首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By methods of light and electron microscopies, morphometric and stereologic analysis the effect of ethanol, thiamine deficiency diet and ethanol combined with B1 hypovitaminosis in 24 Wistar male-rats during 6 weeks was studied. Ultrastructural features of decreasing protein synthesis and carbohydrate metabolism were revealed both in ethanol administration and in B1 hypovitaminosis. There is shown in alcoholic intoxication the statistically significant decrease of capillary volume density and increase of volume density of connective tissue cells in myocardium. It was shown, that B1 hypovitaminosis resulted in decrease of myocardial mass mainly at the expense of volume density and absolute total mass of muscle fibers. The most expressed changes of tissue organization were revealed in combined influence of ethanol and B1 hypovitaminosis.  相似文献   

2.
Congestive heart failure is a growing, worldwide epidemic. The major causes of heart failure are related to irreversible damage resulting from myocardial infarction (heart attack). The long-standing axiom has been that the myocardium has a limited capacity for self-repair or regeneration; and the irreversible loss of cardiac muscle and accompanying contraction and fibrosis of myocardial scar tissue, sets into play a series of events, namely, progressive ventricular remodeling of nonischemic myocardium that ultimately leads to progressive heart failure. The loss of cardiomyocyte survival cues is associated with diverse pathways for heart failure, underscoring the importance of maintaining the number of viable cardiomyocytes during heart failure progression. Currently, no medication or procedure used clinically has shown efficacy in replacing the myocardial scar with functioning contractile tissue. Therefore, given the major morbidity and mortality associated with myocardial infarction and heart failure, new approaches have been sought to address the principal pathophysiologic deficits responsible for these conditions, resulting from the loss of cardiomyocytes and viable blood vessels. Recently, the identification of stem cells from bone marrow capable of contributing to tissue regeneration has ignited significant interest in the possibility that cell therapy could be employed therapeutically for the repair of damaged myocardium. In this review, we will discuss the currently available bone marrow-derived stem progenitor cells for myocardial repair and focus on the advantages of using recently identified novel bone marrow-derived multipotent stem cells (BMSC)  相似文献   

3.
Cardiomyocyte dedifferentiation, as detected in hibernating myocardium of chronic ischemic patients, is one of the characteristics seen at the border of myocardial infarcts in small and large animals. Our objectives were to study in detail the morphological changes occurring at the border zone of a rabbit myocardial infarction and its use as model for hibernating myocardium. Ligation of the left coronary artery (LAD) was performed on rabbit hearts and animals were sacrificed at 2, 4, 8 and 12 weeks post-infarction. These hearts together with a non-infarcted control heart were perfusion-fixed and tissue samples were embedded in epoxy resin. Hibernating cardiomyocytes were mainly distributed in the non-infarcted region adjacent to the border zone of infarcted myocardium but only in a limited number. In the border zone itself vacuolated cardiomyocytes surrounded by fibrotic tissue were frequently observed. Ultrastructural analysis of these vacuolated cells revealed the presence of a basal lamina inside the vacuoles adjacent to the surrounding membrane, the presence of pinocytotic vesicles and an association with cisternae of the sarcoplasmatic reticulum. Myocyte quantitative analyses revealed a gradual increase in vacuolar area/total cell area ratio and in collagen fibril deposition inside the vacuoles from 2 to 12 weeks post-infarction. Related to the remote zone, the increase in cell width of myocytes located in and adjacent to the border zone demonstrated cellular hypertrophy. These results indicate the occurrence of cardiomyocyte remodelling mechanisms in the border zone and adjacent regions of infarcted myocardium. It is suggested that the vacuoles represent plasma membrane invaginations and/or dilatations of T-tubular structures.  相似文献   

4.
Luo Q  Jiang L  Chen G  Feng Y  Lv Q  Zhang C  Qu S  Zhu H  Zhou B  Xiao X 《Free radical research》2011,45(11-12):1355-1365
Constitutive heat shock protein 70 (Hsc70) is a molecular chaperone that has been shown to protect cardiomyocytes against oxidative stress. However, the molecular mechanism responsible for this protection remains uncertain. To understand the mechanism associated with the myocardial protective role of Hsc70, we have embarked upon a systematic search for Hsc70-interacting proteins. Using adenosine diphosphate (ADP) affinity chromatography and mass spectrometry, we have identified α-enolase, a rate-limiting enzyme in glycolysis, as a novel Hsc70-interacting protein in the myocardium of both sham and myocardial ischemia-reperfused Sprague-Dawley rat hearts. This interaction was confirmed by co-immunoprecipitation (IP) assays in the myocardial tissues and H9c2 cardiomyocytes and protein overlay assay (POA). It was further shown that Hsc70-overexpression alleviated the H(2)O(2)-induced decrease of α-enolase activity and cell damage, and Hsc70 deficiency aggravated the decrease of α-enolase activity and cell damage in H(2)O(2) treated H9c2 cells. Our research suggests that the protective effect of Hsc70 on the cardiomyocytes against oxidative stress is partly associated with its interaction with α-enolase.  相似文献   

5.
A stereologic study of the myocardium exposure to cold for 4 hours, 8 and 16 days was carried out on Wistar rats. It has been shown that during the first 8 days acute hemodynamic disorders and cardiomyocyte contractures developed. These changes were followed by a decrease in the volume and surface capillary density resulting in the impairment of transcapillary exchange and reduction of the intracellular regeneration processes in cardiomyocytes. By the 16th day the compensatory-adaptive reactions developed, i.e., the volume and surface density of endothelial cells and capillaries was increased. At the same time the lysis processes caused by the general decrease in the inflow of plastic substances to the myocardium due to the increase in thermogenesis were revealed in part of cardiomyocytes. These changes in parenchymatous cells were accompanied by the intensification of desmoplastic reactions in the myocardial stroma.  相似文献   

6.
Han X  Cheng H  Mancuso DJ  Gross RW 《Biochemistry》2004,43(49):15584-15594
Herein, we utilize the power of shotgun lipidomics to demonstrate that modest caloric restriction results in phospholipid depletion, membrane remodeling, and triacylglycerol (TAG) accumulation in murine myocardium. After brief periods of fasting (4 and 12 h), substantial decreases occurred in the choline and ethanolamine glycerophospholipid pools in murine myocardium (collectively, a decrease of 39 nmol of phospholipid per milligram of protein at 12 h representing approximately 25% of total phospholipid mass and approximately 20 cal of Gibbs free energy per gram wet weight of tissue). Remarkably, the selective loss of long-chain polyunsaturated molecular species was present in the major phospholipid classes thereby altering the physical properties of myocardial membranes. No decrease in TAG mass was present in myocardium during fasting, but rather myocardial TAG increased during 12 h of refeeding nearly 3-fold returning to baseline levels only after 24 h of refeeding. No alterations in other examined lipid classes were present during fasting. In contrast to these lipid alterations in myocardium, no decreases in phospholipid mass were present in skeletal muscle myocytes and a dramatic decrease in skeletal muscle (or skeletal muscle associated) TAG mass was prominent after 12 h of fasting. These results identify phospholipids as a rapidly mobilizable energy source during modest caloric deprivation in murine myocardium, while triacylglycerols are a major source of energy reserve in skeletal muscle. Collectively, these results demonstrate dramatic alterations in the membrane composition of mildly fasted mammalian myocardium that identify the unanticipated plasticity of myocardial phospholipids to adapt to modest chemical and physical perturbations.  相似文献   

7.
Herein we discuss modem data showing that ventricle's working myocardium is highly heterogeneous. Significant transmural differences in electrophysiological and biomechanical properties of cardiomyocytes are reviewed. The reviewed evidence of myocardial heterogeneity constitutes the basis for modem assessment of segmental kinetics of different regions in intact heart. We used muscle duplexes as condensed models of a heterogeneous myocardial system. Experimental data, presented here were obtained both in biological duplexes formed by isolated myocardial preparations and in mathematical models of muscle duplexes. We showed that specific functional heterogeneity of cardiomyocytes, related to their excitation sequence, allowed the myocardium to optimise its contractile function and smooth dispersion of repolarisation.  相似文献   

8.
Cellular mechanisms of heart-muscle growth in the snail Achatina fulica have been studied using cytophotometry and electron microscopic autoradiography. Cytophotometric DNA measurements showed that the snail cardiomyocytes are mononucleated cells with diploid nuclei. Ultrastructural analysis of the snail myocardium revealed that, in addition to mature myocytes, it contains small roundish undifferentiated cells (UCs) and poorly differentiated muscle cells. EM autoradiography detected silver grains over the nuclei of UCs 2 h after injection of tritiated thymidine ([(3)H]Tdr), while the nuclei of both mature and poorly differentiated myocytes remained unlabeled. In EM autographs of the myocardial tissue fixed 14 days after [(3)H]Tdr administration, labeled myonuclei were evident, which may suggest some myodifferentiation of prelabeled UCs. Many labeled UCs persist for 14 days after a single [(3)H]Tdr injection, suggesting that not all UCs undergo myodifferentiation after passing through the cell cycle, and that those that do not can enter the next cycle. UCs in the snail myocardium presumably provide not only reserve but also stem cells for myocytes. Thus, the heart muscle of the adult snail consists of mononucleated diploid myocytes with blocked proliferative activity and a renewable population of precursor myogenic cells. The results obtained suggest that the growth of this muscle involves a myoblastic mechanism of myogenesis; this mechanism differs from that of vertebrate cardiac muscle growth, which is non-myoblastic-that is, based on proliferation or polyploidization of cardiomyocytes. Evolutionary aspects of cellular mechanisms of the heart-muscle growth are discussed.  相似文献   

9.
Silver staining was used to estimate structural and functional conditions of cardiomyocyte and stromal cell nucleoli in myocardium from 3 patients with idiopathic restrictive cardiomyopathy (RCM). We revealed a prominent increase in the amount of myocardial stromal component cells. The area of nuclei, the area and amount of nucleoli in cells of myocardial stromal component much varied. In some cells of myocardial stromal component we found nuclei, whose area was comparable with that of cardiomyocyte nuclei. In all patients we revealed cardiomyocytes with extranucleolar distribution of argentophilic substance in the nuclei. These data suggest an important pathogenic role of structural rearrangments in the nuclei of cardiomyocytes and stromal component cells in providing specific cell phenotype of myocardium in patients with idiopathic RCM. Extranucleolar (atypical) distribution of argentophilic substance in the nucleus, referred to as "micronucleoli", point out certain disturbances of nucleolar functions in cardiomyocytes in patients with RCM.  相似文献   

10.
We developed mathematical models of the electromechanical function of cardiomyocytes and the simplest mechanically heterogeneous myocardial systems, muscle duplexes. By means of these models we studied the contribution of mechanoelectric feedbacks to the contractile activity of the myocardium in norm and pathology. In particular, we simulated and clarified the effects of mechanical conditions on both the form and the duration of the action potential during contractions. From this standpoint different kinds of myocardium mechanical heterogeneity were analyzed. As we have established, the latter can play both a positive and a negative role, depending on the distribution of mechanical nonuniformity and the sequence of activation of heterogeneous myocardium system elements. By means of the same models, we studied the contribution of mechanical factors to the arrhythmogenicity in the case of the cardiomyocyte calcium overload caused by the attenuation of the sodium-potassium pump and outlined the ways for correcting the contractile function in these disturbances.  相似文献   

11.
Myocardial regeneration with bone-marrow-derived stem cells   总被引:5,自引:0,他引:5  
Despite significant therapeutic advances, heart failure remains the predominant cause of mortality in the Western world. Ischaemic cardiomyopathy and myocardial infarction are typified by the irreversible loss of cardiac muscle (cardiomyocytes) and vasculature composed of endothelial cells and smooth muscle cells, which are essential for maintaining cardiac integrity and function. The recent identification of adult and embryonic stem cells has triggered attempts to directly repopulate these tissues by stem cell transplantation as a novel therapeutic option. Reports describing provocative and hopeful examples of myocardial regeneration with adult bone-marrow-derived stem and progenitor cells have increased the enthusiasm for the use of these cells, yet many questions remain regarding their therapeutic potential and the mechanisms responsible for the observed therapeutic effects. In this review article we discuss the current preclinical and clinical advances in bone-marrow-derived stem or progenitor cell therapies for regeneration or repair of the ischaemic myocardium and their multiple related mechanisms involved in myocardial repair and regeneration.  相似文献   

12.
Physiological data indicate a residual vascularisation within ischemic myocardial regions where necrosis of most cells have been reported to occur after myocardial infarction. We therefore studied, by means of immunohistochemistry, computer-assisted morphometry, and electron microscopy, the terminal vascularisation in correlation to cardiomyocytes in ten canine hearts 1 and 3 weeks after occlusion of the left anterior descending (LAD) coronary artery. In comparison to non-infarcted myocardium we found the following alterations in infarcted myocardium: (1) the area density of cardiomyocytes decreased from 98% (control) to 7.9% (1 week after occlusion) and to 2.7% (3 weeks after occlusion); (2) the number of capillaries was diminished to 11.6% and to 2.6%; respectively; (3) smooth muscle α-actin was induced in endothelial (EC) cells of the microvessels; and (4) terminal resistance vessels increased 11-fold and 20-fold in number, respectively. Our findings confirm the necrosis of the vast majority of cardiomyocytes and capillaries within the first 3 weeks after myocardial infarction. Besides a small number of capillaries, many terminal resistance vessels, however, seem to persist in the scarring infarcted tissue. The occurrence of these microvessels is supposed to be important for the granulation tissue as well as for the control and regulation of a residual blood supply during scar formation.  相似文献   

13.
《Free radical research》2013,47(11-12):1355-1365
Abstract

Constitutive heat shock protein 70 (Hsc70) is a molecular chaperone that has been shown to protect cardiomyocytes against oxidative stress. However, the molecular mechanism responsible for this protection remains uncertain. To understand the mechanism associated with the myocardial protective role of Hsc70, we have embarked upon a systematic search for Hsc70-interacting proteins. Using adenosine diphosphate (ADP) affinity chromatography and mass spectrometry, we have identified α-enolase, a rate-limiting enzyme in glycolysis, as a novel Hsc70-interacting protein in the myocardium of both sham and myocardial ischemia-reperfused Sprague–Dawley rat hearts. This interaction was confirmed by co-immunoprecipitation (IP) assays in the myocardial tissues and H9c2 cardiomyocytes and protein overlay assay (POA). It was further shown that Hsc70-overexpression alleviated the H2O2-induced decrease of α-enolase activity and cell damage, and Hsc70 deficiency aggravated the decrease of α-enolase activity and cell damage in H2O2 treated H9c2 cells. Our research suggests that the protective effect of Hsc70 on the cardiomyocytes against oxidative stress is partly associated with its interaction with α-enolase.  相似文献   

14.
The multidrug-resistant (MDR)-1 gene-encoded P-glycoprotein (Pgp-170) is not normally present in the cardiomyocyte. Given that in other tissues Pgp-170 is not found under normoxic conditions but is expressed during hypoxia, we searched for Pgp-170 in chronically ischemic porcine cardiomyocytes. Pgp-170 was detected and localized via immunohistochemistry in ischemic and nonischemic cardiomyocytes of eight adult pigs 8 weeks after placement of an Ameroid constrictor at the origin of the left circumflex artery (Cx). Regional myocardial ischemia in the Cx bed was documented with nuclear perfusion scans. Pgp-170 mass was quantified using Western blot analysis. In all pigs, Pgp-170 was consistently present in the sarcolemma and T invaginations of the cardiomyocytes of the ischemic zone. Pgp-170 expression decreased toward the border of the ischemic zone and was negative in nonischemic regions as well as in the myocardium of sham-operated animals. Western blot analysis yielded significantly higher Pgp-170 mass in ischemic than in nonischemic areas. We conclude that Pgp-170 is consistently expressed in the cardiomyocytes of chronically ischemic porcine myocardium. Its role in the ischemic heart as well as in conditions such as myocardial hibernation, stunning, and preconditioning may have potentially relevant clinical implications and merits further investigation.  相似文献   

15.
Recent studies have suggested that bone marrow cells might possess a much broader differentiation potential than previously appreciated. In most cases, the reported efficiency of such plasticity has been rather low and, at least in some instances, is a consequence of cell fusion. After myocardial infarction, however, bone marrow cells have been suggested to extensively regenerate cardiomyocytes through transdifferentiation. Although bone marrow-derived cells are already being used in clinical trials, the exact identity, longevity and fate of these cells in infarcted myocardium have yet to be investigated in detail. Here we use various approaches to induce acute myocardial injury and deliver transgenically marked bone marrow cells to the injured myocardium. We show that unfractionated bone marrow cells and a purified population of hematopoietic stem and progenitor cells efficiently engraft within the infarcted myocardium. Engraftment was transient, however, and hematopoietic in nature. In contrast, bone marrow-derived cardiomyocytes were observed outside the infarcted myocardium at a low frequency and were derived exclusively through cell fusion.  相似文献   

16.
Mathematical models of the electromechanical function of cardiomyocytes and muscle duplexes, the simplest mechanically inhomogeneous myocardial systems, are developed. Using these models, the contribution of mechanoelectrical feedbacks to the contractive activity of the myocardium in normal and abnormal conditions is studied. In particular, the influence of the mechanical conditions of contraction on the shape and duration of the action potentials is reproduced and interpreted. In this context, different types of mechanical heterogeneity of the myocardium are analyzed. It is established that this heterogeneity can play a positive or negative role depending on the distribution of heterogeneous properties and on the order the elements of the system are activated. Using the same models, the contribution of mechanical factors to arrhythmogenesis under calcium overload of cardiomyocytes due to the weakening of the sodium-potassium pump is studied. Methods for correction of the contractive activity of cardiomyocytes in the case of such abnormalities are outlined.  相似文献   

17.
The ascending aorta of 22 adult male Sprague-Dawley rats was constricted with a silver ring, and 25 animals were subjected to a sham-operation. The hearts, including the main arteries, were fixed by retrograde perfusion 3, 7, 14, 21 and 35 days after the operation. The cross-sectional area of the aorta was reduced by the constriction to an average of 20% of the values found after sham-operation. Twenty-one days after the constriction the weight of the left ventricular myocardium including the septum was increased 1.7-fold compared with controls. No further increase in weight was observed 35 days after the operation. The relative volumes of the tissue components remained largely constant in the subepicardial myocardium. In the subendocardial myocardium, however, the volume fraction of interstitial and, to a lesser extent, of endothelial tissue was significantly increased. Twenty-one days after constriction the estimated total volumes of the different myocardial components per left ventricle were increased 1.7-fold for heart muscle parenchyma, 1.8-fold for endothelial tissue, 2.9-fold for interstitial tissue, and 1.3-fold for capillary lumina compared with controls. At 35 days, only the interstitial tissue showed a further increase to 4.8-fold of control values. The mean cardiomyocyte volume was increased after aortic constriction in proportion to the increase in left ventricular weight, i.e. 1.7-fold over controls at 21 days. After 35 days its value was 29,500 +/- 790 micron 3 in rats subjected to aortic constriction compared with 16,800 +/- 640 micron 3 in controls. At this time the estimated number of cardiomyocytes per left ventricle showed no significant differences between experimental animals (2.9 X 10(7)) and controls (3.1 X 10(7)). Endothelial and interstitial cells were not only increased in average single cell volume (1.3-fold and 2.0-fold, respectively), but also in number per left ventricle (1.4-fold and 2.7-fold, respectively). Two-dimensional parameters indicated that during hypertrophy the capillary supply lagged behind the overall mass increase but achieved control levels on termination of hypertrophic growth at 35 days. These results show that even in pronounced hypertrophy the increase in mass of the myocardial parenchyma in the rat is due exclusively to an enlargement of cardiomyocytes (hypertrophy), whereas in endothelial and interstitial tissues enlargement of cells as well as increase in cell number (hyperplasia) also plays a role.  相似文献   

18.
Slow-twitch skeletal muscle atrophies greatly inresponse to unloading conditions. The cellular mechanisms thatcontribute to the restoration of muscle mass after atrophy are largelyunknown. Here, we show that atrophy of the mouse soleus is associatedwith a 36% decrease in myonuclear number after 2 wk of hindlimbsuspension. Myonuclear number is restored to control values during the2-wk recovery period in which muscle mass returns to normal, suggesting that muscle precursor cells proliferate and fuse with myofibers. Inhibition of muscle precursor cell proliferation by local-irradiation of the hindlimb completely prevents this increase inmyonuclear number. Muscle growth occurs normally during the first weekin irradiated muscles, but growth during the second week is inhibited, leading to a 50% attenuation in the restoration of muscle mass. Thusearly muscle growth occurs independently of an increase in myonuclearnumber, whereas later growth requires proliferating muscle precursorcells leading to myonuclear accretion. These results suggest thatincreasing the proliferative capacity of muscle precursor cells mayenhance restoration of muscle mass after atrophy.

  相似文献   

19.
Mouse mast cell protease-4 (mMCP4) is a chymase that has been implicated in cardiovascular diseases, including myocardial infarction (MI). This study tested a direct role of mMCP4 in mouse post-MI cardiac dysfunction and myocardial remodeling. Immunoblot and immunofluorescent double staining demonstrated mMCP4 expression in cardiomyocytes from the infarct zone from mouse heart at 28 day post-MI. At this time point, mMCP4-deficient Mcpt4?/? mice showed no difference in survival from wild-type (WT) control mice, yet demonstrated smaller infarct size, improved cardiac functions, reduced macrophage content but increased T-cell accumulation in the infarct region compared with those of WT littermates. mMCP4-deficiency also reduced cardiomyocyte apoptosis and expression of TGF-β1, p-Smad2, and p-Smad3 in the infarct region, but did not affect collagen deposition or α-smooth muscle actin expression in the same area. Gelatin gel zymography and immunoblot analysis revealed reduced activities of matrix metalloproteinases and expression of cysteinyl cathepsins in the myocardium, macrophages, and T cells from Mcpt4?/? mice. Immunoblot analysis also found reduced p-Smad2 and p-Smad3 in the myocardium from Mcpt4?/? mice, yet fibroblasts from Mcpt4?/? mice showed comparable levels of p-Smad2 and p-Smad3 to those of WT fibroblasts. Flow cytometry, immunoblot analysis, and immunofluorescent staining demonstrated that mMCP4-deficiency reduced the expression of proapoptotic cathepsins in cardiomyocytes and protected cardiomyocytes from H2O2-induced apoptosis. This study established a role of mMCP4 in mouse post-MI dysfunction by regulating myocardial protease expression and cardiomyocyte death without significant impact on myocardial fibrosis or survival post-MI in mice.  相似文献   

20.
Cardiomyocytes respond to physiological or pathological stress only by hypertrophy and not by an increase in the number of functioning cardiomyocytes. However, recent evidence suggests that adult cardiomyocytes have the ability, albeit limited, to divide to compensate for the cardiomyocyte loss in the event of myocardial injury. Similarly, the presence of stem cells in the myocardium is a good omen. Their activation to participate in the repair process is, however, hindered by some as-yet-undetermined biological impediments. The rationale behind the use of adult stem cell transplantation is to supplement the inadequacies of the intrinsic repair mechanism of the heart and compensate for the cardiomyocyte loss in the event of injury. Various cell types including embryonic, fetal, and adult cardiomyocytes, smooth muscle cells, and stable cell lines have been used to augment the declining cardiomyocyte number and cardiac function. More recently, the focus has been shifted to the use of autologous skeletal myoblasts and bone marrow-derived stem cells. This review is a synopsis of some interesting aspects of the fast-emerging field of bone marrow-derived stem cell therapy for cardiac repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号