首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ABA concentrations of leaves, roots, soils and transport fluids of chickpea and lupin plants growing in acid (pH=4.8) and alkaline (pH=8.0) soils and an acid soil with an alkaline subsoil and an alkaline soil with an acid subsoil were measured with the aim of explaining the poor growth of narrow-leafed lupins in alkaline soil. The ABA concentration in the leaves was higher in lupin than chickpea, but did not differ when the plants were grown in alkaline compared to acid soil. The ABA concentration of the roots and xylem sap of lupin did not differ significantly when grown in acid or alkaline soil. Chickpea roots and xylem sap had, however, lower ABA concentrations in acid soil. The ABA concentration in the soil solution was higher in the acid than in the alkaline soil. Roots of lupin and chickpea showed no suberization of the hypodermis or exodermis whether grown aeroponically or hydroponically and the pH of the cytoplasm did not change significantly when root cells of lupin and chickpea were exposed to external pHs of 4.8 or 8.0. The chickpea roots had greater suberization of the endodermal cells adjacent to radial xylem rays and maintained a slightly higher vacuolar pH than lupin in both acid and alkaline external media, but these small differences are insufficient to explain the reductions in lupin growth in alkaline soil.  相似文献   

2.
Water loss from roots back into drying soil is a problem ofpractical importance in plants growing under conditions of verylow substrate water potential, such as dry or saline areas.Root exodermis is relatively impermeable and has been suggestedto play a protective role against water loss. The relative waterretention ability was compared in root segments from exodermal(maize, onion, sunflower, Rhodes grass and sorghum) and non-exodermalspecies (Pisum sativum,Vicia fabaand wheat). Apical and basalsegments from exodermal roots, with different degrees of exodermisdevelopment, were also compared, as were segments from sorghumroots in which the exodermis thickness had been modified bysubjecting the plants to a 30 d water stress treatment. Waterretention was significantly higher in segments from exodermalroots. In each root, water loss was higher in apical than inbasal segments, regardless of the presence of exodermis. Insorghum, prolonged drought treatment increased exodermis thickeningin nodal roots, however, no differences in rates of water losswere observed in segments obtained from control and droughtedplants. Soil sheaths formed around roots of Rhodes grass growingin very dry soil with the epidermis adhering tightly to thesheath. In plants growing in the field, soil sheaths may bemore effective than the exodermis in preventing root water loss.Copyright1999 Annals of Botany Company. Root, exodermis, rhizosheaths, water loss.  相似文献   

3.
Broad beans (Vicia faba)could tolerate up to 10% (w)w) crude oil in desert soil (sand), therefore, the potential of this crop for cleaning oily desert soil via rhizosphere technology was investigated. The amounts of hydrocarbons recovered from oily desert soil samples supporting V. faba plants were less than the amounts extracted from uncultivated oily soil samples. Excised fresh V. faba roots with their intact rhizospheres resulted in the attenuation of n-octadecane, phenanthrene, and crude oil when shaken into sterile desert soil extract containing these hydrocarbons. The amounts of hydrocarbons eliminated were greater with roots of plants previously raised in oily soil than with roots of plants raised in clean soil. Similar hydrocarbon attenuation effects were recorded when, instead of excised roots, whole plants were used with their roots submerged in the hydrocarbon containing soil extract. The various parts of plants raised in oily desert soil contained more linolenic acid in their total lipids than did the same parts of plants raised in clean desert soil. This was much more pronounced for the roots than for shoots and seeds. The hydrocarbons of roots and shoots of V. faba plants were not as affected by oil pollution as were those of seeds, in which the proportions of very long chain hydrocarbons increased with increasing oil concentration in the soil. Those hydrocarbons are not recommended for human and animal nutrition.  相似文献   

4.
Freundl E  Steudle E  Hartung W 《Planta》2000,210(2):222-231
The exodermal layers that are formed in maize roots during aeroponic culture were investigated with respect to the radial transport of cis-abscisic acid (ABA). The decrease in root hydraulic conductivity (Lpr) of aeroponically grown roots was stimulated 1.5-fold by ABA (500 nM), reaching Lpr values of roots lacking an exodermis. Similar to water, the radial flow of ABA through roots (JABA) and ABA uptake into root tissue were reduced by a factor of about three as a result of the existence of an exodermis. Thus, due to the cooperation between water and solute transport the development of the ABA signal in the xylem was not affected. This resulted in unchanged reflection coeffcients for roots grown hydroponically and aeroponically. Despite the well-accepted barrier properties of exodermal layers, it is concluded that the endodermis was the more effective filter for ABA. Owing to concentration polarisation effects, ABA may accumulate in front of the endodermal layer, a process which, for both roots possessing and lacking an exodermis, would tend to increase solvent drag and hence ABA movement into the xylem sap at increased water flow (JVr). This may account for the higher ABA concentrations found in the xylem at greater pressure difference. Received: 26 January 1999 / Accepted: 26 May 1999  相似文献   

5.
SIVAKUMARAN  S.; HALL  M. A. 《Annals of botany》1978,42(6):1403-1411
Ethylene concentrations rise in stems, lacunae and roots ofEuphorbia Iathyrus subjected to osmotic stress. In contrastto other species, however, no such changes are observed in leaves.Similarly, ABA concentrations rise in the leaves of osmotically-stressedplants but little change was observed in roots. In no case wasthere any strong evidence for the existence of a threshold ofosmotic potential above which a response will not occur. Instead,marked increases in concentrations of both ABA and ethylenewere obtained in response to osmotic stresses which did notresult in significant changes in water saturation defecit (WSD)during the experiment. In Vicia faba, time course studies at constant osmotic potentialshowed that ABA concentrations increased with duration of stressand increased WSD but the effect was most marked in youngertissues for a given level of stress. Concentrations of boundABA showed a similar pattern with time but here the change wasleast marked in the younger tissues. Euphorbia Iathyrus, Vicia faba, endogenous growth regulators, osmotic stress  相似文献   

6.
The occurrence of gibberellins and abscisic acid (ABA) in extracts of roots of Vicia faba was demonstrated by gas-liquid chromatography (GLC) of the methylated eluates from the relevant zones of thin-layer chromatograms (TLC) of purified extracts. Quantitative determination of the hormone contents in extracts from upper and lower halves of roots which had been kept in the horizontal position for 30 min indicated a redistribution of the hormones during the geotropic stimulation. Gibberellins whose methyl esters appeared at the retention time of methylated gibberellic acid (GA3), used as a standard, occurred in higher concentration in the upper than in the lower halves (ratio 2.08:1), whereas the concentration of ABA was highest in the lower halves (ratio 3.08:1). The ratio of the hormones in right and left halves of vertical roots was close to 1:1. Indoleacetic acid (IAA) and ABA were found to retard the elongation of roots of Vicia faba and Lepidium during the first 24 h. Additional experiments with Lepidium showed that this retardation occurs within the first hour after application. Low concentrations of GA3, when applied to germinating seeds just after the radicles had broken the seed coat, stimulated root elongation in Vicia faba within 24 h and in Lepidium within 36 h. When applied to Lepidium seedlings with 20 mm long roots, GA3 showed a stimulatory trend within the first 2 h, and distinct stimulation in the subsequent hours, particularly at the lowest concentrations, 0.01 and 0.001 mg/1. These results suggest the possibility of a participation of ABA and gibberellins (in addition to IAA) in the development of the positive geotropic curvature.  相似文献   

7.
Increase in cell number, and in anlage volume and length have been investigated during the development of lateral root primordia in roots of intact plants of Pisum sativum and Vicia faba and in excised roots of both species cultured in White's medium supplemented with 2% sucrose. With the exception of primordia in excised roots of Vicia, the general equation which best described increase in each aspect of primoridium growth measured against time was that for exponential growth. When the times necessary for cell number and primordium volume and length to double were determined at intervals over the period of development studied, however, they were found to vary. Similarly, estimates of the size of the proliferative fraction of cells at different times during anlage development indicated that this index of meristematic activity also fluctuated over the developmental period investigated, i.e., increase in cell number and in primordium volume and length do not occur in a truly exponential fashion as the primordia increase in size and cell number. One difference between anlage development in the roots of intact plants and in those grown in culture was that whereas the former primordia completed their development and emerged as lateral roots over the period of the investigation, the latter did not. Moreover, cell doubling time and anlage volume and length doubling times were longer, and the proliferation fraction of cells lower, over the whole period of, and at intervals during, primordium development in the excised roots compared with the results obtained for the roots of the corresponding intact plants.  相似文献   

8.
Abstract The growth of young plants of the epigeal species Phaseolus vulgaris and Glycine max is compared with that of the hypogeal species Pisum sativum and Vicia faba, with particular reference to synchronization between the exhuastion of seed reserves of N and the availability of fixed N. It is argued that the N stress symptoms which occur when these two processes are not synchronized are more common and obvious in Phaseolus or Glycine than in Pisum or Vicia. This is primarily because in these species (a) the first fixed N is used for nodule growth rather than being exported to the shoot system and (b) the first foliage leaves have a much greater area and contain a larger proportion of N reserves from the seed. It is further suggested that Phaseolus and Glycine may show the greater response to nitrogen fertilizer applied at sowing since (a) most of the applied nitrate is passed directly to the shoots (rather than being reduced in the roots as in Pisum or Vicia) and (b) in addition to being used for growth (following reduction), it may also be used prior to reduction as part of the osmotic force driving cell expansion.  相似文献   

9.
Isolated guard cells, prepared by sonication of epidermal peels, were used to investigate the endogenous level of abscisic acid (ABA) in the guard cells of turgid and stressed leaves of Vicia faba L. and the argenteum (arg) mutant of Pisum sativum L. The guard cells of V. faba and arg were found to contain 18 and 8 times more ABA, respectively, when isolated from stressed leaves than from turgid leaves. Isolated guard cells of V. faba were also directly stressed with the osmoticum Aquacide III. These guard cells were capable of producing stress-induced ABA to at least 3 times their ABA level when non-stressed.  相似文献   

10.
Iron (Fe) is an essential element for plant growth and development. Some plant growth-promoting rhizobacteria can increase Fe uptake by plants through reduction of Fe(III) to Fe(II) at the root surface. The aim of this work was to identify novel bacterial strains with high Fe(III) reduction ability and to evaluate their role in plant Fe uptake. Four bacterial strains (UMCV1 to UMCV4) showing dissimilatory Fe-reducing activity were isolated from the rhizosphere of bean and maize plants and further identified by 16S rDNA amplification and sequence analysis. From these analyses, UMCV1 and UMCV2 isolates were identified as Bacillus megaterium and Arthrobacter spp., respectively, whereas UMCV3 and UMCV4 were identified as Stenotrophomonas maltophilia. All four isolates showed Fe reduction in a nonflooded soil and when associated with roots of bean plants grown in alkaline soil or in mineral medium. In addition, the bacterial isolates were able to stimulate plant growth in vitro and on a broad level, plants grown in inoculated soil were generally bigger and with higher Fe content than those grown in sterilized soil. These results indicate that bacterial species isolated from the rhizosphere of bean and maize plants contribute significantly to Fe uptake by plants likely through increased Fe(III) reduction in the rhizosphere.  相似文献   

11.
Conjugated, alkaline hydrolysable ABA (predominantly abscisic acid glucose ester, ABA-GE), which is transported in the xylem from roots to shoots of Zea mays L. plants, has its origin in the root symplast rather than from soil, although it was detectable in soil solution with concentrations up to 30 nM. External ABA glucose ester cannot be dragged with the water flow across the exodermis and the endodermis because of its hydrophobic properties. Experimental evidence is presented that enzymes in the cortical apoplast cleave ABA-GE thus releasing ABA from its conjugates. Liberated ABA can then be translocated apoplastically and symplastically to the xylem vessels. Endogenous ABA-GE can be released from isolated cortical and stelar tissues to the surrounding media, with rates that are up to 5-fold higher from stelar tissues than those from cortical tissues. Release of ABA-GE is highest under conditions of inhibited ABA-metabolism.  相似文献   

12.
Diversification of habitat has proved to be an efficient way to reduce insect pest levels in agroecosystems. Some general theories used to explain this fact, such as the natural enemies and the resource concentration hypotheses, do not always clearly apply because, in many cases, pest individuals and population response seem controlled by more specific insect-plant interactions. In non replicated plots, we found substantially lower flea beetle densities in mixed broccoli-Vicia cropping systems compared to broccoli monoculture. These results were consistent with those from controlled experiments reported in the literature. To investigate if beetle behavior was related to such population reduction, the movement behavior of marked individuals of Phyllotreta cruciferae Goeze released in plots composed solely of broccoli plants and of broccoli mixed with Vicia faba or Vicia sativa plants, was followed and analyzed. The mean tenure time of beetles was longer in simple than in mixed cultures. Also, more beetles tended to fly out and leave mixed cultures compared to monoculture. This resulted in faster reduction of artificially introduced flea beetle populations in the mixed systems.Flea beetles landing on cover crop plants spent considerable time entangled in Vicia sativa branches or attempting to reach the upper part of the tall Vicia faba plants from which they could fly away. It is possible that the beetles characteristic movement on these two species of cover crops increased their risk of predation and the time and energy expended before they reached suitable host plants. Nevertheless, it seems that the detected flea beetle emigration rates were more than sufficient to account for the population trends observed.  相似文献   

13.
Helal HM  Mengel K 《Plant physiology》1981,67(5):999-1002
Seedings of Vicia faba were grown for four weeks at two different light intensities (55 and 105 watts per square meter) in a saline (50 millimolar NaCl) and nonsaline nutrient solution. NaCl salinity depressed growth and restricted protein formation, CO2 assimilation, and especially the incorporation of photosynthates into the lipid fraction. Conversion of photosynthates in leaves was much more affected by salinity than was photosynthate turnover in roots. The detrimental effect of NaCl salinity on growth, protein formation, and CO2 assimilation was greater under low than under high light conditions. Plants of the high light intensity treatment were more capable of excluding Na+ and Cl and accumulating nutrient cation species (Ca2+, K+, Mg2+) than plants grown under low light intensity. It is suggested that the improved ionic status provided better conditions for protein synthesis, CO2 assimilation, and especially for the conversion of photosynthates into lipids.  相似文献   

14.
The capacity of plant roots to increase their carboxylate exudation at a low plant phosphorus (P) status is an adaptation to acquire sufficient P at low soil P availability. Our objective was to compare crop species in their adaptive response to a low-P availability, in order to gain knowledge to be used for improving crop P-acquisition efficiency from soils that are low in P or that have a high capacity to retain P. In the present screening study we compared 13 crop species, grown in sand at either 3 or 300 μM of P, and measured root mass ratio, cluster-root development, rhizosphere pH and carboxylate composition of root exudates. Root mass ratio decreased with increasing P supply for Triticum aestivum L., Brassica napus L., Cicer arietinum L. and Lens culinaris Medik., and increased only for Pisum sativum L., while the Lupinus species and Vicia faba L. were not responsive. Lupinus species that had the potential to produce root clusters either increased or decreased biomass allocation to clusters at 300 μM of P compared with allocation at 3 μM of P. All Lupinus species acidified their rhizosphere more than other species did, with average pH decreasing from 6.7 (control) to 4.3 for Lupinus pilosus L. and 5.9 for Lupinus atlanticus L.; B. napus maintained the most alkaline rhizosphere, averaging 7.4 at 300 μM of P. Rhizosphere carboxylate concentrations were lowest for T. aestivum, B. napus, V. faba, and L. culinaris than for the other species. Exuded carboxylates were mainly citrate and malate for all species, with the exception of L. culinaris and C. arietinum, which produced mainly citrate and malonate. Considerable variation in the concentration of exuded carboxylates and protons was found, even with a genus. Cluster-root forming species did not invariably have the highest concentrations of rhizosphere carboxylates. Lupinus species varied both in P-uptake and in the sensitivity of their cluster-root development to external P supply. Given the carbon cost of cluster roots, a greater plasticity in their formation and exudation (i.e. reduced investment in cluster roots and exudation at higher soil P, a negative feedback response) is a desirable trait for agricultural species that may have variable access to readily available P.  相似文献   

15.
Vicia faba plants were grown under drought conditions and variously supplemented with calcium. Drought stress markedly inhibited the growth of Vicia faba plants. Ca2+ ameliorated to a large extent this inhibition; fresh weight, dry mass, chlorophyll and water contents were variably improved. Membranes were, also, negatively affected by drought stress and percentage leakage was elevated. Concomitantly, the efflux of K+ and Ca2+ was enhanced by drought but lowered by supplemental Ca2+. In addition, membranes of droughted plants were sensitive to the Ca2+ channel blockers lanthanum, nifedipine or verapamil more than those of control plants. These blockers significantly increased the efflux of K+ and Ca2+ as well as percentage leakage particularly in those of droughted plants. The above results indicated that the functioning of the calcium channels was negatively affected when Vicia faba was grown under drought conditions. However, much of the drought-induced disorders including sensitivity towards the applied calcium channel blockers could be ameliorated by supplemental Ca2+.  相似文献   

16.
Penetration of very strong soils by seedling roots of different plant species   总被引:19,自引:2,他引:17  
The abilities of seedling roots of twenty-two plant species to penetrate a strong growth medium were compared under controlled conditions. Seedlings were grown for 10 days in compression chambers filled with siliceous sandy soil at 0.2 kg kg–1 water content and mean penetrometer resistance of 4.2 MPa. Root elongation and thickening were measured after growth. The results show that soil strength reduced the elongation of roots of all plant species by over 90% and caused the diameters of the roots to increase compared with control plants grown in vermiculite (0 MPa resistance).Differences in both root elongation and root diameter were observed among plant species. Generally, the roots of dicotyledons (with large diameters) penetrated the strong medium more than graminaceous monocotyledons (with smaller diameters). There was a significant positive correlation (r=0.78, p<0.05) between root diameter and elongation over all the species in the stressed plants. The species were ranked according to the relative root elongation and relative root thickening. Based on this ranking, lupin (Lupinus angustifolius), medic (Medicago scutelata) and faba bean (Vicia faba) were the species with the greatest thickening and elongation while wheat (Triticum aestivum), rhodesgrass (Chloris gayana) and barley (Hordeum vulgare) had the least. The weight of the seeds did not seem to influence either the thickening or elongation of the roots.  相似文献   

17.
The molybdenum cofactor (MoCo) is a component of aldehyde oxidase (AO EC 1.2.3.1), xanthine dehydrogenase (XDH EC 1.2.1.37) and nitrate reductase (NR, EC 1.6.6.1). The activity of AO, which catalyses the last step of the synthesis of abscisic acid (ABA), was studied in leaves and roots of barley (Hordeum vulgare L.) plants grown on nitrate or ammonia with or without salinity. The activity of AO in roots was enhanced in plants grown with ammonium while nitrate-grown plants exhibited only traces. Root AO in barley was enhanced by salinity in the presence of nitrate or ammonia in the nutrient medium while leaf AO was not significantly affected by the nitrogen source or salinity of the medium.Salinity and ammonium decreased NR activity in roots while increasing the overall MoCo content of the tissue. The highest level of AO in barley roots was observed in plants grown with ammonium and NaCl, treatments that had only a marginal effect on leaf AO. ABA concentration in leaves of plants increased with salinity and ammonium.Keywords: ABA, aldehyde oxidase, ammonium, nitrate, salinity.   相似文献   

18.
This study investigates the distribution of carboxylates and acid phosphatases as well as the depletion of different phosphorus (P) fractions in the rhizosphere of three legume crop species and a cereal, grown in a soil with two different levels of residual P. White lupin (Lupinus albus L.), field pea (Pisum sativum L.), faba bean (Vicia faba L.) and spring wheat (Triticum aestivum L.) were grown in small sand-filled PVC tubes to create a dense root mat against a 38-μm mesh nylon cloth at the bottom, where it was in contact with the soil of interest contained in another tube. The soil had either not been fertilised (P0) or fertilised with 15 (P15) kg P ha−1 in previous years. The mesh size did not allow roots to grow into the soil, but penetration of root hairs and diffusion of nutrients and root exudates was possible, and a rhizosphere was established. At harvest, thin (1 mm) slices of this rhizosphere soil were cut, down to a 10-mm distance from the mesh surface. The rhizosphere of white lupin, particularly in the P0 treatment, contained citrate, mostly in the first 3 mm, with concentrations decreasing with distance from the root. Acid phosphatase activity was enhanced in the rhizosphere of all species, as compared with bulk soil, up to a distance of 4 mm. Phosphatase activity was highest in the rhizosphere of white lupin, followed by faba bean, field pea and wheat. Both citrate concentrations and phosphatase activities were higher in P0 compared with P15. The depletion of both inorganic (Pi) and organic (Po) phosphorus fractions was greatest at the root surface, and decreased gradually with distance from the root. The soil P fractions that were most depleted as a result of root activity were the bicarbonate-extractable (0.5 M) and sodium hydroxide-extractable (0.1 M) pools, irrespective of plant species. This study suggests that differences among the studied species in use of different P pools and in the width of the rhizosphere are relatively small.  相似文献   

19.
Summary The hydraulic resistivity ofVicia faba L. roots grown in soil was estimated from steady state measurements of transpiration rate and leaf and soil water potentials. Root and stem axial resistivities, estimated from xylem vessel radii, were negligible. Root radial resistivity was estimated to be 1.3×1012 sm−1. This root radial resistivity value was used to estimate, root resistance to water uptake for a field crop ofVicia faba. Previously published results were used for root distribution and soil water contents at the drained upper limit (DUL) and the lower limit (LL) of extractable soil water. Soil resistance to water uptake was estimated from single root theory using the steady rate solution. At the DUL, root resistance was about 105 times greater than soil resistance. At the LL, soil resistance exceeded root resistance for depths less than 0.3 m, but for depths greater than this soil resistance was smaller than root resistance. Estimates of possible uptake rates at given leaf water potentials indicated that overall soil resistance had a negligible influence upon uptake, even at the LL. The reliability of this result is examined in detail. It is concluded that over the complete range of extractable soil water contents soil resistanceper se would not have limited water use by this crop. This conclusion may also be valid for a wide range of soil and crop combinations.  相似文献   

20.
Abstract

The content and composition of lipids and fatty acids of taproots and lateral roots of Vicia faba were investigated with plants grown under saline (80 mM NaCl) and non-saline conditions. Lipids of both types of faba bean roots are constituted of ~80% phospholipids, of ~15% glycolipids and of some 5% of wax-esters. Phosphatidylethanolamine (PE) and phosphatidylcholine are the main constituents of both root types. Di-phosphatyidylglycerol and phosphatidylinositol are present in medium concentrations, whereas phosphatidylglycerol and phosphatidylserine are present only in trace amounts. The content of sulpholipids was much lower in salt-treated roots as compared with that of the controls. The content of cardiolipins and PE was higher in lateral roots than in the taproots. Roots of salt-treated plants had some 18% lower ether-soluble lipid content in the lateral roots, and approximately 28% lower than the taproots. Less than 25% of the fatty acids of the extracted phospholipids were saturated, with palmitic acid as the main constituent (13 – 18%). Linoleic acid comprised 65 – 70% of the unsaturated acids. Differences in the composition of some fatty acids were found between taproots and lateral roots of salt-treated plants. The observed differences in composition between root types suggests that the reported physiological differences between such roots could be based, at least in part, on structural or compositional differences in their lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号