首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dormant and non-dormant barley (Hordeum distichum L.) grains with identical genetic backgrounds were obtained by maturing grains under different climate conditions. When isolated embryos from dormant grains were incubated in a well containing a fixed volume of water (300 l), the germination rate and percentage were dependent on the embryo number per well. A higher embryo number per well was correlated with a lower germination rate and percentage. However, this was not the case for the embryos isolated from nondormant grains. During germination, the endogenous cis-abscisic acid (ABA) in isolated embryos from both dormant and nondormant grains was analyzed. The inhibitory effect on germination of a higher number per well of isolated dormant embryos was due to diffusion of endogenous ABA out of the embryos and accumulation of ABA in the incubation medium. Moreover, there was de-novo synthesis of ABA in embryos isolated from dormant grains during incubation but not in embryos isolated from nondormant grains. The inhibitory effect of ABA on germination of embryos isolated from dormant grains could be mimicked by addition of ABA or the medium in which dormant embryos had been placed. Embryos isolated from nondormant grains were insensitive to addition of ABA and medium from dormant embryos. Our results demonstrate that diffusion of endogenous ABA, de-novo ABA synthesis and ABA sensitivity play a role in the control of germination. It is proposed that dormancy-breaking treatments act via changes to these processes.Abbreviations ABA cis-abscisic acid - E/W embryo(s) per well Prof. K.R. Libbenga (Institute of Molecular Plant Sciences, Leiden University) is thanked for fruitful discussions. B.V.D. was partly supported by E.E.C. BIOTECH program PL 920175.  相似文献   

2.
Levels of endogenous abscisic acid (ABA) in immature wheat (Triticum aestivum cv. Timmo) and barley (Hordeum vulgare cv. Golden Promise) embryos have been determined by enzyme-linked immunosorbent assay. Embryos of both cereal species showed an increase in ABA content during development on the parent plant. Immature embryos were excised and cultured in vitro on nutrient media that led to precocious germination or on media containing 9% (w/v) mannitol that maintained their developmental arrest. Barley and wheat embryos responded to these culture conditions in an identical manner with respect to changes in morphology, fresh weight, protein and lectin content. However, in complete contrast, the ABA content of barley embryos increased by an order of magnitude during culture on mannitol, whereas that of wheat embryos showed no significant change. The results are discussed within the context of the role of ABA in the regulation of embryo development.Abbreviations ABA abscisic acid - BGA barley-germ agglutinin - dpa days post anthesis - ELISA enzyme-linked immunosorbent assay - GC-MS gas chromatography-mass spectrometry - WGA wheat-germ agglutinin  相似文献   

3.
4.
During germination, the transmembrane electric potential (PD) of cortical cells of the embryonal axis of radish seeds (Raphanus sativus L.) rises from-120 mV initially to a maximum of-150 mV after 5 h incubation, then falls again to stable values of around-120 mV. Treatments inhibiting germination block the transitory PD increase. Administration of uncoupling agents or low temperatures, during the process of germination, produces a marked fall of the PD transitory increase. Abscisic Acid has a parallel inhibitory effect on PD and germination, while fusicoccin produces a rise in both; administration of abscisic acid with fusicoccin inhibits germination, while the PD remains at the high levels given by fusicoccin. These results are discussed in relation to ion exchange at membrane level.Abbreviations ABA abscisic acid - FC fusicoccin - GA3 gibberellic acid - PD electric potential difference (between the vacuole and the external medium) - CH cycloheximide - DNP dinitrophenol - FCCP (p-trifluormethoxy)-carbonylcyanide-phenylhydrazone - DCCD N,N-dicyclohexylcarbodiimide  相似文献   

5.
E. Maquoi  D. E. Hanke  R. Deltour 《Protoplasma》1993,174(3-4):147-157
Summary A comparison of embryos, cultured for increasing periods of time with and without abscisic acid (ABA), was undertaken to investigate, at the ultrastructural level, the influence of this growth regulator on the maturation of rapeseed (Brassica napus) somatic embryos. In the absence of ABA, the embryos germinated precociously while lipid bodies (LB), which were not numerous, soon degraded, as revealed by a depletion process associated with the appearance of morphologically mature glyoxysomes and an increase in the number of mitochondria. Moreover, a lack of protein bodies indicated that storage protein accumulation was not initiated under these conditions. On the contrary, the addition of ABA (10 M) induced marked modification of embryo metabolism. Indeed, ABA completely prevented precocious embryo germination and inhibited lipid reserve catabolism. Moreover, the formation of small vacuoles and proliferation of rough endoplasmic reticulum in their vicinity suggested the onset of storage protein accumulation. After 15 days in the presence of ABA, the embryos contained abundant lipid and protein bodies. Nevertheless, these somatic embryos were not exactly the same as their mature zygotic counterparts since differences were found in chloroplasts, amyloplasts, and nuclear structures. These observations suggest that additional factors might be required to obtain fully mature somatic embryos.Abbreviations ABA abscisic acid - ABM ABA medium - BM basal medium - LB lipid bodies - MS Murashige and Skoog (1962) - PB protein bodies - RER rough endoplasmic reticulum  相似文献   

6.
ECP31, an embryogenic-cell protein from carrot (Daucus carota L.), was purified by sequential column-chromatographic steps and digested by V8 protease on a nitrocellulose membrane. The resultant peptides were separated by reverse-phased column chromatography and sequenced. The sequences obtained were 70–80% homologous to those of a late-embryogenesis-abundant protein (D34) from cotton (Baker et al, 1988, Plant Mol. Biol. 11, 227–291). The level of ECP31 in somatic embryos of carrot was increased by treatment of the embryos with 3.7 · 10–6 M abscisic acid (ABA) for 48 h, and there was no change in this enhanced level for up to 192 h in the presence of ABA. No similar enhancing effect of ABA was observed on the level of ECP31 in embryogenic callus or segments of carrot hypocotyls. In an immunohistochemical analysis, ECP31 was found in epidermal tissue and in the vascular system of ABA-treated somatic embryos.Abbreviations ABA abscisic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - LEA protein late-embryogenesis-abundant protein To whom correspondence should be addressedThis work was supported in part by a grant-in-aid for Special Research in Priority Areas (Project No. 02242102) from the Ministry of Education, Science and Culture, Japan, and by Special Coordination Funds of the Science and Technology Agency of the Japanese Government.  相似文献   

7.
Ogata Y  Iizuka M  Nakayama D  Ikeda M  Kamada H  Koshiba T 《Planta》2005,221(3):417-423
When seed coats (pericarps) were picked from 14-day-old carrot (Daucus carota) seedlings and cultured on agar plates, embryogenic cell clusters were produced very rapidly at a high frequency on the open side edge. Embryo induction progressed without auxin treatment; indeed treatment caused the formation of non-embryogenic callus. The embryogenic tissues (primary embryos) developed normally until the torpedo stage; however, after this a number of secondary somatic embryos were produced in the hypocotyl and root regions. Tertiary embryos were formed on some of the secondary embryos, but many developed into normal plantlets. The primary embryos contained significantly higher levels of abscisic acid (ABA) than the hypocotyl-derived normal and seed-coat-derived secondary embryos. Fluridone inhibited the induction of secondary embryogenesis, while exogenously supplied ABA induced not only tertiary embryogenesis on the seed-coat-derived secondary embryos, but also secondary embryos on the hypocotyl-derived normal somatic embryos. These results indicate that ABA is one of the important endogenous factors for the induction of secondary embryogenesis on carrot somatic embryos. Higher levels of indole-3-acetic acid (IAA) in primary embryos also suggest the presence of some concerted effect of ABA and IAA on the induction of secondary embryogenesis in primary embryos.  相似文献   

8.
Fluence response curves for red light-induced germination of thermodormant (TD) seeds of Lactuca sativa L. show two regions that differ in their light sensitivity. In the region of high sensitivity, the germination responses differ between seed batches and can be altered by dark storage or far red irradiation. Induction of germination in far red dormant (FRD) seeds requires far higher fluences. Action spectra for induction to 60% germination were determined for these various response types. Spectra for the regions of low sensitivity response are similar for TD and FRD seeds. In comparison, the action spectrum for the highly sensitive response in TD seeds is significantly shifted to longer wavelengths. Analogous differences exist in the action spectra for far red reversal of the red induced germination responses. Germination induction in the low sensitivity region shows repeated red-far red reversibility. Far red reversal of red induction in the high sensitivity region does not saturate even at the highest far red fluences available and requires increased red fluences for subsequent reinduction. A model quantitatively accounting for these observations is presented. It is pointed out that action spectra of processes involving photoreversible pigments with partly overlapping absorption spectra in general are not identical with the absorption spectra of the partners. They should depend upon the degree of phototransformation required to elicit a given physiological response. In the case of induction of lettuce seed germination the observed action spectra can be interpreted as reflecting different requirements for P fr of the various response types. Our results do not necessitate the assumption of spectroscopically different forms of phytochrome in these seeds.Abbreviations TD thermodormant - FRD far red dormant - P phytochrome - P r red absorbing form of P - P fr far red absorbing form of P  相似文献   

9.
N. V. Raikhel  R. S. Quatrano 《Planta》1986,168(4):433-440
The time course of appearance of wheat-germ agglutinin (WGA) in the various embryonic tissues during embryogenesis in Triticum aestivum L. was studied by sensitive immunofluorescence and peroxidase-antiperoxidase detection systems. The radicle, root cap and coleorhiza first accumulated WGA in early Stage II (8-10 d post-anthesis) prior to the main period of embryo growth, while WGA was found in the epiblast and coleoptile in early and late State III, respectively. Stage III is characterized by maximum embryo growth, followed by desiccation which occurs in Stage IV. When Stage-II embryos were precociously germinated in the absence of abscisic acid (ABA) no WGA was detected in the coleoptile and epiblast of the young seedlings. In the presence of ABA, Stage-II embryos did not germinate but WGA precociously accumulated in the coleoptile and epiblast. The levels and distribution of WGA in the resulting embryo resembled those in a fully mature, dry embryo (Stage V). Barley possesses a seed lectin similar to WGA, but it is never detected in coleoptiles. Some but not all of the barley cultivars tested were found to accumulate lectin in this organ of mature embryos when treated with ABA. Thus, ABA appears to be involved in the highly regulated temporal and spatial expression of WGA during embryogenesis in cereals.Abbreviations ABA abscisic acid - DIC differential interference contrast - PAP peroxidase-antiperoxidase - WGA wheat-germ agglutinin  相似文献   

10.
This work was carried out to determine what factors in the developing wheat (Triticum aestivum L.) grain are involved in regulating the metabolism of the triacylglycerol (TAG) storage reserves. When embryos are isolated from the grain and incubated in media for 4 d the TAG content is affected in three ways. In the basal medium (dilute buffer) the content falls; in 30 mM sucrose the content remains unchanged; in sucrose supplemented with an osmoticum (400 mM mannitol) or abscisic acid (1 M ABA) the TAG content increases. Effective osmotic potentials and ABA concentrations fit well with their respective values in planta. The fatty-acid composition of TAG accumulated in vitro is close to that in planta but in the absence of ABA or osmoticum there is a fall in the C18C16 ratio. Experiments with [14C] acetate show that the in-planta rate of incorporation into TAG can only occur in isolated embryos treated osmotically or with ABA, while there seems to be no effect of these two factors on TAG breakdown. An osmotic shock (dilute buffer) for only 2 h causes a rapid fall in TAG synthesis which continues for ca. 24 h after which it recovers. Abscisic acid protects against osmotic shock. It is concluded that TAG synthesis in developing wheat embryos is regulated by the osmotic potential and-or ABA, and that the embryos are very sensitive to short-term perturbations of these two factors.Abbreviations ABA abscisic acid - dpa days post anthesis - TAG triacylglycerol We are grateful to the European Economic Community for a Fellowship to R.R.S. which provided financial support for this work.  相似文献   

11.
Over the past twenty years many studies have been undertaken to elucidate the regulation of seed germination. Abscisic acid (ABA) and the gibberellins (GAs) are the hormones proposed to control this process, the first by inhibiting and the second by inducing germination. It has been proposed that a high water potential increases the growth potential of the embryo, presumably permitting the production or activation by GA of the cell wall hydrolases and thus decreasing the yield threshold of the endosperm close to the radicle tip. A low water potential, e.g., imbibition in an osmoticum. imposes a stress on cell metabolism, by reducing the turgor of the radicle cells, and there is a decrease in growth potential. Exogenous ABA also causes a decline in growth potential of the radicle: however, the actions of low water potential in preventing germination are not mediated through an increase in ABA in the seeds. In the present paper an attempt is made to asses the role of ABA and polyethylene glycol (PEG) in the germination of chick-pea (Cicer arietinum L.) seeds. The endogenous ABA of chick-pea seeds was purified by reversed-phase HPLC and quantified by GC-ECD. The variations in the ABA levels in the embryonic axes and the cotyledons were studied during 120 h. of imbibition. The highest ABA level in the embryome axes was found at 18 h. coinciding with an increase in fresh weight and a high germination percentage. ABA was not detected in the cotyledons during incubation which probably indicates that the hormone is more involved in the active growth of the embryonic axes itself than in the mobilization process of the reserves. When seeds were treated with different PEG-cycles. PEG delayed germination, reduced the fresh weight of embryonic axes, and retarded the onset of ABA synthesis. It is concluded that endogenous ABA is related to the onset of germination and the growth of the embryonic axis. In addition, there is no correlation among the different PEG-cycles and the level of ABA and germination. Germination was related more to the water conditions inside the embryo's cells than to ABA levels.  相似文献   

12.
Red light (R) and gibberellins (GA) each induce a water potential decrease in the axes of lettuce (Lactuca sativa L.) embryos resulting in germination of intact seeds (achenes) or an increase in growth of the axes of isolated embryos. The fruit coat and endosperm are a substantial barrier to the penetration of exogeneous GA. Isolated embryos take up 35 times as much [3H]GA1 as the embryos of intact seeds and respond to less than 1·10-10 M GA3 or GA4+7. We calculated that only 1·10-8 M of either GA3 or GA4+7 would result in 50% germination if the GA were able freely to penetrate the fruit coat. Exogenous GA3 or GA4+7, at concentrations insufficient to cause germination, result in an apparent synergistic promotion of germination when suboptimal R is applied. Yet suboptimal concentrations of exogenous GA3 or GA4+7 and suboptimal R result in only additive increases in the growth response in axes of isolated embryos. Dose-response curves demonstrate quantitative increases in the growth response of the isolated axes after R or GA treatments insufficient to induce germination in intact seeds, indicating that a threshold potential must be achieved by the embryonic axes before germination can occur.Abbreviations FR far=red light - GA gibberellin - PEG poly-ethylene glycol 4000 - Pfr far-red-absorbing phytochrome - R red light III.=Carpita et al. 1979b; IV.=Carpita et al. 1979c  相似文献   

13.
J. G. Carman 《Planta》1988,175(3):417-424
The effects of O2, growth-regulators and desiccation on callus growth and somatic embryo (embryoid) development were investigated in cultures of immature embryos of two lines of Triticum aestivum L. Callus and embryoid formation were induced on media that contained N6-furfurylamin-opurine (kinetin) and either 2,4-dichlorophenoxyacetic acid or 3,6-dichloro-o-anisic acid, either with or without abscisic acid (ABA). Cultures containing differentiated embryoids were then exposed to high concentrations of both ABA and indole-3-acetic acid, after which samples were desiccated to approx. 10% tissue moisture. Incubating cultures in 3.2 mmol·l-1 O2 (approx. 9%, low-O2) increased embryoid formation sixfold in one wheat line and nearly threefold in another. In the former line low-O2 caused the formation of mostly embryogenic callus. Low-O2 also decreased precocious germination of immature embryos, decreased callus growth, and improved development and viability of the resultant embryoids. Including 1.9 mol·l-1 ABA in the callus-induction medium reduced germination of immature embryos and reduced the incidence of embryoids with visible abnormalities. Despite the improved morphology, significantly fewer of the embryoids produced on ABA-containing medium germinated. Desiccation significantly enhanced germination of these embryoids as well as those produced on ABA-free medium.Abbreviations ABA abscisic acid - DPA days post-anthesis - dicamba 3,6-dichloro-o-anisic acid - 2,4-D 2,4-dichlorophen-oxyacetic acid - FW fresh weight - IAA indole-3-acetic acid - Kin kinetin (N6-furfurylaminopurine) - MS Murashige and Skoog (1962) medium Contribution of the Utah Agricultural Experiment Station, Utah State University, Logan, UT, Journal Paper No. 3565  相似文献   

14.
I. D. J. Phillips  A. Hofmann 《Planta》1979,146(5):591-596
Levels of free-abscisic acid and boundabscisic acid (alkaline hydrolyzable abscisic acidesters) in replicated samples of terminal vegetative buds of sycamore trees were measured during natural emergence from winter dormancy by gas chromatographic methods together with isotope dilution estimation of recovery rates. Not until after the buds had been released from true dormancy in January by winter chilling did any clear change occur in either abscisic acid (ABA) fraction, or in total ABA, on any basis of comparison. The percentage of total ABA present as the free acid declined at the end of true dormancy to approximately two-thirds of its value in the earlier winter months. It is concluded that glucosylation of ABA is unlikely to play a major part in the mechanism of release from dormancy in vegetative sycamore buds. At the end of true dormancy there was a large transient increase in what appeared to be phaseic acid, but this was not accompanied by any marked decrease in either free- or bound-ABA.Abbreviations ABA abscisic acid - TLC thin layer chromatography - GLC gas chromatography  相似文献   

15.
We compared the germination of Brassica napus L. embryos at three stages of development-mid-cotyledon, maturation and mature dry-to determine at which stage they acquired the capacity for normal germination and seedling development. Embryos were removed from the seed and cultured on hormone-free medium, allowing them to germinate. The transition from embryogeny to germination was monitored both morphologically and biochemically, using synthesis of 12 S storage protein as a marker of embryogeny. The mature embryos (dry seeds) set the standard for normal seedling development: radicle emergence, hypocotyl extension and cotyledon expansion occurred within 2 d and true leaves were formed within a week of germination. Rocket immunoelectrophoresis indicated that the storage proteins in seedlings from mature dry embryos were completely degraded within a week. In contrast, the midcotyledon-stage embryos appeared to germinate abnormally, retaining many embryonic characteristics. Although the roots emerged, the hypocotyls did not elongate and secondary cotyledons instead of leaves were formed at the shoot apex. Also, the seedlings continued to synthesize and accumulate storage proteins. The maturation-stage embryos did develop into normal-looking seedlings, but complete degradation of storage proteins required several weeks, presumably reflecting continued synthesis and turnover. We conclude that embryogenic and germination-specific processes can occur concurrently and that the capacity to develop as normal seedlings is acquired gradually during the maturation process.Abbreviations dpa days post anthesis - EDTA ethylenedi-aminetetraacetic acid - FW fresh weight  相似文献   

16.
Mature seeds of the Cape Verde Islands (Cvi) ecotype of Arabidopsis thaliana (L.) Heynh. show a very marked dormancy. Dormant (D) seeds completely fail to germinate in conditions that are favourable for germination whereas non-dormant (ND) seeds germinate easily. Cvi seed dormancy is alleviated by after-ripening, stratification, and also by nitrate or fluridone treatment. Addition of gibberellins to D seeds does not suppress dormancy efficiently, suggesting that gibberellins are not directly involved in the breaking of dormancy. Dormancy expression of Cvi seeds is strongly dependent on temperature: D seeds do not germinate at warm temperatures (20–27°C) but do so easily at a low temperature (13°C) or when a fluridone treatment is given to D seeds sown at high temperature. To investigate the role of abscisic acid (ABA) in dormancy release and maintenance, we measured the ABA content in both ND and D seeds imbibed using various dormancy-breaking conditions. It was found that dry D seeds contained higher amounts of ABA than dry ND after-ripened seeds. During early imbibition in standard conditions, there was a decrease in ABA content in both seeds, the rate of which was slower in D seeds. Three days after sowing, the ABA content in D seeds increased specifically and then remained at a high level. When imbibed with fluridone, nitrate or stratified, the ABA content of D seeds decreased and reached a level very near to that of ND seeds. In contrast, gibberellic acid (GA3) treatment caused a transient increase in ABA content. When D seeds were sown at low optimal temperature their ABA content also decreased to the level observed in ND seeds. The present study indicates that Cvi D and ND seeds can be easily distinguished by their ability to synthesize ABA following imbibition. Treatments used here to break dormancy reduced the ABA level in imbibed D seeds to the level observed in ND seeds, with the exception of GA3 treatment, which was active in promoting germination only when ABA synthesis was inhibited.Abbreviations ABA Abscisic acid - Cvi Cape Verde Islands - D Dormant - GA Gibberellin - GA3 Gibberellic acid - ND Non dormant  相似文献   

17.
Frey A  Boutin JP  Sotta B  Mercier R  Marion-Poll A 《Planta》2006,224(3):622-632
Abscisic acid (ABA) is derived from epoxycarotenoid cleavage and regulates seed development and maturation. A detailed carotenoid analysis was undertaken to study the contribution of epoxycarotenoid synthesis to the regulation of ABA accumulation in Nicotiana plumbaginifolia developing seeds. Maximal accumulation of xanthophylls occurred at mid-development in wild type seeds, when total ABA levels also peaked. In contrast, in ABA-deficient mutants xanthophyll synthesis was delayed, in agreement with the retardation in seed maturation. Seed dormancy was restored in mutants impaired in the conversion of zeaxanthin into violaxanthin by zeaxanthin epoxidase (ZEP), by the introduction of the Arabidopsis AtZEP gene under the control of promoters inducing expression during later stages of seed development compared to wild type NpZEP, and in dry and imbibed seeds. Alterations in the timing and level of ZEP expression did not highly affect the temporal regulation of ABA accumulation in transgenic seeds, despite notable perturbations in xanthophyll accumulation. Therefore, major regulatory control of ABA accumulation might occur downstream of epoxycarotenoid synthesis.  相似文献   

18.
Somatic embryogenesis was induced from embryogenie cells derived from cotyledon expiants cultured on MS medium supplemented with 1 mg/L 2,4-D. In order to clarify the effect of abscisic acid (ABA) on the morphology of somatic embryos, embryogénie cell clumps or developing somatic embryos were treated continuously, or briefly, with ABA during culture. When embryogenie cells in MS medium without 2,4-D were treated with 0.04 mg/L ABA for the first week, normal embryos with two cotyledons increased slightly and embryos with anomalous cotyledons decreased. However when cell clumps in 2,4-D-free medium were treated with ABA in the second week normal embryos with two cotyledons decreased prominently and this decrease of normal embryos also occurred in the continuous ABA treatment during culture. Thus the morphological abnormalities in somatic embryogenesis occurred by exogenous ABA treatment beyond globular stage or by continuous treatment. The length of somatic embryos with anomalous cotyledons was larger than that of normal embryos with two cotyledons in control but both the normal and anomalous somatic embryos treated with ABA were almost similar in length. Somatic embryos formed in medium with ABA were larger in size than those in control due mainly to enlarged cotyledons. The enlarged cotyledons were composed of a greater number of cells than those of control. Therefore the enlargement of cotyledon by exogenous ABA seems to be not due to the enlargement of cells in cotyledons.  相似文献   

19.
Summary Somatic embryogenesis has been shown to be an imperfect recapitulation of stages involved to form embryos from vegetative tissues. Although abscisic acid has been implicated in normalizing development, studies that specifically investigate conversion (vegetative leaf initiation) in somatic embryos are lacking. This report documents a follow-up of a study that implicated abscisic acid as a vital factor in allowing embryos ofDaucus carota to progress to the plantlet stage. Abscisic acid was determined to enhance conversion at doses ranging from 1 to 50 µM. Younger embryo stages were more responsive to abscisic acid application with regards to plantlet recovery. Pulses of abscisic acid were shown to elicit more rapid response with younger embryo stages, indicating more plastic development. Fluridone, an abscisic acid synthesis inhibitor, was shown to dramatically reduce conversion, even at low doses (<5µM). When abscisic acid was applied concurrently with fluridone, partial restoration of conversion was observed. Histologically, fluridone was seen to cause pronounced vacuolation in the shoot apical notch which resulted in the loss of meristematic cells, negating conversion capacity. Quantitation of total cytoplasmic area showed that abscisic acid reduced vacuolar intrusion into the apical notch, while fluridone caused a significant increase in vacuolation of cells in this region. This report documents further evidence of a role for abscisic acid in plantlet establishment from somatic embryos ofDaucus carota.  相似文献   

20.
The influence of abscisic acid (ABA) on the processes of formation of different polysomal populations, their structures and stability in embryonal tissue during pea seeds germination was studied. The contents of total ribosomal fraction increased in all samples up to 72 h of germination and then decreased. The contents of polysomal population (FP, MBP, CBP and CMBP) extracted from the embryonal tissue after 72 hrs of germination of pea seeds were then quantified. It turned out that in examined tissue of control sample, fraction of free polysomes (FP) was the most abounded. This population of polysomes in sprouts decreased after ABA treatment. FP content decreased even more when the higher ABA concentration was applied during germination. Similar changes were observed in the fraction of membrane-bound polysomes (MBP). Quite different tendencies were found, however, in forming population of the cytoskeleton-membrane-bound polysomes (CMBP). The CMBP population content in embryonal tissue increased in a dosage dependent manner with increasing concentration of ABA applied during seed germination. This indicates the important role of CMBP fraction in synthesis of specific proteins in embryos in the time when processes of seeds germination are retarded by ABA. In the final part we examined the stability of polysomes isolated from sprouts of germinating seeds in water and sprouts isolated from seeds treated with ABA (100 μM) during germination. Total polysomes isolated from embryonal tissue of germinating seeds treated with ABA showed much higher resistance to exogenous ribonuclease digestion than total polysomes of control sample. The obtained results suggest that ABA influence on different polysomal population formation also controls their stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号