首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Role of water in some biological processes.   总被引:14,自引:3,他引:11  
The state of intracellular water has been a matter of controversy for a long time for two reasons. First, experiments have often given conflicting results. Second, hitherto, there have been no plausible grounds for assuming that intracellular water should be significantly different from bulk water. A collective behavior of water molecules is suggested here as a thermodynamically inevitable mechanism for generation of appreciable zones of abnormal water. At a highly charged surface, water molecules move together, generating a zone of water perhaps 6 nm thick, which is weakly hydrogen bonded, fluid, and reactive and selectively accumulates small cations, multivalent anions, and hydrophobic solutes. At a hydrophobic surface, molecules move apart and local water becomes strongly bonded, inert, and viscous and accumulates large cations, univalent anions, and compatible solutes. Proteins and many other biopolymers have patchy surfaces which therefore induce, by the two mechanisms described, patchy interfacial water structures, which extended appreciable distances from the surface. The reason for many conflicting experimental results now becomes apparent. Average values of properties of water measured in gels, cells, or solutions of proteins are often not very different from the same properties of normal water, giving no indication that they are averages of extreme values. To detect the operation of this phenomenon, it is necessary to probe selectively a single abnormal population. Examples of such experiments are given. It is shown that this collective behavior of water molecules amounts to a considerable biological force, which can be equivalent to a pressure of 1,000 atm (1.013 x 10(5) kPa). It is suggested that cells selectively accumulate K+ ions and compatible solutes to avoid extremes of water structure in their aqueous compartments, but that cation pumps and other enzymes exploit the different solvent properties and reactivities of water to perform work of transport or synthesis.  相似文献   

2.
We present and discuss the permeability and electrical properties of thin lipid membranes, and the changes induced in these properties by several agents added to the aqueous phases after the membranes have formed. The unmodified membrane is virtually impermeable to ions and small "hydrophilic" solutes, but relatively permeable to water and "lipophilic" molecules. These properties are consistent with those predicted for a thin film of hydrocarbon through which matter is transported by dissolving in the membrane phase and then diffusing through it. The effect of cholesterol in reducing the water and "lipophilic" solute permeability is attributed to an increase of the "viscosity" of the hydrocarbon region, thus reducing the diffusion coefficient of molecules within this phase. The selective permeability of the membrane to iodide (I-) in the presence of iodine (I2) is attributed to the formation of polyiodides (perhaps I5 -), which are presumed to be relatively soluble in the membrane because of their large size, and hence lower surface charge density. Thus, I2 acts as a carrier for I-. The effects of "excitability-inducing material" and the depsipeptides (particularly valinomycin) on ion permeability are reviewed. The effects of the polyene antibiotics (nystatin and amphotericin B) on ion permeability, discussed in greater detail, are the following: (a) membrane conductance increases with the 10th power of nystatin concentration; (b) the membrane is anion-selective but does not discriminate completely between anions and cations; (c) the membrane discriminates among anions on the basis of size; (d) membrane conductance decreases extraordinarily with increasing temperatures. Valinomycin and nystatin form independent conductance pathways in the same membrane, and, in the presence of both, the membrane can be reversibly shifted between a cation and anion permeable state by changes in temperature. It is suggested that nystatin produces pores in the membrane and valinomycin acts as a carrier.  相似文献   

3.
The interaction between model lipid membranes and the binding component (Ib) of the ADP-ribosylating iota-toxin of Clostridium perfringens was studied in detail. Ib had to be activated by trypsin to result in channel formation in artificial lipid bilayers. The channels formed readily by Ib had a small single-channel conductance of about 85 picosiemens in 1 m KCl. Channel function was blocked in single-channel and multichannel experiments by the enzymatic component Ia in a pH-dependent manner. The strong Ia-mediated channel block of Ib occurred only when the pH was at least lowered to pH 5.6. The single-channel conductance showed a linear dependence on the bulk aqueous KCl concentration, which indicated that the channel properties were more general than specific. Zero current membrane potential measurements suggested the Ib channel has an approximately 6-fold higher permeability for potassium ions than for chloride. The selectivity ratio changed for salts composed of cations and anions of different mobility in the aqueous phase, again suggesting that Ib formed a water-filled general diffusion pore. Asymmetric addition of activated Ib to lipid bilayer membranes resulted in an asymmetric voltage dependence, indicating its full orientation within the membrane. Titration experiments with chloroquine and different tetraalkylammonium ions suggested that the Ib channel was blocked by these compounds but had only a weak affinity to them. In vivo measurements using Vero cells demonstrate that chloroquine and related molecules also did not efficiently block intoxication of the cells by iota-toxin. The possible role of Ib in the translocation of iota-toxin across the target cell membrane is discussed.  相似文献   

4.
The rates at which ions (86Rb+, [3H]-choline, 36Cl), 3H2O and nonelectrolytes ([14C]-urea, [14C]-glycerol, and [14C]-sugars) equilibrate across track-etched polyethyleneterephthalate (PETP) membranes (isotopic diffusion) have been measured by a `static' and a `dynamic' technique under conditions where no net flow takes place; the two techniques give essentially the same results. All tracers diffuse faster the longer the membranes are etched, consistent with an increase in pore size. Water and neutral solutes diffuse at rates that are relatively independent of ionic strength, pH or the presence of divalent cations. Diffusion of cations is decreased by high ionic strength, by reducing pH or by addition of divalent catons; diffusion of chloride is increased by these procedures. Treatment of the membrane with diazomethane to reduce the negative fixed charge decreases diffusion of cations and increases that of anions; diffusion of water and neutral solutes is unaffected by methylation except in the membranes with the narrowest pores (i.e., those etched for the shortest time), in which case diffusion is reduced. We conclude (1) that the special features of flow near a charged surface apply to ions but not to water or nonelectrolytes and (2) that calculation of absolute rates of diffusion leads to values for the radii of pores through track-etched PETP membranes that are in remarkably good agreement with measured values. Received: 14 August 1995/27 November 1995  相似文献   

5.
The permeability of hydrophobic cations, such as tetraphenylarsonium across biological membranes and artificial lipid membranes is strongly increased in the presence of trace amounts of hydrophobic anions like tetraphenylborate (Liberman, Y.A. and Topaly, V.P. (1969) Biofizika 14, 452–461). Voltage-jump relaxation experiments performed on thin lipid membranes support the idea that the anions, A?, act as carriers for the cations, B+, by the formation of neutral ion pairs, A?B+. Their permeability is not affected by the electric dipole potential, which hinders the movement of free cations, B+.  相似文献   

6.
Unilamellar liposomes of small or large size, SUVs and LUVs, respectively, were stably immobilized in the highly hydrophilic Sepharose 4B or Sephacryl S-1000 gel beads as a membrane stationary phase for immobilized liposome chromatography (ILC). Lipophilic cations of triphenylmethylphosphonium and tetraphenylphosphonium (TPP+) have been used as probes of the membrane potential of cells. Interaction of TPP+ and triphenylalkylphosphonium homologues with the immobilized liposomal membranes was shown by their elution profiles on both zonal and frontal ILC. Retardation of the lipophilic cations on the liposome gel bed was increased as the hydrophobicity of the cations increased, indicating the partitioning of lipophilic cations into the hydrocarbon region of the membranes. The cations did not retard on the Sepharose or Sephacryl gel bed without liposomes, confirming that the cations only interact with the immobilized liposomes. Effects of the solute concentration, flow rate, and gel-matrix substance on the ILC were studied. The stationary phase volume of the liposomal membranes was calculated from the volume of a phospholipid molecule and the amount of the immobilized phospholipid, which allowed us to determine the membrane partition coefficient (KLM) for the lipophilic cations distributed between the aqueous mobile and membrane stationary phases. The values of KLM were generally increased with the hydrophobicity of the solutes increased, and were higher for the SUVs than for the LUVs. The ILC method described here can be applied to measure membrane partition coefficients for other lipophilic solutes (e.g., drugs).  相似文献   

7.
Porin was isolated and purified from mitochondria of Paramecium tetraurelia. The protein showed a single band of apparent Mr 37,000 on sodium dodecyl sulfate polyacrylamide electrophoretograms. The reconstitution of the protein into artificial lipid bilayer membranes revealed it to be a porin giving pores with an average single-channel conductance of 0.26 nS in 0.1 M KCl. This conductance is about half of that of other eukaryotic porins studied to date. The pore formed by the mitochondrial porin of Paramecium was found to be voltage-dependent and switched to a defined substrate at membrane voltages larger than 20 mV. In the open state the pore exhibited the characteristics of a general diffusion pore because the mobility sequence of the ions inside the pore was similar to that in the bulk aqueous phase. The effective diameter was estimated to be about 1.3 nm. The properties of the low conductance state of the pore were studied in detail. In this state the pore favored the passage of cations, in contrast to the open state which favored anions slightly. The possible role of the low-conductance state in the regulation of transport processes across the outer mitochondrial membrane and in mitochondrial metabolism is discussed.  相似文献   

8.
Permeability of lipid bilayers to water and ionic solutes   总被引:15,自引:0,他引:15  
The lipid bilayer moiety of biological membranes is considered to be the primary barrier to free diffusion of water and solutes. This conclusion arises from observations of lipid bilayer model membrane systems, which are generally less permeable than biological membranes. However, the nature of the permeability barrier remains unclear, particularly with respect to ionic solutes. For instance, anion permeability is significantly greater than cation permeability, and permeability to proton-hydroxide is orders of magnitude greater than other monovalent inorganic ions. In this review, we first consider bilayer permeability to water and discuss proposed permeation mechanisms which involve transient defects arising from thermal fluctuations. We next consider whether such defects can account for ion permeation, including proton-hydroxide flux. We conclude that at least two varieties of transient defects are required to explain permeation of water and ionic solutes.  相似文献   

9.
10.
The conductance of black lipid membranes in the presence of 2,4,6-trinitrophenol (or 2,4-dinitrophenol) is considerably enhanced, if the cation carriers valinomycin, enniatin B or nonactin are added. The effect is, however, largely independent of the cation concentration and is identical for the cations Li+, Na+ and Ba2+. This finding, as well as the sign and magnitude of the diffusion potential in the presence of a gradient of picrate are consistent with the assumption that the transport of picrate anions is facilitated by the above-mentioned macrocyclic compounds, but that cations are not directly involved. A model is suggested which, based on the generation of mobile defect structures by the incorporation of large molecules, allows one to explain facilitated transport without the assumption of stable chemical bonds between a carrier and its transported substrate. If K+ is present in the aqueous phase, the conductance is largely determined by the permeation of the cation complexes of valinomycin and nonactin. The conductance is, however, increases by adsorption of picrate anions to the membrane surface. The negative surface potential generated by the adsorption layer seems to be responsible for the saturation of the conductance at high picrate concentrations in the absence of valinomycin and nonactin.  相似文献   

11.
Diffusion of inulin and p-aminohippuric acid (PAH) in combined aqueous solution through artificial membranes was measured at room temperature and atmospheric pressure. The membranes had pore diameters of 26, 50, 100, 200, 250, 350, 510 or 990 A. The diffusion of PAH was only restricted with a pore size of 26 A, but inulin diffusion was restricted at 100 A. When diffusion of both solutes was unrestricted (pore diameter greater than or equal to 200 A), PAH diffused four times faster than inulin, and in restricted situations this ratio was even greater. The results of these diffusion studies allow the major and minor molecular dimensions of the solutes to be estimated. Filtration of the two solutes was studied in slowly flowing situations and also with increased temperature and pressure. Pore sizes required for unrestricted filtration were the same as for unrestricted diffusion but the passage ratio was reduced from 4 to 2. These results suggest strongly that two conditions are necessary if the glomerular filtration rate (GFR) of inulin is to equal the true GFR: membrane pore size must be at least 200 A and passage through the membranes must be by bulk transport.  相似文献   

12.
To reach their biological target, drugs have to cross cell membranes, and understanding passive membrane permeation is therefore crucial for rational drug design. Molecular dynamics simulations offer a powerful way of studying permeation at the single molecule level. Starting from a computer model proven to be able to reproduce the physical properties of a biological membrane, the behaviour of small solutes and large drugs in a lipid bilayer has been studied. Analysis of dihedral angles shows that a few nano seconds are sufficient for the simulations to converge towards common values for those angles, even if the starting structures belong to different conformations. Results clearly show that, despite their difference in size, small solutes and large drugs tend to lie parallel to the bilayer normal and that, when moving from water solution into biomembranes, permeants lose degrees of freedom. This explains the experimental observation that partitioning and permeation are highly affected by entropic effects and are size-dependent. Tilted orientations, however, occur when they make possible the formation of hydrogen bonds. This helps to understand the reason why hydrogen bonding possibilities are an important parameter in cruder approaches which predict drug absorption after administration. Interestingly, hydration is found to occur even in the membrane core, which is usually considered an almost hydrophobic region. Simulations suggest the possibility for highly polar compounds like acetic acid to cross biological membranes while hydrated. These simulations prove useful for drug design in rationalising experimental observations and predicting solute behaviour in biomembranes.  相似文献   

13.
The conductance of black lipid membranes in the presence of 2,4,6-trinitrophenol (or 2,4-dinitrophenol) is considerably enhanced, if the cation carriers valinomycin, enniatin B or nonactin are added. The effect is, however, largely independent of the cation concentration and is identical for the cations Li+, Na+ and Ba2+. This finding, as well as the sign and magnitude of the diffusion potential in the presence of a gradient of picrate are consistent with the assumption that the transport of picrate anions is facilitated by the above-mentioned macrocyclic compounds, but that cations are not directly involved. A model is suggested which, based on the generation of mobile defect structures by the incorporation of large molecules, allows one to explain facilitated transport without the assumption of stable chemical bonds between a carrier and its transported substrate.If K+ is present in the aqueous phase, the conductance is largely determined by the permeation of the cation complexes of valinomycin and nonactin. The conductance is, however, increased by adsorption of picrate anions to the membrane surface. The negative surface potential generated by the adsorption layer seems to be responsible for the saturation of the conductance at high picrate concentrations in the absence of valinomycin and nonactin.  相似文献   

14.
Permeability of Lipid Bilayer Membranes to Organic Solutes   总被引:6,自引:2,他引:4       下载免费PDF全文
A sensitive fluorescence technique was used to measure transport of organic solutes through lipid bilayer membranes and to relate permeability to the functional groups of the solute, lipid composition of the membrane, and pH of the medium. Indole derivatives having ethanol, acetate, or ethylamine in the 3-position, representing neutral, acidic, and basic solutes, respectively, were the primary models. The results show: (a) Neutral solute permeability is not greatly affected by changes in lipid composition but presence or absence of cholesterol in the membranes could greatly alter permeability of the dissociable substrates. (b) Indole acetate permeability was reduced by introduction of phosphatidylserine into membranes to produce a net negative charge on the membranes. (c) Permeability response of dissociable solutes to variation in pH was in the direction predicted but not always of the magnitude expected from changes in the calculated concentrations of the undissociated solute in the bulk aqueous phase. Concentration gradients of amines across the membranes caused substantial diffusion potentials, suggesting that some transport of the cationic form of the amine may occur. It is suggested that factors such as interfacial charge and hydration structure, interfacial polar forces, and lipid organization and viscosity, in addition to the expected solubility-diffusion relations, may influence solute flux.  相似文献   

15.
The permeability of seed coats to solutes either of biological or anthropogenic origin plays a major role in germination, seedling growth and seed treatment by pesticides. An experimental set‐up was designed for investigating the mechanisms of seed coat permeation, which allows steady‐state experiments with isolated seed coats of Pisum sativum. Permeances were measured for a set of organic model compounds with different physicochemical properties and sizes. The results show that narrow aqueous pathways dominate the diffusion of solutes across pea seed coats, as indicated by a correlation of permeances with the molecular sizes of the compounds instead of their lipophilicity. Further indicators for an aqueous pathway are small size selectivity and a small effect of temperature on permeation. The application of an osmotic water potential gradient across isolated seed coats leads to an increase in solute transfer, indicating that the aqueous pathways form a water‐filled continuum across the seed coat allowing the bulk flow of water. Thus, the uptake of organic solutes across pea testae has two components: (1) by diffusion and (2) by bulk water inflow, which, however, is relevant only during imbibition.  相似文献   

16.
The classical view of a cell membrane is as a hydrophobic slab in which only nonpolar solutes can dissolve and permeate. However, water-soluble non-electrolytes such as glycerol, erythritol, urea and others can permeate lipid membranes in the liquid crystalline state. Moreover, recently polar amino acid's penetration has been explained by means of molecular dynamics in which appearance of water pockets is postulated. According to Träuble (1971), water diffuses across the lipid membranes by occupying holes formed in the lipid matrix due to fluctuations of the acyl chain trans–gauche isomers. These holes, named “kinks” have the molecular dimension of CH2 vacancies. The condensation of kinks may form aqueous spaces into which molecular species of the size of low molecular weight can dissolve. This molecular view can explain permeability properties considering that water may be distributed along the hydrocarbon chains in the lipid matrix. The purpose of this review is to consolidate the mechanism anticipated by Träuble by discussing recent data in literature that directly correlates the molecular state of methylene groups of the lipids with the state of water in each of them. In addition, the structural properties of water near the lipid residues can be related with the water activity triggering kink formation by changes in the head group conformation that induces the propagation along the acyl chains and hence to the diffusion of water.  相似文献   

17.
A cytolytic toxin produced by G. vaginalis was incorporated in artificial membranes and giant liposomes. The toxin formed ionic channels when incorporated in lipid bilayers. The electrical properties of such channels were studied. Current records revealed a unitary conductance of 126 pS (in symmetrical 150 mM KCl). The open state probability of the cytolysin formed channels was a function of the applied membrane potential. The permeability ratio of cations to anions was estimated to be 6.5.  相似文献   

18.
The activity of many biomolecules and drugs crucially depends on whether they bind to biological membranes and whether they translocate to the opposite lipid leaflet and trans aqueous compartment. A general strategy to measure membrane binding and permeation is the uptake and release assay, which compares two apparent equilibrium situations established either by the addition or by the extraction of the solute of interest. Only solutes that permeate the membrane sufficiently fast do not show any dependence on the history of sample preparation. This strategy can be pursued for virtually all membrane-binding solutes, using any method suitable for detecting binding. Here, we present in detail one example that is particularly well developed, namely the nonspecific membrane partitioning and flip-flop of small, nonionic solutes as characterized by isothermal titration calorimetry. A complete set of experiments, including all sample preparation procedures, can typically be accomplished within 2 days. Analogous protocols for studying charged solutes, virtually water-insoluble, hydrophobic compounds or specific ligands are also considered.  相似文献   

19.
Catalá A 《Biochimie》2012,94(1):101-109
The “Fluid Mosaic Model”, described by Singer and Nicolson, explain both how a cell membrane preserves a critical barrier function while it concomitantly facilitates rapid lateral diffusion of proteins and lipids within the planar membrane surface. However, the lipid components of biological plasma membranes are not regularly distributed. They are thought to contain “rafts” - nano-domains enriched in sphingolipids and cholesterol that are distinct from surrounding membranes of unsaturated phospholipids. Cholesterol and fatty acids adjust the transport and diffusion of molecular oxygen in membranes. The presence of cholesterol and saturated phospholipids decreases oxygen permeability across the membrane. Alpha-tocopherol, the main antioxidant in biological membranes, partition into domains that are enriched in polyunsaturated phospholipids increasing the concentration of the vitamin in the place where it is most required. On the basis of these observations, it is possible to assume that non-raft domains enriched in phospholipids containing PUFAs and vitamin E will be more accessible by molecular oxygen than lipid raft domains enriched in sphingolipids and cholesterol. This situation will render some nano-domains more sensitive to lipid peroxidation than others. Phospholipid oxidation products are very likely to alter the properties of biological membranes, because their polarity and shape may differ considerably from the structures of their parent molecules. Addition of a polar oxygen atom to several peroxidized fatty acids reorients the acyl chain whereby it no longer remains buried within the membrane interior, but rather projects into the aqueous environment “Lipid Whisker Model”. This exceptional conformational change facilitates direct physical access of the oxidized fatty acid moiety to cell surface scavenger receptors.  相似文献   

20.
Summary Transbilayer diffusion of Mn2+ ions occurred in liposomes formed from dipalmitoyl-phosphatidylcholine or egg-yolk phosphatidylcholine and egg-yolk phosphatidate (molar ratio 21) containing DNA and DNase I within their aqueous compartments. Cation diffusion was demonstrated by the hydrolytic activity of DNase I, activated by the Mn2+ ions that diffused into the vesicles, and this was confirmed by light scattering. Phosphatidate, a cone-shaped lipid which has been synthesized under simulated prebiotic conditions, was necessary for cation diffusion across the liposome membranes. Such liposomes represent a simple precellular system that interchanges cations with the surroundings and provides a microenvironment for enzymatic reactions, as evidenced by the hydrolysis of DNA by DNase I inside these closed lipid compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号