首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The age-specific incidence rate of breast cancer in women rises until menopause, levels off and then rises again at a much lower rate indicating a possible hormonal influence on the disease risk. A large amount of evidence has implicated hormones and other compounds with oestrogen activity in the pathogenesis of certain endocrine cancers, particularly breast cancer. Widely dispersed hormone-like chemicals, capable of disrupting the endocrine system and interfering with proliferation, have been described. Compounds such as dioxins, some polychlorinated biphenyls and the plastic ingredient bisphenol-A have been shown to interfere with human reproduction and hormonal regulation. The levels of these foreign compounds as well as the levels of endogenous oestradiol may influence the risk of breast cancer. Endogenous oestradiol is synthesised in the ovarian theca cells of premenopausal women or in the stromal adipose cells of the breast of postmenopausal women and minor quantities in peripheral tissue. These cells, as well as breast cancer tissue, express all the necessary enzymes for this synthesis: CYP17, CYP11a, CYP19, hydroxysteroid hydrogenase, steroid sulphatase as well as enzymes further hydroxylating oestradiol such as CYP1A1, CYP3A4, CYP1B1. Polymorphisms in these enzymes may have a possible role in the link between environmental estrogens and hormone-like substances and the interindividual risk of breast cancer.  相似文献   

2.
Wang Q  Li H  Tao P  Wang YP  Yuan P  Yang CX  Li JY  Yang F  Lee H  Huang Y 《DNA and cell biology》2011,30(8):585-595
CYP1A1, CYP1B1, and COMT are key enzymes involved in estrogen metabolism. Soy isoflavones, phytoestrogens found in soy foods, may modify the activity of these enzymes. A case-control study was conducted to assess the associations between soy isoflavone intake and the CYP1A1 Ile462Val, CYP1B1 Val432Leu, and COMT Val158Met polymorphisms and breast cancer, as well as their combined effects on breast cancer. A total of 400 newly diagnosed breast cancer cases and 400 healthy controls were recruited. Participants' daily intake of soy isoflavones (DISI [mg/day]) was calculated and transformed to energy-adjusted DISI by the residual method. Gene sequencing was used to analyze CYP1A1, CYP1B1, and COMT polymorphisms. Adjusted odds ratios (aORs) and 95% confidence intervals (95% CIs) were estimated by conditional logistic regression. A strong protective dose-dependent effect of energy-adjusted DISI on breast cancer was found in both pre- and postmenopausal women (P(trend)??1, OR 95% CIs exclude 1). In premenopausal women, only carrying CYP1B1 Leu/Leu was associated with breast cancer risk (aOR?=?2.05, 95% CI: 1.11-3.79). Carrying CYP1A1 Val/Val was related to breast cancer risk only among all women. A stratified analysis was performed at two levels of energy-adjusted DISI, with wildtype homozygous genotypes and low energy-adjusted DISI as the reference. In the high energy-adjusted DISI subgroup, carrying the CYP1B1 Leu/Leu genotype did not affect breast cancer risk in either all women or in the menopausal subgroups, compared with the reference. Overall, in Han Chinese women, carrying CYP1A1 Val/Val and COMT Met/Met appears to be associated with breast cancer risk, especially in postmenopausal women. CYP1B1 susceptible genotypes (Val/Leu or Leu/Leu) also contribute to increased breast cancer risk, regardless of menopausal status, but high soy isoflavone intake may reduce this risk.  相似文献   

3.
Cytochrome P450 1B1 (CYP1B1) is a recently cloned dioxin-inducible form of the cytochrome P450 supergene family of xenobiotic-metabolizing enzymes. CYP1B1 is constitutively expressed mainly in extrahepatic tissues and is inducible by aryl hydrocarbon receptor ligands. Human CYP1B1 is involved in activation of chemically diverse human procarcinogens, including polycyclic aromatic hydrocarbons and some aromatic amines, as well as the endogenous hormone 17 beta-estradiol. The metabolism of 17 beta-estradiol by CYP1B1 forms 4-hydroxyestradiol, a product believed to be important in estrogen-induced carcinogenesis. Although the distribution of CYP1B1 mRNA and protein in a number of human normal tissues has been well documented, neither the cells expressing CYP1B1 in individual tissue nor the intracellular localization of the enzyme has been thoroughly characterized. In this study, using nonradioactive in situ hybridization and immunohistochemistry, we examined the cellular localization of CYP1B1 mRNA and protein in a range of human normal tissues. CYP1B1 mRNA and protein were expressed in most samples of parenchymal and stromal tissue from brain, kidney, prostate, breast, cervix, uterus, ovary, and lymph nodes. In most tissues, CYP1B1 immunostaining was nuclear. However, in tubule cells of kidney and secretory cells of mammary gland, immunoreactivity for CYP1B1 protein was found in both nucleus and cytoplasm. This study demonstrates for the first time the nuclear localization of CYP1B1 protein. Moreover, the constitutive expression and wide distribution of CYP1B1 mRNA and protein in many human normal tissues suggest functional roles for CYP1B1 in the bioactivation of xenobiotic procarcinogens and endogenous substrates such as estrogens. (J Histochem Cytochem 49:229-236, 2001)  相似文献   

4.
Experimental data suggest that sex steroids have a role in the development of breast and prostate cancers. The biological activity of sex steroid hormones in target tissues is regulated by several enzymes, including 17β-hydroxysteroid dehydrogenases (17HSD). Changes in the expression patterns of these enzymes may significantly modulate the intracellular steroid content and play a pathophysiological role in malignant transformation. To further clarify the role of 17HSDs in breast cancer, we analyzed the mRNA expressions of the 17HSD type 1, 2, and 5 enzymes in 794 breast carcinoma specimens. Both 17HSD type 1 and 2 mRNAs were detected in normal breast tissue from premenopausal women but not in specimens from postmenopausal women. Of the breast cancer specimens, 16% showed signals for 17HSD type 1 mRNA, 25% for type 2, and 65% for type 5. No association between the 17HSD type 1, 2, and 5 expressions was detected. The patients with tumors expressing 17HSD type 1 mRNA or protein had significantly shorter overall and disease-free survival than the other patients. The expression of 17HSD type 5 was significantly higher in breast tumor specimens than in normal tissue. The group with 17HSD type 5 overexpression had a worse prognosis than the other patients. Cox multivariate analyses showed that 17HSD type 1 mRNA, tumor size, and ER had independent prognostic significance.

Using an LNCaP prostate cancer cell line, we developed a cell model to study the progression of prostate cancer. In this model, androgen-sensitive LNCaP cells are transformed in culture conditions into more aggressive, androgen-independent cells. The model was used to study androgen and estrogen metabolism during the transformation process. Our results indicate that substantial changes in androgen and estrogen metabolism occur in the cells during the process. A remarkable decrease in oxidative 17HSD activity was seen, whereas reductive activity seemed to increase. Since local steroid metabolism controls the bioavailability of active steroid hormones of target tissues, the variations in steroid-metabolizing enzymes during cancer progression may be crucial in the regulation of the growth and function of organs.  相似文献   


5.
Cytochrome P450s (CYPs) represent a large class of heme-containing enzymes that catalyze the metabolism of multitudes of substrates both endogenous and exogenous. Until recently, however, CYPs have been largely overlooked in cancer drug development, acknowledged only for their role in phase I metabolism of chemotherapeutics. The first successful strategy targeting CYP enzymes in cancer therapy was the development of potent inhibitors of CYP19 (aromatase) for the treatment of breast cancer. Aromatase inhibitors ushered in a new era in hormone ablation therapy for estrogen dependent cancers, and have paved the way for similar strategies (i.e., inhibition of CYP17) that combat androgen dependent prostate cancer. Identification of CYPs involved in the inactivation of anti-cancer metabolites of vitamin D(3) and vitamin A has triggered development of agents that target these enzymes as well. The discovery of the over-expression of exogenous metabolizing CYPs, such as CYP1B1, in cancer cells has roused interest in the development of inhibitors for chemoprevention and of prodrugs designed to be activated by CYPs only in cancer cells. Finally, the expression of CYPs within tumors has been utilized in the development of bioreductive molecules that are activated by CYPs only under hypoxic conditions. This review offers the first comprehensive analysis of strategies in drug development that either inhibit or exploit CYP enzymes for the treatment of cancer.  相似文献   

6.
The major known risk factors for female breast cancer are associated with prolonged exposure to increased levels of oestrogen. The predominant theory relates to effects of oestrogen on cell growth. Enhanced cell proliferation, induced either by endogenous or exogenous oestrogens, increases the number of cell divisions and thereby the possibility for mutation. However, current evidence also supports a role for oxidative metabolites, in particular catechol oestrogens, in the initiation of breast cancer. As observed in drug and chemical metabolism, there is considerable interindividual variability (polymorphism) in the conjugation pathways of both oestrogen and catechol oestrogens. These person-to-person differences, which are attributed to polymorphisms in the genes encoding for the respective enzymes, might define subpopulations of women with higher lifetime exposure to hormone-dependent growth promotion, or to cellular damage from particular oestrogens and/or oestrogen metabolites. Such variation could explain a portion of the cancer susceptibility associated with reproductive effects and hormone exposure. In this paper the potential role of polymorphic genes encoding for enzymes involved in oestrogen biosynthesis (CYP17, CYP19, and 17beta-HSD) and conversion of the oestrogen metabolites and their by-products (COMT, CYP1A1, CYP1B1, GSTM1, GSTM3, GSTP1, GSTT1 and MnSOD) in modulating individual susceptibility to breast cancer are reviewed. Although some of these low-penetrance genes appeared as good candidates for risk factors in the etiology of sporadic breast cancer, better designed and considerably larger studies than the majority of the studies conducted so far are evidently needed before any firm conclusions can be drawn.  相似文献   

7.
The ectopic expression of the glucose-dependent insulinotropic polypeptide receptor (GIPR) in the human adrenal gland causes significant hypercortisolemia after ingestion of each meal and leads to Cushing’s syndrome, implying that human GIPR activation is capable of robustly activating adrenal glucocorticoid secretion. In this study, we transiently transfected the human GIPR expression vector into cultured human adrenocortical carcinoma cells (H295R) and treated them with GIP to examine the direct link between GIPR activation and steroidogenesis. Using quantitative RT-PCR assay, we examined gene expression of steroidogenic related proteins, and carried out immunofluorescence analysis to prove that forced GIPR overexpression directly promotes production of steroidogenic enzymes CYP17A1 and CYP21A2 at the single cell level. Immunofluorescence showed that the transfection efficiency of the GIPR gene in H295R cells was approximately 5%, and GIP stimulation enhanced CYP21A2 and CYP17A1 expression in GIPR-introduced H295R cells (H295R-GIPR). Interestingly, these steroidogenic enzymes were also expressed in the GIPR (–) cells adjacent to the GIPR (+) cells. The mRNA levels of a cholesterol transport protein required for all steroidogenesis, StAR, and steroidogenic enzymes, HSD3β2, CYP11A1, CYP21A2, and CYP17A1 increased 1.2-2.1-fold in GIP-stimulated H295R-GIPR cells. These changes were reflected in the culture medium in which 1.5-fold increase in the cortisol concentration was confirmed. Furthermore, the levels of adenocorticotropic hormone (ACTH) receptor and ACTH precursor proopiomelanocortin (POMC) mRNA were upregulated 2- and 1.5-fold, respectively. Immunofluorescence showed that ACTH expression was detected in GIP-stimulated H295R-GIPR cells. An ACTH-receptor antagonist significantly inhibited steroidogenic gene expression and cortisol production. Immunostaining for both CYP17A1 and CYP21A2 was attenuated in cells treated with ACTH receptor antagonists as well as with POMC siRNA. These results demonstrated that GIPR activation promoted production and release of ACTH, and that steroidogenesis is activated by endogenously secreted ACTH following GIP administration, at least in part, in H295R cells.  相似文献   

8.
Cytochrome P450 CYP1B1 is a recently identified member of the CYP1 P450 family. We have shown that this P450 displays increased expression in several types of human cancer, indicating that CYP1B1 is a potential tumor biomarker. In this study we developed monoclonal antibodies (MAbs) to CYP1B1 that are effective on formalin-fixed, paraffin-embedded tissue sections and investigated the presence of CYP1B1 in a series of primary breast cancers. The MAbs were generated using a synthetic peptide coupled to carrier protein as the immunogen. The MAbs specifically recognized CYP1B1 and did not recognize either CYP1A1 or CYP1A2, related CYP1 forms. The MAbs were tested by immunohistochemistry and were found to be effective on formalin-fixed, paraffin-embedded tissue sections. The majority of breast cancers showed positive immunoreactivity for CYP1B1, and in each case CYP1B1 was specifically localized to tumor cells. The presence of CYP1B1 in breast cancer cells is likely to contribute to their metabolism of estradiol because CYP1B1 is a specific estradiol hydroxylase. (J Histochem Cytochem 47:1457-1464, 1999)  相似文献   

9.
Breast cancer is the most common malignancy in women worldwide. Environmental factors such as xenobiotic exposure and lifestyle and nutrition play a key role in its etiology. This study was designed to evaluate the age‐related changes in the expression of major xenobiotic‐metabolizing enzymes (XMEs) in the rat liver and the mammary gland in the dimethylbenz(a)anthracene‐induced breast cancer model. The influence of dietary lipids on the ontogeny of XMEs was also evaluated. mRNA and protein levels of phase I (CYP1A1, CYP1A2, and CYP1B1) and phase II (NAD(P)H:quinone acceptor oxidoreductase 1 and GSTP1) enzymes were analyzed, as well as their regulation by AhR and Nrf2, respectively. Results showed differences in the phase I enzymes expression, whereas little changes were obtained in phase II. High corn oil and olive oil diets differentially influenced the expression of age‐related changes, suggesting that the different susceptibility to xenobiotic exposure depending upon the age may be modulated by dietary factors.  相似文献   

10.
P450 oxidoreductase (POR) has a pivotal role in facilitating electron transfer from nicotinamide adenine dinucleotide phosphate to microsomal cytochrome P450 (CYP) enzymes, including the steroidogenic enzymes CYP17A1 and CYP21A2. Mutations in POR have been shown recently to cause congenital adrenal hyperplasia with apparent combined CYP17A1 and CYP21A2 deficiency that comprises a variable clinical phenotype, including glucocorticoid deficiency, ambiguous genitalia, and craniofacial malformations. To dissect structure-function relationships potentially explaining this phenotypic diversity, we investigated whether specific POR mutations have differential effects on CYP17A1 and CYP21A2. We compared the impact of missense mutations encoding for single amino acid changes in three distinct regions of the POR molecule: 1), Y181D and H628P close to the central electron transfer area, 2) S244C located within the hinge close to the flavin adenine dinucleotide and flavin mononucleotide domains of POR, and 3) A287P that is clearly distant from the two other regions. Functional analysis using a yeast microsomal assay with coexpression of human CYP17A1 or CYP21A2 with wild-type or mutant human POR revealed equivalent decreases in CYP17A1 and CYP21A2 activities by Y181D, H628P, and S244C. In contrast, A287P had a differential inhibitory effect, with decreased catalytic efficiency (Vmax/Km) for CYP17A1, whereas CYP21A2 retained near normal activity. In vivo analysis of urinary steroid excretion by gas chromatography/mass spectrometry in 11 patients with POR mutations showed that A287P homozygous patients had the highest corticosterone/cortisol metabolite ratios, further indicative of preferential inhibition of CYP17A1. These findings provide novel mechanistic insights into the redox regulation of human steroidogenesis. Differential interaction of POR with electron-accepting CYP enzymes may explain the phenotypic variability in POR deficiency, with additional implications for hepatic drug metabolism by POR-dependant CYP enzymes.  相似文献   

11.
It is known that there is a local biosynthesis of estradiol (E2) in breast carcinoma. The steroidogenic enzymes involved in E2 formation are aromatase which transforms testosterone into E2 and androstenedione into estrone (E1) and reductive 17beta-hydroxysteroid dehydrogenases (17beta-HSDs) which convert E1 into E2. Using immunocytochemistry, we have studied the expression of aromatase and the three reductive 17beta-HSDs 17beta-HSD types 1, 7 and 12 in 41 specimens of female human breast carcinoma and adjacent non-malignant tissues. These results were correlated with the estrogen receptor alpha (ERalpha) and beta (ERbeta), progesterone receptor, androgen receptor, CDC47 and c-erb B-2 expressions and with the tumor stages. Aromatase was found in 58%, 17beta-HSD type 7 in 47% and 17beta-HSD type 12 in 83% of the breast cancer specimens. The 17beta-HSD type 1 could be detected in only one tumor. A significant correlation was observed between the aromatase, 17beta-HSD type 7 and 17beta-HSD type 12 expression, as well as between each of the two enzymes 17beta-types 7 and 12 and the ERbeta expression. The expression of 17beta-HSD type 12 was significantly higher in breast carcinoma specimens than in normal tissue. There was also a significant association of CDC 47 expression with ERbeta, AR and 17beta-HSD type 12. The results indicate that aromatase, 17beta-HSD type 7 and 17beta-HSD type 12, but not 17beta-HSD type 1, are commonly expressed in human breast cancer. Moreover, the high expression of both 17beta-HSD type 12 and ERbeta in breast carcinoma cells may play a role in the development and/or progression of breast cancer.  相似文献   

12.
The overexpression of CYP1 family of enzymes is reported to be associated with development of human carcinomas. It has been well reported that CYP1A1 specific inhibitors prevents carcinogenesis. Herein, thirteen pyridine-4-yl series of chalcones were synthesized and screened for inhibition of CYP1 isoforms 1A1, 1B1 and 1A2 in Sacchrosomes? and live human HEK293 cells. The structure-activity relationship analysis indicated that chalcones bearing tri-alkoxy groups (8a and 8k) on non-heterocyclic ring displayed selective inhibition of CYP1A1 enzyme, with IC50 values of 58 and 65?nM, respectively. The 3,4,5-trimethoxy substituted derivative 8a have shown >10-fold selectivity towards CYP1A1 with respect to other enzymes of the CYP1 sub-family and >100-fold selectivity with respect to CYP2 and CYP3 family of enzymes. The potent and selective CYP1A1 inhibitor 8a displayed antagonism of B[a]P mediated activation of aromatic hydrocarbon receptor (AhR) in yeast cells, and also protected human cells from CYP1A1-mediated B[a]P toxicity in human cells. This potent and selective inhibitor of CYP1A1 enzyme have a potential for development as cancer chemopreventive agent.  相似文献   

13.
We have investigated the involvement of the MAPK signaling pathway in increased androgen biosynthesis and CYP17 gene expression in women with polycystic ovary syndrome (PCOS). A comparison of MAPK kinase (MEK1/2) and ERK1/2 phosphorylation in propagated normal and PCOS theca cells, revealed that MEK1/2 phosphorylation was decreased more than 70%, and ERK1/2 phosphorylation was reduced 50% in PCOS cells as compared with normal cells. Infection with dominant-negative MEK1 increased CYP17 mRNA and dehydroepiandrosterone (DHEA) abundance, whereas constitutively active MEK1 reduced DHEA production and CYP17 mRNA abundance. Similarly, the MEK inhibitor, PD98059, increased CYP17 mRNA accumulation and CYP17 promoter activity to levels observed in PCOS cells. Remarkably, in theca cells maintained in the complete absence of insulin, ERK1/2 phosphorylation was decreased in PCOS theca cells as compared with normal theca cells, and CYP17 mRNA and DHEA synthesis were increased in PCOS theca cells. These studies demonstrate that in PCOS cells reduced levels of activated MEK1/2 and ERK1/2 are correlated with increased androgen production, irrespective of the insulin concentration. These findings implicate alterations in the MAPK pathway in the pathogenesis of excessive ovarian androgen production in PCOS.  相似文献   

14.
Metabolic activation and inactivation of potential genotoxic agents occur by Phase I and Phase II enzymes in multiple interactions. An expanding body of literature demonstrates that ethnic differences in breast cancer incidence may be partly caused by host genetic factors particularly genetic polymorphisms of these carcinogen-metabolizing enzymes. The present case-control study aimed at identification of such low penetrance breast cancer susceptibility genes in 224 Indian women and to investigate the potential effects of their polymorphisms on sporadic breast cancer risk. The main objective of the study was to evaluate the effects of genetic polymorphisms of the xenobiotic metabolizing genes CYP1A1, GSTM1 and GSTT1 on breast cancer risk by PCR-RFLP and DNA sequencing. Our results showed a significant association between CYP1A1 m1, m2 polymorphisms and breast cancer risk; however there was a lack of association between GSTM1 null deletion and breast cancer. The associations of CYP1A1, GSTM1 and GSTT1 genotypes with breast cancer risk were more pronounced among the pre-menopausal patients. Combined genotype analysis revealed the CYP1A1 m2 ValVal-GSTM1 homozygous null deletion genotype combinations to be associated with the highest risk of breast cancer (OR=10.3, 95% CI=1.2-86.1). Correlations with clinicopathological factors and treatment outcome were also analyzed for predicting disease free survival by univariate and multivariate analysis. Significant differences in disease free survival between the wild and polymorphic genotypes were observed only for CYP1A1 m2, GSTT1 genotypes. Our results based on the analysis of functionally relevant polymorphisms in these low penetrance genes may provide a better model that would exhibit additive effects on individual susceptibility to breast cancer. Such genotype analysis resulting in a high-risk profile holds considerable promise for individualizing screening and therapeutic intervention in breast cancer. Hence, the present study may provide strong supportive evidence for genetic interactions in the etiology of breast cancer.  相似文献   

15.
The use of combined hormone replacement therapy (HRT) with oestrogens and progestins in postmenopausal women has been associated with an increased risk for developing breast cancer. The reasons are not fully understood, but influence of HRT on endogenous conversion of female sex hormones may be involved. The expression of 17β hydroxysteroid dehydrogenases (17βHSD), which are enzymes catalysing the conversion between more or less potent oestrogens, may partly be regulated by progestins. The breast cancer cell lines T47D, MCF7 and ZR75-1 were treated with progesterone, medroxyprogesterone acetate (MPA) or levonorgestrel for 48 and 72 h at 10(-7) and 10(-9)M to investigate influence on 17βHSD1, 17βHSD2 and 17βHSD5 mRNA expression measured by real time PCR. The expression of 17βHSD1 increased in progesterone and levonorgestrel treated T47D cells (48 h 10(-7)M P=0.002; P<0.001) and 17βHSD5 increased after progesterone treatment (48 h 10(-7)M P=0.003), whereas the expression of 17βHSD2 decreased after the (48 h 10(-7)M P=0.003; P<0.001). Similar, but less prominent effects were seen in MCF7 and ZR75-1. The progestin effects on 17βHSD-expression were lost when T47D cells were co-treated with progestins and the progesterone receptor (PgR) inhibitor mifprestone. We show that both reductive (17βHSD1 and 17βHSD5) and oxidative (17βHSD2) members of the 17βHSD-family are under control of progesterone and progestins in breast cancer cell lines. This is most clear in T47D cells which have high PgR expression. 17βHSD-enzymes are important players in the regulation of sex steroids locally in breast tumours and tumoural expression of various 17βHSD-enzymes have prognostic and treatment predictive relevance. We propose a mechanism for increased breast cancer risk after HRT in which hormone replacement affects the expression of 17βHSD-enzymes, favouring the expression of reductive enzymes, which in turn could increase levels of bioactive and mitogenic estrogens in local tissue, e.g. breast tissue.  相似文献   

16.
It has been generally accepted that regular consumption of fresh fruits and vegetables is linked with a relatively low incidence of cancers (e.g. breast, cervix, and colon). A number of plant-derived compounds have been identified that are considered to play a role in cancer prevention. However, at present there is no satisfactory explanation for the cancer preventative properties of the above-mentioned compound groups. The current review is an effort to develop a consistent and unambiguous model that explains how some plant-derived compounds can prevent tumour development. The model is based on recent discoveries in the fields of genomics and drug-metabolism; notably, the discovery that CYP1 genes are highly expressed in developing tumour cells but not in the surrounding tissue, and that a variety of plant-derived compounds are substrates for the CYP1 enzymes. Our hypothesis is that some dietary compounds act as prodrugs, i.e. compounds with little or no biological effect as such, but become pharmaceutically effective when activated. More specifically, we state that the abovementioned prodrugs are only activated in CYP1-expressing cells—i.e. cells in the early stages of tumour development—to be converted into compounds which inhibit cell growth. Thus, the prodrugs selectively kill precancerous cells early in tumour development. The review focuses on the identification of naturally-occurring prodrugs that are activated by the tumour-specific CYP1 enzymes and aims to assess their role in cancer prevention.  相似文献   

17.
The development of multi-drug resistance to existing anticancer drugs is one of the major challenges in cancer treatment. The over-expression of cytochrome P450 1B1 enzyme has been reported to cause resistance to cisplatin. With an objective to discover cisplatin-resistance reversal agents, herein, we report the evaluation of Glycyrrhiza glabra (licorice) extracts and its twelve chemical constituents for inhibition of CYP1B1 (and CYP1A1) enzyme in Sacchrosomes and live human cells. The hydroalcoholic extract showed potent inhibition of CYP1B1 in both Sacchrosomes as well as in live cells with IC50 values of 21 and 16?µg/mL, respectively. Amongst the total of 12 constituents tested, quercetin and glabrol showed inhibition of CYP1B1 in live cell assay with IC50 values of 2.2 and 15?µM, respectively. Both these natural products were found to be selective inhibitors of CYP1B1, and does not inhibit CYP2 and CYP3 family of enzymes (IC50?>?20?µM). The hydroalcoholic extract of G. glabra and quercetin (4) showed complete reversal of cisplatin resistance in CYP1B1 overexpressing triple negative MDA-MB-468 breast cancer cells. The selective inhibition of CYP1B1 by quercetin and glabrol over CYP2 and CYP3 family of enzymes was studied by molecular modeling studies.  相似文献   

18.
The proximal tubule is a frequent target for nephrotoxic compounds due to it's ability to transport and accumulate xenobiotics and their metabolites, as well as by the presence of an organ-selective set of biotransformation enzymes. The aim of the present study was to characterize the activities of different biotransformation enzymes during primary culturing of rat proximal tubular cells (PT cells). Specific marker substrates for determining cytochrome P450 (CYP450) activity of primary cultured PT cells include 7-ethoxyresorufin (CYP1A1), caffeine (CYP1A), testosterone (CY2B/C, CYP3A), tolbutamide (CYP2C) and dextromethorphan (CYP2D1). Activities of the CYP450 isoenzymes decreased considerably during culture with the greatest loss in activity within 24 h of culture. In addition, expression of CYP450 apoprotein, including CYP1A, CYP2C, CYP2D, CYP2E and CYP4A, was detected in microsomes from freshly isolated PT cells by immunoblotting using specific antibodies. CYP2B and CYP3A apoprotein could not be detected. Activity of the phase II biotransformation enzymes GST, GGT, beta-lyase and UGT was determined with 1-chloro-2,4-dinitrobenzene, L-glutamic acid gamma-(7-amido-4-methyl-coumarin), S-(1,1,2,2-tetrafluoroethyl)-L-cysteine and 1-naphthol, respectively, as marker substrates. Activity of the phase II enzymes remained more stable and, in contrast to CYP450 activity, significant activity was still expressed after 1 week of PT cell culture. Thus, despite the obvious advantages of PT cells as an in-vitro model for studies of biotransformation mediated toxicity, the strong time dependency of especially phase I and, to a lesser extent, phase II biotransformation activities confers limitations to their application.  相似文献   

19.
20.
Leaver MJ  George SG 《Gene》2000,256(1-2):83-91
Tetrapod cytochrome P4501 family (CYP1A1, CYP1A2 and CYP1B1) enzymes are most active in hydroxylating a variety of environmental contaminants including polyaromatic hydrocarbons (PAH), planar polychlorinated biphenyls and arylamines and thus play a pivotal role in the toxicology of these compounds. Mammalian CYP1A1 and CYP1A2 genes appear to have diverged after the evolutionary emergence of mammals, whereas fish species apparently possess only one CYP1A family gene, and fish CYP1A enzymes exhibit properties of both of the mammalian isoforms. We have isolated a further CYP1 family gene from a marine flatfish (plaice; Pleuronectes platessa), which, on the basis of exon organisation and sequence similarity, can be assigned as a piscine CYP1B. Its deduced amino acid sequence shows the closest (54%) identity to mammalian CYP1B1 proteins and, on the basis of molecular modeling studies, shows a high degree of positional and structural conservation of the substrate contacting amino acid residues in its putative active site when compared to other CYP1 enzymes. Phylogenetic analysis of fish and mammalian CYP1 family sequences indicates that the plaice CYP1B and mammalian CYP1B1 genes share a common ancestry. Plaice CYP1B has a more restricted tissue expression profile than the previously isolated plaice CYP1A, only being detectable, by Northern blotting, in gill tissue. In contrast to CYP1A, which shows extensive PAH-dependent induction in a variety of tissues, plaice CYP1B appears unresponsive to treatment with a prototypical PAH-type inducer, beta-naphthoflavone (BNF).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号