首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《The Journal of cell biology》1995,131(6):1649-1658
The dynamic intra-nuclear localization of MRP RNA, the RNA component of the ribonucleoprotein enzyme RNase MRP, was examined in living cells by the method of fluorescent RNA cytochemistry (Wang, J., L.-G. Cao, Y.-L. Wang, and T. Pederson. 1991. Proc. Natl. Acad. Sci. USA. 88:7391-7395). MRP RNA very rapidly accumulated in nucleoli after nuclear microinjection of normal rat kidney (NRK) epithelial cells. Localization was specifically in the dense fibrillar component of the nucleolus, as revealed by immunocytochemistry with a monoclonal antibody against fibrillarin, a known dense fibrillar component protein, as well as by digital optical sectioning microscopy and 3-D stereo reconstruction. When MRP RNA was injected into the cytoplasm it was not imported into the nucleus. Nuclear microinjection of mutant MRP RNAs revealed that nucleolar localization requires a sequence element (nucleotides 23-62) previously implicated as a binding site for a nucleolar protein, the To antigen. These results demonstrate the dynamic localization of MRP RNA in the nucleus and provide important insights into the nucleolar targeting of MRP RNA.  相似文献   

2.
  1. Download : Download high-res image (179KB)
  2. Download : Download full-size image
  相似文献   

3.
4.
The functional characteristics of fluorescent probes used for imaging and measuring dynamic processes in living cells are reviewed. Initial consideration is given to general design requirements for delivery, targeting, detectability and fluorescence readout, and current technologies for attaining them. Discussion then proceeds to the more application-specific properties of intracellurion indicators, membrane potential sensors, probes for proteins and lipids, and cell viability markers. 1998 © Chapman & Hall  相似文献   

5.
The functional characteristics of fluorescent probes used for imaging and measuring dynamic processes in living cells are reviewed. Initial consideration is given to general design requirements for delivery, targeting, detectability and fluorescence readout, and current technologies for attaining them. Discussion then proceeds to the more application-specific properties of intracellurion indicators, membrane potential sensors, probes for proteins and lipids, and cell viability markers. 1998 © Chapman & Hall  相似文献   

6.
Fluorescently labeled smooth muscle myosin II is often used to study myosin II dynamics in non-muscle cells. In order to provide more specific tools for tracking non-muscle myosin II in living cytoplasm, fluorescent analogues of non-muscle myosin IIA and IIB were prepared and characterized. In addition, smooth and non-muscle myosin II were labeled with both cy5 and rhodamine so that comparative, dynamic studies may be performed. Non-muscle myosin IIA was purified from bovine platelets, non-muscle myosin IIB from bovine brain, and smooth muscle myosin II from turkey gizzards. After being fluorescently labeled with tetramethylrhodamine-5-iodoacetamide or with a succinimidyl ester of cy5, they retained the following properties: (1) reversible assembly into thick filaments, (2) actin-activatable MgATPase, (3) phosphorylation by myosin light chain kinase, (4) increased MgATPase upon light-chain phosphorylation, (5) interconversion between 6S and 10S conformations, and (6) distribution into endogenous myosin II-containing structures when microinjected into cultured cells. These fluorescent analogues can be used to visualize isoform-specific dynamics of myosin II in living cells. J. Cell. Biochem. 68:389–401, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
Computer-based tracking of living cells   总被引:3,自引:0,他引:3  
A computer-based tracing technique has been developed to follow the movement of living cells and keep them centered in the field of view of an optical microscope. With the use of an image-processing system, the video image of a cell can be sufficiently processed to allow computer-recognition of the cell boundaries. Determination of the location of the center of the cell enables comparison of successive cell positions and correction for any cell movement. In order to illustrate the versatility of this technique, patterns of movement were obtained of cancerous and non-cancerous cells in an effort to determine the difference in motility between the two cell types. After examination of the data gathered, it was found that there is no difference in the motility between the two cell types over 1-h periods.  相似文献   

8.
9.
A cell's biochemistry is now known to be the biochemistry of molecular machines, that is, protein complexes that are assembled and dismantled in particular locations within the cell as needed. One important element in our understanding has been the ability to begin to see where proteins are in cells and what they are doing as they go about their business. Accordingly, there is now a strong impetus to discover new ways of looking at the workings of proteins in living cells. Although the use of fluorescent tags to track individual proteins in cells has a long history, the availability of laser-based confocal microscopes and the imaginative exploitation of the green fluorescent protein from jellyfish have provided new tools of great diversity and utility. It is now possible to watch a protein bind its substrate or its partners in real time and with submicron resolution within a single cell. The importance of processes of self-organisation represented by protein folding on the one hand and subcellular organelles on the other are well recognised. Self-organisation at the intermediate level of multimeric protein complexes is now open to inspection. BioEssays 22:180-187, 2000.  相似文献   

10.
11.
12.
Mechanism for RNA splicing of gene transcripts.   总被引:9,自引:0,他引:9  
  相似文献   

13.
Chen T  Wang X  von Wangenheim D  Zheng M  Šamaj J  Ji W  Lin J 《Protoplasma》2012,249(Z2):S157-S167
Intracellular organelle movements and positioning play pivotal roles in enabling plants to proliferate life efficiently and to survive diverse environmental stresses. The elaborate dissection of organelle dynamics and their underlying mechanisms (e.g., the role of the cytoskeleton in organelle movements) largely depends on the advancement and efficiency of organelle tracking systems. Here, we provide an overview of some recently developed tools for labeling and tracking organelle dynamics in living plant cells.  相似文献   

14.
Intracellular organelle movements and positioning play pivotal roles in enabling plants to proliferate life efficiently and to survive diverse environmental stresses. The elaborate dissection of organelle dynamics and their underlying mechanisms (e.g., the role of the cytoskeleton in organelle movements) largely depends on the advancement and efficiency of organelle tracking systems. Here, we provide an overview of some recently developed tools for labeling and tracking organelle dynamics in living plant cells.  相似文献   

15.
The fluorescent reagent, CellTracker, labels metabolically-active cells and was used here to label Chlamydia in vivo during their exponential phase of growth in infected cells. HeLa cells infected with C. psittaci were labelled with the CellTracker reagents between 15 and 48 h post-infection. The fluorescent label accumulated in the host-cell membrane compartment (inclusion) within which Chlamydia reside and replicate, and was also incorporated by the bacteria. Labelling with the CellTracker affected neither the growth nor the differentiation of the chlamydiae, and labelled chlamydiae isolated from infected cells were infectious. Our results demonstrate that the CellTracker could become a valuable tool for in vivo labelling of obligate intracellular parasites for which no genetic tools exist.  相似文献   

16.
17.
18.
19.
The discovery and engineering of novel fluorescent proteins (FPs) from diverse organisms is yielding fluorophores with exceptional characteristics for live-cell imaging. In particular, the development of FPs for fluorescence (or F?rster) resonance energy transfer (FRET) microscopy is providing important tools for monitoring dynamic protein interactions inside living cells. The increased interest in FRET microscopy has driven the development of many different methods to measure FRET. However, the interpretation of FRET measurements is complicated by several factors including the high fluorescence background, the potential for photoconversion artifacts and the relatively low dynamic range afforded by this technique. Here, we describe the advantages and disadvantages of four methods commonly used in FRET microscopy. We then discuss the selection of FPs for the different FRET methods, identifying the most useful FP candidates for FRET microscopy. The recent success in expanding the FP color palette offers the opportunity to explore new FRET pairs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号