首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Luo Y  Wang Y  Kuang SY  Chiang YH  Hoffer B 《PloS one》2010,5(12):e15193
The abuse of psychostimulants, such as methamphetamine (METH), is prevalent in young adults and could lead to long-term adaptations in the midbrain dopamine system in abstinent human METH abusers. Nurr1 is a gene that is critical for the survival and maintenance of dopaminergic neurons and has been implicated in dopaminergic neuron related disorders. In this study, we examined the synergistic effects of repeated early exposure to methamphetamine in adolescence and reduction in Nurr1 gene levels. METH binge exposure in adolescence led to greater damage in the nigrostrial dopaminergic system when mice were exposed to METH binge later in life, suggesting a long-term adverse effect on the dopaminergic system. Compared to naïve mice that received METH binge treatment for the first time, mice pretreated with METH in adolescence showed a greater loss of tyrosine hydroxylase (TH) immunoreactivity in striatum, loss of THir fibers in the substantia nigra reticulata (SNr) as well as decreased dopamine transporter (DAT) level and compromised DA clearance in striatum. These effects were further exacerbated in Nurr1 heterozygous mice. Our data suggest that a prolonged adverse effect exists following adolescent METH binge exposure which may lead to greater damage to the dopaminergic system when exposed to repeated METH later in life. Furthermore, our data support that Nurr1 mutations or deficiency could be a potential genetic predisposition which may lead to higher vulnerability in some individuals.  相似文献   

2.
3.
The orphan nuclear receptor Nurr1 (also known as NR4A2) is critical for the development and maintenance of midbrain dopaminergic neurons, and is associated with Parkinson's disease. However, an association between Nurr1 and Alzheimer's disease (AD)‐related pathology has not previously been reported. Here, we provide evidence that Nurr1 is expressed in a neuron‐specific manner in AD‐related brain regions; specifically, it is selectively expressed in glutamatergic neurons in the subiculum and the cortex of both normal and AD brains. Based on Nurr1’s expression patterns, we investigated potential functional roles of Nurr1 in AD pathology. Nurr1 expression was examined in the hippocampus and cortex of AD mouse model and postmortem human AD subjects. In addition, we performed both gain‐of‐function and loss‐of‐function studies of Nurr1 and its pharmacological activation in 5XFAD mice. We found that knockdown of Nurr1 significantly aggravated AD pathology while its overexpression alleviated it, including effects on Aβ accumulation, neuroinflammation, and neurodegeneration. Importantly, 5XFAD mice treated with amodiaquine, a highly selective synthetic Nurr1 agonist, showed robust reduction in typical AD features including deposition of Aβ plaques, neuronal loss, microgliosis, and impairment of adult hippocampal neurogenesis, leading to significant improvement of cognitive impairment. These in vivo and in vitro findings suggest that Nurr1 critically regulates AD‐related pathophysiology and identify Nurr1 as a novel AD therapeutic target.  相似文献   

4.
Exercise has been demonstrated to potently protect substantia nigra pars compacta (SN) dopaminergic neurons from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity. One mechanism proposed to account for this neuroprotection is the upregulation of neurotrophic factors. Several neurotrophic factors, including Brain Derived Neurotrophic Factor (BDNF), have been shown to upregulate in response to exercise. In order to determine if exercise-induced neuroprotection is dependent upon BDNF, we compared the neuroprotective effects of voluntary exercise in mice heterozygous for the BDNF gene (BDNF+/-) with strain-matched wild-type (WT) mice. Stereological estimates of SNpc DA neurons from WT mice allowed 90 days exercise via unrestricted running demonstrated complete protection against the MPTP-induced neurotoxicity. However, BDNF+/- mice allowed 90 days of unrestricted exercise were not protected from MPTP-induced SNpc DA neuron loss. Proteomic analysis comparing SN and striatum from 90 day exercised WT and BDNF+/- mice showed differential expression of proteins related to energy regulation, intracellular signaling and trafficking. These results suggest that a full genetic complement of BDNF is critical for the exercise-induced neuroprotection of SNpc DA neurons.  相似文献   

5.
In vitro expanded CNS precursors could provide a renewable source of dopamine (DA) neurons for cell therapy in Parkinson's disease. Functional DA neurons have been derived previously from early midbrain precursors. Here we demonstrate the ability of Nurr1, a nuclear orphan receptor essential for midbrain DA neuron development in vivo, to induce dopaminergic differentiation in naïve CNS precursors in vitro. Independent of gestational age or brain region of origin, Nurr1‐induced precursors expressed dopaminergic markers and exhibited depolarization‐evoked DA release in vitro. However, these cells were less mature and secreted lower levels of DA than those derived from mesencephalic precursors. Transplantation of Nurr1‐induced DA neuron precursors resulted in limited survival and in vivo differentiation. No behavioral improvement in apomorphine‐induced rotation scores was observed. These results demonstrate that Nurr1 induces dopaminergic features in naïve CNS precursors in vitro. However, additional factors will be required to achieve in vivo function and to unravel the full potential of neural precursors for cell therapy in Parkinson's disease.  相似文献   

6.
7.
Proneural genes are crucial regulators of neurogenesis and subtype specification in many areas of the nervous system; however, their function in dopaminergic neuron development is unknown. We report that proneural genes have an intricate pattern of expression in the ventricular zone of the ventral midbrain, where mesencephalic dopaminergic neurons are generated. Neurogenin 2 (Ngn2) and Mash1 are expressed in the ventral midline, while Ngn1, Ngn2 and Mash1 are co-localized more laterally in the ventricular zone. Ngn2 is also expressed in an intermediate zone immediately adjacent to the ventricular zone at the ventral midline. To examine the function of these genes, we analyzed mutant mice in which one or two of these genes were deleted (Ngn1, Ngn2 and Mash1) or substituted (Mash1 in the Ngn2 locus). Our results demonstrate that Ngn2 is required for the differentiation of Sox2(+) ventricular zone progenitors into Nurr1(+) postmitotic dopaminergic neuron precursors in the intermediate zone, and that it is also likely to be required for their subsequent differentiation into tyrosine hydroxylase-positive dopaminergic neurons in the marginal zone. Although Mash1 normally has no detectable function in dopaminergic neuron development, it could partially rescue the generation of dopaminergic neuron precursors in the absence of Ngn2. These results demonstrate that Ngn2 is uniquely required for the development of midbrain dopaminergic neurons.  相似文献   

8.
9.
Wu YC  Cai YQ  Zhao YB  Fei J 《生理学报》2006,58(4):351-358
将合成的核受体相关因子1(nuclear receptor-related factor 1,Nurr1)特异性短发夹寡核苷酸(small-hairpin RNA,shRNA)序列插入真核表达载体pSilen Circle(pSC),构建Nurr1基因特异性shRNA真核表达载体,转染体外培养多巴胺能神经前体细胞系MN9D,分别采用实时荧光定量PCR和Western blot方法检测其对MN9D细胞内源Nurr1的干扰作用及其对酪氨酸羟化酶(tyrosine hydroxylase,TH)表达的影响,并在倒置显微镜下观察MN9D细胞神经突起生长的情况,探讨Nurr1 shRNA表达载体对多巴胺能细胞表型标记物删和以神经突起延长为特征的细胞成熟的影响。结果表明,脂质体组细胞和转染阴性对照质粒的MN9D细胞内Nurr1、TH的表达正常,而转染Nurr1 shRNA真核表达载体(pSC-N1和pSC-N2)的MN9D细胞内Nurr1和TH的mRNA水平明显降低,Nurr1 mRNA的下降率分别为62.3%和45.6%,TH mRNA的下降率分别为76.3%和62.6%。同时Nurr1和TH蛋白的表达亦明显下调,Nurr1蛋白的下降率分别为57.4%和72.0%,TH蛋白的下降率分别为79.1%和70.1%。另外,转染Nurr1 shRNA真核表达质粒的MN9D细胞神经突起延长有所减少,但是与正常细胞无明显差异。结果提示:Nurr1 shRNA真核表达载体能显著下调MN9D细胞内源Nurr1和TH mRNA和蛋白的表达,同时可能对MN9D细胞的神经突起延长有一定的抑制作用。Nurr1 shRNA表达载体的成功构建为多巴胺能神经元发育以及帕金森病相关基因的功能研究奠定了基础。  相似文献   

10.
Nurr1 (NR4A2) is an orphan nuclear receptor highly essential for the dopaminergic development and survival. Altered expression of Nurr1 has been suggested as a potential genetic risk factor for dopamine-related brain disorders, including schizophrenia. In support of this, recent experimental work in genetically modified mice shows that mice with a heterozygous constitutive deletion of Nurr1 show a facilitation of the development of schizophrenia-related behavioral abnormalities. However, the behavioral characterization of this Nurr1-deficient mouse model remains incomplete. This study therefore used a comprehensive behavioral test battery to evaluate schizophrenia-relevant phenotypes in Nurr1-deficient mice. We found that these mice displayed increased spontaneous locomotor activity and potentiated locomotor reaction to systemic treatment with the non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist, dizocilpine (MK-801). In addition, male but not female Nurr1-deficient mice showed significant deficits in the prepulse inhibition and prepulse-elicited reactivity. However, Nurr1 deletion did not induce overt abnormalities in other cardinal behavioral and cognitive functions known to be impaired in schizophrenia, including social interaction and recognition, spatial recognition memory or discrimination reversal learning. Our findings thus suggest that heterozygous constitutive deletion of Nurr1 results in a restricted phenotype characteristic of schizophrenia symptomatology, which primarily relates to motor activity, sensorimotor gating and responsiveness to the psychomimetic drug MK-801. This study further emphasizes a critical role of altered dopaminergic development in the precipitation of specific brain dysfunctions relevant to human psychotic disorder.  相似文献   

11.
The cause of the neurodegenerative process in Parkinson's disease (PD) remains unclear, but evidence suggests that failure of the ubiquitin-proteasome system may play a major role in the pathogenesis of the disease. Iron is believed to be a key contributor to PD pathology by inducing aggregation of alpha-synuclein and by generating oxidative stress. Our present studies have shown that micro-injection of the proteasome inhibitor lactacystin into the substantia nigra (SN) of C57BL/6 mice causes significant loss of dopaminergic cells and induces intracellular inclusion body formation. We have also found that co-injection of the iron chelator desferrioxamine not only attenuates the lactacystin-induced dopamine neuron loss, but also reduces the presence of ubiquitin-positive intracellular inclusions in the SN, whereas use of iron-deficient diet has no such protective effects. These results may support that iron plays a key role in proteasome inhibitor-induced nigral pathology and that reducing iron reactivity may prevent dopaminergic neuron degeneration and reduce abnormal protein aggregation.  相似文献   

12.
13.
14.
15.
16.
Parkinson’s disease (PD) patients have excessive iron depositions in substantia nigra (SN). Neuroinflammation characterized by microglial activation is pivotal for dopaminergic neurodegeneration in PD. However, the role and mechanism of microglial activation in iron-induced dopaminergic neurodegeneration in SN remain unclear yet. This study aimed to investigate the role and mechanism of microglial β-nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) activation in iron-induced selective and progressive dopaminergic neurodegeneration. Multiple primary midbrain cultures from rat, NOX2+/+ and NOX2?/? mice were used. Dopaminergic neurons, total neurons, and microglia were visualized by immunostainings. Cell viability was measured by MTT assay. Superoxide (O2 ·?) and intracellular reactive oxygen species (iROS) were determined by measuring SOD-inhibitable reduction of tetrazolium salt WST-1 and DCFH-DA assay. mRNA and protein were detected by real-time PCR and Western blot. Iron induces selective and progressive dopaminergic neurotoxicity in rat neuron–microglia–astroglia cultures and microglial activation potentiates the neurotoxicity. Activated microglia produce a magnitude of O2 ·? and iROS, and display morphological alteration. NOX2 inhibitor diphenylene iodonium protects against iron-elicited dopaminergic neurotoxicity through decreasing microglial O2 ·? generation, and NOX2?/? mice are resistant to the neurotoxicity by reducing microglial O2 ·? production, indicating that iron-elicited dopaminergic neurotoxicity is dependent of NOX2, a O2 ·?-generating enzyme. NOX2 activation is indicated by the increased mRNA and protein levels of subunits P47 and gp91. Molecules relevant to NOX2 activation include PKC-σ, P38, ERK1/2, JNK, and NF-КBP65 as their mRNA and protein levels are enhanced by NOX2 activation. Iron causes selective and progressive dopaminergic neurodegeneration, and microglial NOX2 activation potentiates the neurotoxicity. PKC-σ, P38, ERK1/2, JNK, and NF-КBP65 are the potential molecules relevant to microglial NOX2 activation.  相似文献   

17.
18.
19.
20.
Organization of the human orphan nuclear receptor Nurr1 gene   总被引:5,自引:0,他引:5  
Torii T  Kawarai T  Nakamura S  Kawakami H 《Gene》1999,230(2):49-232
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号