating FGF signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号