首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang J  Li Y  Lo SW  Hillmer S  Sun SS  Robinson DG  Jiang L 《Plant physiology》2007,143(4):1628-1639
Plants accumulate and store proteins in protein storage vacuoles (PSVs) during seed development and maturation. Upon seed germination, these storage proteins are mobilized to provide nutrients for seedling growth. However, little is known about the molecular mechanisms of protein degradation during seed germination. Here we test the hypothesis that vacuolar sorting receptor (VSR) proteins play a role in mediating protein degradation in germinating seeds. We demonstrate that both VSR proteins and hydrolytic enzymes are synthesized de novo during mung bean (Vigna radiata) seed germination. Immunogold electron microscopy with VSR antibodies demonstrate that VSRs mainly locate to the peripheral membrane of multivesicular bodies (MVBs), presumably as recycling receptors in day 1 germinating seeds, but become internalized to the MVB lumen, presumably for degradation at day 3 germination. Chemical cross-linking and immunoprecipitation with VSR antibodies have identified the cysteine protease aleurain as a specific VSR-interacting protein in germinating seeds. Further confocal immunofluorescence and immunogold electron microscopy studies demonstrate that VSR and aleurain colocalize to MVBs as well as PSVs in germinating seeds. Thus, MVBs in germinating seeds exercise dual functions: as a storage compartment for proteases that are physically separated from PSVs in the mature seed and as an intermediate compartment for VSR-mediated delivery of proteases from the Golgi apparatus to the PSV for protein degradation during seed germination.  相似文献   

2.
Proteolytic cleavage plays an important role in storage proteindeposition and reactivation in seeds. Precursor polypeptidesare processed by limited proteolysis to mature subunits of reserveproteins in storage tissue cells of developing seeds. Stepsof proteolytic processing are closely related to steps in intracellularprotein transfer through the endomembrane system and to thedeposition in the storage vacuole. In germinating seeds specialendopeptidases trigger storage protein breakdown by limitedproteolysis. The induced conformation changes of storage proteinsopen them to attack by additional endo- and exopeptidases whichdegrade the protein reserves completely. Proteases that catalyselimited cleavage or complete degradation are synthesized asprecursors which also undergo stepwise limited proteolysis whenthey are formed in cotyledons of developing or germinating seeds.In general, this processing transforms enzymatically inactiveproenzymes into active proteases. Different compartments participatein the processing steps. Many of the proteases are encoded bysmall multigene families. Different members of the correspondingprotease families seem to act during seed development and germination.Proteolytic processes that contribute to the molecular maturationand to the reactivation of storage proteins in dicotyledonousseeds seem to be controlled by (1) differential expression ofmembers of the protease-encoding gene families; (2) stepwiseprocessing and activation of protease precursor polypeptides;(3) transient differential compartmentation of precursors andmature polypeptides of proteases and storage proteins, respectively;and (4) interacting changes in storage protein structure andprotease action. The present knowledge on these processes isreviewed. Key words: Dicotyledons, seeds, storage proteins, proteolytic cleavage, proteases  相似文献   

3.
4.
Aspartic proteinases are present in a variety of organisms including plants. Common features of aspartic proteases include an active site cleft that contains two catalytic aspartic residues, acid pH optima for enzymatic activity, inhibition by pepstatin A. Plant aspartic proteinases occur in seeds and may be involved in the processing of storage proteins. Many of them have been purified and characterized. The presence of aspartic proteases in seeds of Centaurea calcitrapa during germination was investigated by measuring the activity on enzyme extracts. The aspartic proteases are present mainly in the beginning of seed germination suggesting that they could initiate the degradation of protein reserves in germinating seeds.

These proteases were purified by salt precipitation followed by anion-exchange chromatography. Purified aspartic proteases have an optimal pH between 3.5 and 4.5, using FTC-hemoglobin as substrate and an optimal temperature at 52 °C. The ability of seed extracts for milk clotting was tested and the clotting time that was achieved is in the same range found for flower extracts appropriated for special cheeses in which weak clotting agents are required.  相似文献   


5.
《Phytochemistry》1987,26(6):1557-1566
The criteria for the participation of proteases in the mobilization of storage proteins during seed germination are formulated. The proteases that satisfy these criteria, namely the acid cysteine endopeptidases, serine carboxypeptidases and neutral aminopeptidases, are reviewed. The possibility of other seed proteases participating in storage protein degradation is discussed. The course of 11S and 7S storage protein degradation through the action of endogenous and exogenous proteases is described. The 11S and 7S proteins are modified during the early stages of proteolysis and the effects of these modifications on the regulation of breakdown are examined. A scheme for 11S protein degradation in germinating seeds is presented.  相似文献   

6.
Phytocystatins (PCs) are protein inhibitors of endogenous plant endopeptidases and exogenous pathogen proteinases. We have previously described the protein inhibitor TrcC-4, which is probably involved in the control of protein degradation during triticale seeds germination. The occurrence of the LARFAVXEHN motif supports the TrcC-4 designation as a PC. In this paper TrcC-4 was expressed in Escherichia coli using the pET28 expression vector. TrcC-4(6×His) was purified by affinity chromatography with a single step of purification. Western blot analysis showed the presence of TrcC-4 in both developing and germinating triticale seeds. TrcC-4 protein level was higher both in scutellum of germinating seeds and in developing grains of the triticale cultivar more resistant to pre-harvest sprouting (Zorro) than in a less resistant one (Disco). Furthermore it was demonstrated that the activity of EP8, cysteine endopeptidase responsible for the mass hydrolysis of prolamin during germination, is inhibited by TrcC-4(6×His), as confirmed by native PAGE with gliadin as a substrate. These results suggest that phytocystatin TrcC-4 controls the activity of cysteine endopeptidases involved in germination and, thus, is potentially involved in pre-harvest sprouting.  相似文献   

7.
Phaseolin is the major seed storage protein of common bean, Phaseolus vulgaris L., accounting for up to 50 % of the total seed proteome. The regulatory mechanisms responsible for the synthesis, accumulation and degradation of phaseolin in the common bean seed are not yet sufficiently known. Here, we report on a systematic study in dormant and 4-day germinating bean seeds from cultivars Sanilac (S) and Tendergreen (T) to explore the presence and dynamics of phosphorylated phaseolin isoforms. High-resolution two-dimensional electrophoresis in combination with the phosphoprotein-specific Pro-Q Diamond phosphoprotein fluorescent stain and chemical dephosphorylation by hydrogen fluoride–pyridine enabled us to identify differentially phosphorylated phaseolin polypeptides in dormant and germinating seeds from cultivars S and T. Phosphorylated forms of the two subunits of type α and β that compose the phaseolin were identified by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) and MALDI-TOF/TOF tandem MS. In addition, we found that the levels of phosphorylation of the phaseolin changed remarkably in the seed transition from dormancy to early germination stage. Temporal changes in the extent of phosphorylation in response to physiological and metabolic variations suggest that phosphorylated phaseolin isoforms have functional significance. In particular, this prospective study supports the hypothesis that mobilization of the phaseolin in germinating seeds occurs through the degradation of highly phosphorylated isoforms. Taken together, our results indicate that post-translational phaseolin modifications through phosphorylations need to be taken into consideration for a better understanding of the molecular mechanisms underlying its regulation.  相似文献   

8.
Advanced Glycation End Products (AGEs) are the final products of non-enzymatic protein glycation that results in loss of protein structure and function. We have previously shown that in E. coli AGEs are continually formed as high-molecular weight protein complexes. Moreover, we showed that AGEs are removed from the cells by an active, ATP-dependent secretion and that these secreted molecules have low molecular weight. Taken together, these results indicate that E. coli contains a fraction of low molecular weight AGEs, in addition to the high-molecular weight AGEs. Here we show that the low-molecular weight AGEs originate from high-molecular weight AGEs by proteolytic degradation. Results of in-vitro and in vivo experiments indicated that this degradation is carried out not by the major ATP-dependent proteases that are responsible for the main part of bacterial protein quality control but by an alternative metal-dependent proteolysis. This proteolytic reaction is essential for the further secretion of AGEs from the cells. As the biochemical reactions involving AGEs are not yet understood, the implication of a metalloprotease in breakdown of high molecular weight AGEs and their secretion constitutes an important step in the understanding of AGEs metabolism.  相似文献   

9.
The notion of debranching enzyme activity as a participant in starch synthesis is gaining acceptance. Inconsistent reports from mutant analyses implicate either isoamylase or pullulanase as a determinant in amylopectin formation and whether wild-type plants utilize one or the other, or both, of these debranching enzymes in starch synthesis is unclear. Recent results on the su1 mutant in maize suggest that both forms of debranching enzymes might be involved in amylopectin formation. We wished to find out if isoamylase takes part in starch synthesis by comparing isoamylase gene activity under three conditions: (1) during starch accumulation in developing sink tissues; (2) during starch degradation in germinating seeds; (3) in ectopic expression after applying sucrose, a starch precursor. We isolated the gene for barley isoamylase, iso1, and analysed its expression and regulation in germinating seeds, developing endosperm and vegetative tissues, and compared the isoamylase gene expression in sink tissues from three different species. Our results indicate that isoamylase gene activity is involved in starch synthesis in wild-type plants and is modulated by sucrose.  相似文献   

10.
Pathogenesis-related proteins (PRs) are plant proteins produced in leaves in response to infection by pathogens including viruses, viroids, fungi and bacteria. Information on the presence and/or expression of PRs in monocotyledonous plants is scarce. Here we report the identification of cDNA and genomic clones coding for a basic form of a protein from germinating maize seeds having a high homology with the group of PR-1 from tobacco.A cDNA library enriched in aleurone-specific sequences was prepared from maize seeds two days after germination. One clone was found to contain an open reading frame encoding a protein homologous to PR proteins from tomato (p14) and tobacco (PR-1 group). Sequence analysis of the corresponding genomic clone revealed that it was encoded by a single exon. Besides, DNA blot hybridization indicates that this PR-like protein is encoded by a single-copy gene in maize. The accumulation of its mRNA increases after rehydration of desiccated seeds. Furthermore, a relationship was found between its expression and infection by a natural pathogen of maize, the fungus Fusarium moniliforme. The possible role of this protein as a response mechanism following fungal infection in cereal seeds is discussed.  相似文献   

11.
The Hydrolysis of Endosperm Protein in Zea mays   总被引:14,自引:10,他引:4       下载免费PDF全文
Harvey BM  Oaks A 《Plant physiology》1974,53(3):453-457
Degradation of the major storage proteins in maize endosperm, zein and glutelin, begins during the 2nd day of germination. The protein most abundant in the mature endosperm is degraded most rapidly. The patterns of protein loss are essentially similar in germinating seeds and excised endosperms. Cycloheximide, added at the beginning of the incubation period, prevents the development of α-amylase and protease activities and the disappearance of starch and protein reserves. Late additions (70 hours) of cycloheximide still inhibit the increase in hydrolase activity but have no effect on the hydrolysis of storage reserves. The results indicate that the hydrolytic enzymes are synthesized de novo in the maize endosperm.  相似文献   

12.

Background

Seed germination is a complex physiological process during which mobilization of nutrient reserves happens. In different crops, this event might be mediated by different regulatory and metabolic pathways. Proteome profiling has been proved to be an efficient way that can help us to construct these pathways. However, no such studies have been performed in soybean germinating seeds up to date.

Results

Proteome profiling was conducted through one-dimensional gel electrophoresis followed by liquid chromatography and tandem mass spectrometry strategy in the germinating seeds of soybean (glycine max). Comprehensive comparisons were also carried out between rice and soybean germinating seeds. 764 proteins belonging to 14 functional groups were identified and metabolism related proteins were the largest group. Deep analyses of the proteins and pathways showed that lipids were degraded through lipoxygenase dependent pathway and proteins were degraded through both protease and 26S proteosome system, and the lipoxygenase could also help to remove the reactive oxygen species during the rapid mobilization of reserves of soybean germinating seeds. The differences between rice and soybean germinating seeds proteome profiles indicate that each crop species has distinct mechanism for reserves mobilization during germination. Different reserves could be converted into starches before they are totally utilized during the germination in different crops seeds.

Conclusions

This study is the first comprehensive analysis of proteome profile in germinating soybean seeds to date. The data presented in this paper will improve our understanding of the physiological and biochemical status in the imbibed soybean seeds just prior to germination. Comparison of the protein profile with that of germinating rice seeds gives us new insights on mobilization of nutrient reserves during the germination of crops seeds.  相似文献   

13.
14.
Marafiviruses are capable of persistent infection in a range of plants that have importance to the agriculture and biofuel industries. Although the genomes of a few of these viruses have been studied in-depth, the composition and processing of the polyproteins produced from their main ORFs have not. The Marafivirus polyprotein consists of essential proteins that form the viral replicase, as well as structural proteins for virus assembly. It has been proposed that Marafiviruses code for cysteine proteases within their polyproteins, which act as endopeptidases to autocatalytically cleave the polyprotein into functional domains. Furthermore, it has also been suggested that Marafivirus endopeptidases may have deubiquitinating activity, which has been shown to enhance viral replication by downregulating viral protein degradation by the ubiquitin (Ub) proteasomal pathway as well as tampering with cell signaling associated with innate antiviral responses in other positive-sense ssRNA viruses. Here, we provide the first evidence of cysteine proteases from six different Marafiviruses that harbor deubiquitinating activity and reveal intragenus differences toward Ub linkage types. We also examine the structural basis of the endopeptidase/deubiquitinase from the Marafivirus type member, maize rayado fino virus. Structures of the enzyme alone and bound to Ub reveal marked structural rearrangements that occur upon binding of Ub and provide insights into substrate specificity and differences that set it apart from other viral cysteine proteases.  相似文献   

15.
Flower senescence: some molecular aspects   总被引:1,自引:0,他引:1  
  相似文献   

16.
A spectrophotometric assay was devised to characterize the asparaginyl (Asn) endopeptidase activity from the endosperm of castor oil seeds. (Ricinus communis L. var. Baker 296). The assay measures the release of p-nitroaniline from the hydrolysis of benzoyl-l-Asn-p-nitroanilide. Assay sensitivity was improved through diazotization of the reaction product with N(]-napthy])-ethylenediamine dihydrochloride: diazotized p-nitroaniline was determined spectrophotometrically at 548 nm (?548= 1.64 × 10?1M?1 cm?2). By using this assay. Asn endopeptidase activity was detected in endosperm extracts of developing, mature and germinating castor seeds. Comparison of the Asn endopeptidase activities of developing and germinating castor endosperms revealed that they: 1) have identical pH-activity profiles with optimal activity occuring at pH 5.4: 2) are heat-labile proteins displaying comparable thermal stability profiles, and 3) are activated and inhibited by dithiothreitol and thiol modifying reagents, respectively. Thus, the Asn endopeptidases of developing and germinating castor seeds are very similar, if not identical, cysteine proteases. The most significant increase in the activity of endosperm Asn endopeptidase occurs during the full coryledon to maturation stage of seed development, this period coincides with the most active phase of reserve protein accumulation by ripening castor oil seeds. Asn endopeptidase activity of fully mature (dry) castor seeds was about 2-fold lower than that of muturation stage ripening castor oil seed. Asn endopeptidase activity showed a slight reduction over the inicial 2-day period following seed imbibition, and then rapidly decreased over the next several days of germination. The results are compatible with the proposal that Asn endopeptidase functions both to process storage preproteins following their import into protein bodies of developing seeds, as well as to participate in the mobilization of storage proteins during the early phase of seed germination.  相似文献   

17.
Salt (NaCl) is a common physiological stressor of plants. To better understand how germinating seeds respond to salt stress, we examined the changes that occurred in the proteome of maize seeds during NaCl-treated germination. Phenotypically, salt concentrations less than 0.2 M appear to delay germination, while higher concentrations disrupt development completely, leading to seed death. The identities of 96 proteins with expression levels altered by NaCl-incubation were established using 2-DE-MALDI-TOF–MS and 2-DE-MALDI-TOF–MS/MS. Of these 96 proteins, 79 were altered greater than twofold when incubated with a 0.2 M salt solution, while 51 were altered when incubated with a 0.1 M salt solution. According to their functional annotations in the Swiss-Prot protein-sequence databases, these proteins are mainly involved in seed storage, energy metabolism, stress response, and protein metabolism. Notably, the expression of proteins that respond to abscisic acid signals increased in response to salt stress. The results of this study provide important clues as to how NaCl stresses the physiology of germinating maize seeds.  相似文献   

18.
Though endopeptidases and carboxypeptidases are present in protein bodies of dry quiescent seeds the function of these proteases during germination is still a matter of debate. In some plants it was demonstrated that endopeptidases of dry protein bodies degrade storage proteins of these organelles. Other studies describe cases where this did not happen. The role that stored proteinases play in the initiation of storage protein breakdown in germinating seeds thus remains unclear. Numerous reviews state that the initiation of reserve protein mobilization is attributed to de novo formed endopeptidases which together with stored carboxypeptidases degrade the bulk of proteins in storage organs and tissues after seeds have germinated. The evidence that the small amounts of endopeptidases in protein bodies of embryonic axes and cotyledons of dry seeds from dicotyledonous plants play an important role in the initiation of storage protein mobilization during early germination is summarized here.  相似文献   

19.
Protein disulfide isomerase (PDI) oxidizes, reduces, and isomerizes disulfide bonds, modulates redox responses, and chaperones proteins. The Arabidopsis thaliana genome contains 12 PDI genes, but little is known about their subcellular locations and functions. We demonstrate that PDI5 is expressed in endothelial cells about to undergo programmed cell death (PCD) in developing seeds. PDI5 interacts with three different Cys proteases in yeast two-hybrid screens. One of these traffics together with PDI5 from the endoplasmic reticulum through the Golgi to vacuoles, and its recombinant form is functionally inhibited by recombinant PDI5 in vitro. Peak PDI5 expression in endothelial cells precedes PCD, whereas decreasing PDI5 levels coincide with the onset of PCD-related cellular changes, such as enlargement and subsequent collapse of protein storage vacuoles, lytic vacuole shrinkage and degradation, and nuclear condensation and fragmentation. Loss of PDI5 function leads to premature initiation of PCD during embryogenesis and to fewer, often nonviable, seeds. We propose that PDI5 is required for proper seed development and regulates the timing of PCD by chaperoning and inhibiting Cys proteases during their trafficking to vacuoles before PCD of the endothelial cells. During this transitional phase of endothelial cell development, the protein storage vacuoles become the de facto lytic vacuoles that mediate PCD.  相似文献   

20.
Amino Acid composition of germinating cotton seeds   总被引:1,自引:1,他引:0       下载免费PDF全文
Total and free amino acid composition of germinating cotton seeds (Gossypium hirsutum L.) was determined. The germinating seeds were separated into cotyledon and developing axis fractions daily and the composition of each tissue was summed to get the whole seed composition. By separating the developing seeds into these two tissue fractions, and determining total and free amino acids, a balance sheet was developed for each amino acid. This technique allowed changes in distribution with time of each amino acid to be followed in each tissue. Data for total content and amount in protein of each amino acid are presented. Asparagine increased in the whole seed, and most of this increase was found in the free pool of the developing axis. Other amino acids (e.g. arginine, glutamic acid) increased in the free pool but showed an over-all decrease, indicating that they were being metabolized. Amino acid contents of storage and nonstorage protein isolates were determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号