首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
The lantibiotic nisin is produced by Lactococcus lactis. In the biosynthesis of nisin, the enzyme NisB dehydrates nisin precursor, and the enzyme NisC is needed for lanthionine formation. In this study, the nisA gene encoding the nisin precursor, and the genes nisB and nisC of the lantibiotic modification machinery were expressed together in vitro by the Rapid Translation System (RTS). Analysis of the RTS mixture showed that fully modified nisin precursor was formed. By treating the mixture with trypsin, active nisin was obtained. However, no nisin could be detected in the mixture without zinc supplementation, explained by the fact that NisC requires zinc for its function. The results revealed that the modification of nisin precursor, which is supposed to occur at the inner side of the membrane by an enzyme complex consisting of NisB, NisC, and the transporter NisT, can take place without membrane association and without NisT. This in vitro production system for nisin opens up the possibility to produce nisin variants that cannot be producedin vivo. Moreover, the system is a promising tool for utilizing the NisB and NisC enzymes for incorporation of thioether rings into medical peptides and hormones for increased stability.  相似文献   

2.
This article reviews the primary reaction processes in rhodopsin, a photoreceptive pigment for twilight vision. Rhodopsin has an 11-cis retinal as the chromophore, which binds covalently with a lysine residue through a protonated Schiff base linkage. Absorption of a photon by rhodopsin initiates the primary photochemical reaction in the chromophore. Picosecond time-resolved spectroscopy of 11-cis locked rhodopsin analogs revealed that the cis-trans isomerization of the chromophore is the primary reaction in rhodopsin. Then, generation of femtosecond laser pulses in the 1990s made it possible to follow the process of isomerization in real time. Formation of photorhodopsin within 200 fsec was observed by a transient absorption (pump–probe) experiment, which also revealed that the photoisomerization in rhodopsin is a vibrationally coherent process. Femtosecond fluorescence spectroscopy directly captured excited-state dynamics of rhodopsin, so that both coherent reaction process and unreacted excited state were observed. Faster photoreaction of the chromophore in rhodopsin than that in solution implies that the protein environment facilitates the efficient isomerization process. Such contributions of the protein residues have been monitored by infrared spectroscopy of rhodopsin, bathorhodopsin, and isorhodopsin (9-cis rhodopsin) at low temperatures. The crystal structure of bovine rhodopsin recently reported will lead to better understanding of the mechanism in future.  相似文献   

3.
Studies on aldosterone biosynthesis in vitro   总被引:1,自引:0,他引:1  
  相似文献   

4.
5.
6.
Rhodopsin, the photoreceptor of rod cells, absorbs light to mediate the first step of vision by activating the G protein transducin (Gt). Several human diseases, such as retinitis pigmentosa or congenital night blindness, are linked to rhodopsin malfunctions. Most of the corresponding in vivo studies and structure-function analyses (e.g. based on protein x-ray crystallography or spectroscopy) have been carried out on murine or bovine rhodopsin. Because these rhodopsins differ at several amino acid positions from human rhodopsin, we conducted a comprehensive spectroscopic characterization of human rhodopsin in combination with molecular dynamics simulations. We show by FTIR and UV-visible difference spectroscopy that the light-induced transformations of the early photointermediates are very similar. Significant differences between the pigments appear with formation of the still inactive Meta I state and the transition to active Meta II. However, the conformation of Meta II and its activity toward the G protein are essentially the same, presumably reflecting the evolutionary pressure under which the active state has developed. Altogether, our results show that although the basic activation pathways of human and bovine rhodopsin are similar, structural deviations exist in the inactive conformation and during receptor activation, even between closely related rhodopsins. These differences between the well studied bovine or murine rhodopsins and human rhodopsin have to be taken into account when the influence of point mutations on the activation pathway of human rhodopsin are investigated using the bovine or murine rhodopsin template sequences.  相似文献   

7.
8.
9.
10.
The biosynthesis of tetrahymanol in vitro.   总被引:1,自引:1,他引:0  
  相似文献   

11.
12.
Moore TS  Du Z  Chen Z 《Plant physiology》2001,125(1):423-429
Diacylglyceryltrimethylhomo-Ser (DGTS) is an abundant lipid in the membranes of many algae, lower plants, and fungi. It commonly has an inverse concentration relationship with phosphatidylcholine, thus seemingly capable of replacing this phospholipid in these organisms. In some places this replacement is complete; Chlamydomonas reinhardtii is such an organism, and was used for these investigations. We have assayed headgroup incorporation to form DGTS in vitro. The precursor for both the homo-Ser moiety and the methyl groups was found to be S-adenosyl-L-Met. DGTS formation was associated with microsomal fractions and is not in plastids. By analogy with phosphatidylcholine and phosphatidylethanolamine biosynthesis in higher plants, the microsomal activity probably is associated with the endoplasmic reticulum. The pH optimum for the total reaction was between 7.5 and 8.0, and the best temperature was 30 degrees C. The apparent K(m) and V(max) for S-adenosyl-L-Met in the overall reaction were 74 and 250 microM, respectively.  相似文献   

13.
Summary We have investigated the stimulation of cuticle production by imaginal discs ofPlodia interpunctella in tissue culture. We turned to biochemical methods to assess the quantitative effects of beta-ecdysone on chitin biosynthesis in wing discs incubated with 0.5 C of C14-glucosamine for the final 24 h of culture.We demonstrated that imaginal discs ofP. interpunctella respond to increasing concentrations of -ecdysone with increased synthesis. The threshold is between 0.01 and 0.1 g/ml of hormone (2×10–8 M to 2×10–7 M). These data represent the first demonstration of quantitative biosynthesis of chitin by a developing tissue in vitro in relation to varying amounts of hormone. Additionally, protein synthesis during the -ecdysone-dependent period was necessary for chitin synthesis. This system thus lends itself to a detailed investigation of the control of chitin biosynthesis.We wish to dedicate this paper to the memory of a fine colleague and friend, Dr. Andrzej Dutkowski  相似文献   

14.
Photoreversal of Rhodopsin Bleaching   总被引:4,自引:2,他引:2       下载免费PDF全文
A mechanistic scheme, showing certain steps of rhodopsin bleaching, provides two ways of viewing the bleaching process: (a) The rate of bleaching depends upon the net rate of accumulation of labile species; and (b) the number of labile molecules which accumulates in a certain period is the number which has absorbed an odd number of quanta by the end of that period. Both views, based on the photoreversibility of bleaching, lend themselves to concise mathematical formulation. The expected amounts of bleaching at various intensities, calculated according to these formulae, give very close fits to the experimental data. The relevance of these results to other experiments is pointed out and emphasis is placed on the explanation of observed quantum efficiencies which obtain at both low and high intensities.  相似文献   

15.
《Molecular membrane biology》2013,30(3-4):297-322
The thermal stability of lipid-free rhodopsin in solutions of a homologous series of alkyltrimethylammonium bromide detergents and one nonionic detergent, dodecyl-β-maltoside, has been studied as a function of detergent concentration. Rhodopsin thermal stability increases with increasing chain length within the homologous series of ionic detergents, and for chain lengths greater than 10 carbon atoms increases with increasing detergent concentration up to a “critical” concentration that depends on the chain length. Stability also increases with increasing detergent concentration for rhodopsin in solutions of the nonionic detergent. These results may be rationalized in terms of the dependence of micelle packing density on the detergent chain length, head group, and concentration.  相似文献   

16.
The published electron microscope and X-ray structures of rhodopsin have made available a detailed picture of the inactive dark state of rhodopsin. Yet, the photointermediates of rhodopsin that ultimately lead to the activated receptor species still await a similar analysis. Such an analysis first requires the generation and characterization of the photoproducts that can be obtained in crystals of rhodopsin. We therefore studied with Fourier-transform infrared (FTIR) difference spectroscopy the photoproducts in 2D crystals of bovine rhodopsin in a p22(1)2(1) crystal form. The spectra obtained by cryotrapping revealed that in this crystal form the still inactive early intermediates batho, lumi, and meta I are similar to those obtained from rhodopsin in native disk membranes, although the transition from lumi to meta I is shifted to a higher temperature. However, at room temperature, the formation of the active state, meta II, is blocked in the crystalline environment. Instead, an intermediate state is formed that bears some features of meta II but lacks the specific conformational changes required for activity. Despite being unable to activate its cognate G protein, transducin, to a significant extent, this intermediate state is capable of interacting with functional transducin-derived peptides to a limited extent. Therefore, while unable to support formation of rhodopsin's active state meta II, 2D p22(1)2(1) crystals proved to be very suitable for determining 3D structures of its still inactive precursors, batho, lumi, and meta I. In future studies, FTIR spectroscopy may serve as a sensitive assay to screen crystals grown under altered conditions for potential formation of the active state, meta II.  相似文献   

17.
Rhodopsin kinetics in the cat retina   总被引:1,自引:2,他引:1       下载免费PDF全文
The bleaching and regeneration of rhodopsin in the living cat retina was studied by means of fundus reflectometry. Bleaching was effected by continuous light exposures of 1 min or 20 min, and the changes in retinal absorbance were measured at 29 wavelengths. For all of the conditions studied (fractional bleaches of from 65 to 100%), the regeneration of rhodopsin to its prebleach levels required greater than 60 min in darkness. After the 1-min exposures, the difference spectra recorded during the first 10 min of dark adaptation were dominated by photoproduct absorption, and rhodopsin regeneration kinetics were obscured by these intermediate processes. Extending the bleaching duration to 20 min gave the products of photolysis an opportunity to dissipate, and it was possible to follow the regenerative process over its full time-course. It was not possible, however, to fit these data with the simple exponential function predicted by first-order reaction kinetics. Other possible mechanisms were considered and are presented in the text. Nevertheless, the kinetics of regeneration compared favorably with the temporal changes in log sensitivity determined electrophysiologically by other investigators. Based on the bleaching curve for cat rhodopsin, the photosensitivity was determined and found to approximate closely the value obtained for human rhodopsin; i.e., the energy Ec required to bleach 1-e-1 of the available rhodopsin was 7.09 log scotopic troland-seconds (corrected for the optics of the cat eye), as compared with approximately 7.0 in man.  相似文献   

18.
19.
The assembly of most of the ceramide-linked glycolipids (GSLs) in eukaryotic cells occurs in Golgi bodies. At least 18 different glycolipid:glycosyltransferases (GSL:GLTs) have been characterized, 10 of which have been solubilized. These GLTs can be classified into 2 distinct groups: 1) GLTs dedicated to either Dol-P-P-sugar(s) or ceramide-linked sugar(s); and 2) GLTs with dual loyalties (i.e., they compete with glycolipid- and glycoprotein-bound oligosaccharides). Studies with solubilized and purified GalNAcT-1 and GalNAcT-2 from embryonic chicken brains prove that GalNAcT-1 (UDP-GalNAc:GM3 beta 1-4GalNAcT) is specific for GSL, whereas GalNAcT-2 (UDP-GalNAc:Gb3 beta 1-3GalNAcT) can transfer to an oligosaccharide containing the alpha-linked terminal galactose. Similarly, GalT-3 (UDP-Gal:GM2 beta 1-3GalT) is more specific for ganglio-oligosaccharide and GalT-4 (UDP-Gal:Lc3 beta 1-4GalT) can transfer galactose to N-acetylglucosamine linked to p-nitrophenol, glycolipid or glycoprotein. Both GalT-3 and GalT-4 have been separated and purified from embryonic chicken brains. Studies with solubilized SAT-4 and SAT-3, from bovine spleen and embryonic chicken brains, respectively, suggest the existence of 2 different gene-expressed alpha 2-3SATs. The newly discovered FucT-3 (GDP-Fuc:NeuGc-iLc6-alpha 1-3FucT) from human colon carcinoma (Colo-205) has also been solubilized and separated from other GSL:GLTs. Using a new activity gel-Western blot combined technique, the molecular mass of this FucT-3 was determined to be 105 kDa.  相似文献   

20.
Glycosylphosphatidylinositol (GPI) represents a mechanism for the attachment of proteins to the plasma membrane found in all eukaryotic cells. GPI biosynthesis has been mainly studied in parasites, yeast, and mammalian cells. Aspergillus fumigatus, a filamentous fungus, produces GPI-anchored molecules, some of them being essential in the construction of the cell wall. An in vitro assay was used to study the GPI biosynthesis in the mycelium form of this organism. In the presence of UDP-GlcNAc and coenzyme A, the cell-free system produces the initial intermediates of the GPI biosynthesis: GlcNAc-PI, GlcN-PI, and GlcN-(acyl)PI. Using GDP-Man, two types of mannosylation are observed. First, one or two mannose residues are added to GlcN-PI. This mannosylation, never described in fungi, does not require dolichol phosphomannoside (Dol-P-Man) as the monosaccharide donor. Second, one to five mannose residues are added to GlcN-(acyl)PI using Dol-P-Man as the mannose donor. The addition of ethanolamine phosphate groups to the first, second, and third mannose residue is also observed. This latter series of GPI intermediates identified in the A. fumigatus cell-free system indicates that GPI biosynthesis in this filamentous fungus is similar to the mammalian or yeast systems. Thus, these biochemical data are in agreement with a comparative genome analysis that shows that all but 3 of the 21 genes described in the Saccharomyces cerevisiae GPI pathways are found in A. fumigatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号