首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Francisella tularensis is the intracellular pathogen that causes human tularemia. It is recognized as a potential agent of bioterrorism due to its low infectious dose and multiple routes of entry. We report the development of a Himar1-based random mutagenesis system for F. tularensis (HimarFT). In vivo mutagenesis of F. tularensis live vaccine strain (LVS) with HimarFT occurs at high efficiency. Approximately 12 to 15% of cells transformed with the delivery plasmid result in transposon insertion into the genome. Results from Southern blot analysis of 33 random isolates suggest that single insertions occurred, accompanied by the loss of the plasmid vehicle in most cases. Nucleotide sequence analysis of rescued genomic DNA with HimarFT indicates that the orientation of integration was unbiased and that insertions occurred in open reading frames and intergenic and repetitive regions of the chromosome. To determine the utility of the system, transposon mutagenesis was performed, followed by a screen for growth on Chamberlain's chemically defined medium (CDM) to isolate auxotrophic mutants. Several mutants were isolated that grew on complex but not on the CDM. We genetically complemented two of the mutants for growth on CDM with a newly constructed plasmid containing a nourseothricin resistance marker. In addition, uracil or aromatic amino acid supplementation of CDM supported growth of isolates with insertions in pyrD, carA, or aroE1 supporting the functional assignment of genes within each biosynthetic pathway. A mutant containing an insertion in aroE1 demonstrated delayed replication in macrophages and was restored to the parental growth phenotype when provided with the appropriate plasmid in trans. Our results suggest that a comprehensive library of mutants can be generated in F. tularensis LVS, providing an additional genetic tool to identify virulence determinants required for survival within the host.  相似文献   

2.
Francisella tularensis is a highly virulent zoonotic bacterial pathogen capable of infecting numerous different mammalian species, including humans. Elucidation of the pathogenic mechanisms of F. tularensis has been hampered by a lack of tools to genetically manipulate this organism. Herein we describe the use of transposome complexes to create insertion mutations in the chromosome of the F. tularensis live vaccine strain (LVS). A Tn5-derived transposon encoding kanamycin resistance and lacking a transposase gene was complexed with transposase enzyme and transformed directly into F. tularensis LVS by electroporation. An insertion frequency of 2.6 x 10(-8) +/- 0.87 x 10(-8) per cell was consistently achieved using this method. There are 178 described Tn5 consensus target sites distributed throughout the F. tularensis genome. Twenty-two of 26 transposon insertions analyzed were within known or predicted open reading frames, but none of these insertions was associated with the Tn5 target site. Analysis of the insertions of sequentially passed strains indicated that the transposons were maintained stably at the initial insertion site after more than 270 generations. Therefore, transformation by electroporation of Tn5-based transposon-transposase complexes provided an efficient mechanism for generating random, stable chromosomal insertion mutations in F. tularensis.  相似文献   

3.
Transformation and allelic replacement in Francisella spp.   总被引:1,自引:0,他引:1  
We describe methods for transposon mutagenesis and allelic replacement in the facultative intracellular pathogen Francisella. Recombinant clones were constructed by insertion of partially cut F. tularensis or F. novicida DNA into pUC19 and then mutagenized with a mini-Tn10-Km transposon. F. novicida could be transformed with these plasmids either by a chemical transformation method or by electroporation, whereas F. tularensis could be transformed only by electroporation. Transformation of F. tularensis by electroporation was enhanced in the absence of the capsule. Southern blot analysis showed that the KmR marker was rescued either by integration of the plasmid into the Francisella chromosome or by allelic replacement. Allelic replacement was found to be the mechanism underlying a site-specific mutation affecting FopA, an outer-membrane protein of Francisella. F. novicida could also be transformed with chromosomal DNA carrying the KmR marker and the transformation frequency obtained using chromosomal DNA was generally greater than that obtained using plasmid DNA. F. novicida was also transformed by an IncQ plasmid containing an F. novicida DNA insert, which replicated autonomously in this host.  相似文献   

4.
A method for allelic replacement in Francisella tularensis   总被引:10,自引:0,他引:10  
A vector for mutagenesis of Francisella tularensis was constructed based on the pUC19 plasmid. By inserting the sacB gene of Bacillus subtilis, oriT of plasmid RP4, and a chloramphenicol resistance gene of Shigella flexneri, a vector, pPV, was obtained that allowed specific mutagenesis. A protocol was developed that allowed introduction of the vector into the live vaccine strain, LVS, of F. tularensis by conjugation. As a proof of principle, we aimed to develop a specific mutant defective in expression of a 23-kDa protein (iglC) that we previously have shown to be prominently upregulated during intracellular growth of F. tularensis. A plasmid designated pPV-DeltaiglC was developed that contained only the regions flanking the encoding gene, iglC. By a double crossover event, the chromosomal iglC gene was deleted. However, the resulting strain, denoted DeltaiglC1, still had an intact iglC gene. Southern blot analysis verified that LVS harbors two copies for the iglC gene. The mutagenesis was therefore repeated and a mutant defective in both iglC alleles, designated DeltaiglC1+2, was obtained. The DeltaiglC1+2 strain, in contrast to DeltaiglC1, was shown to display impaired intracellular macrophage growth and to be attenuated for virulence in mice. The developed genetic system has the potential to provide a tool to elucidate virulence mechanisms of F. tularensis and the specific F. tularensis mutant illustrates the critical role of the 23-kDa protein, iglC, for the virulence of F. tularensis LVS.  相似文献   

5.
Francisella tularensis is a facultative intracellular pathogen that infects a wide variety of mammals and causes tularemia in humans. It is recognized as a potential agent of bioterrorism due to its low infectious dose and multiple routes of transmission. To date, genetic manipulation in Francisella spp. has been limited due to the inefficiency of DNA transformation, the relative lack of useful selective markers, and the lack of stably replicating plasmids. Therefore, the goal of this study was to develop an enhanced shuttle plasmid that could be utilized for a variety of genetic procedures in both Francisella and Escherichia coli. A hybrid plasmid, pFNLTP1, was isolated that was transformed by electroporation at frequencies of >1 x 10(7) CFU mug of DNA(-1) in F. tularensis LVS, Francisella novicida U112, and E. coli DH5alpha. Furthermore, this plasmid was stably maintained in F. tularensis LVS after passage in the absence of antibiotic selection in vitro and after 3 days of growth in J774A.1 macrophages. Importantly, F. tularensis LVS derivatives carrying pFNLTP1 were unaltered in their growth characteristics in laboratory medium and macrophages compared to wild-type LVS. We also constructed derivatives of pFNLTP1 containing expanded multiple cloning sites or temperature-sensitive mutations that failed to allow plasmid replication in F. tularensis LVS at the nonpermissive temperature. In addition, the utility of pFNLTP1 as a vehicle for gene expression, as well as complementation, was demonstrated. In summary, we describe construction of a Francisella shuttle plasmid that is transformed at high efficiency, is stably maintained, and does not alter the growth of Francisella in macrophages. This new tool should significantly enhance genetic manipulation and characterization of F. tularensis and other Francisella biotypes.  相似文献   

6.
Transposon mutagenesis in bacteria generally requires efficient delivery of a transposon suicide vector to allow the selection of relatively infrequent transposition events. We have developed an IS903-based transposon mutagenesis system for diverse gram-negative bacteria that is not limited by transfer efficiency. The transposon, IS903phikan, carries a cryptic kan gene, which can be expressed only after successful transposition. This allows the stable introduction of the transposon delivery vector into the host. Generation of insertion mutants is then limited only by the frequency of transposition. IS903phikan was placed on an IncQ plasmid vector with the transposase gene located outside the transposon and expressed from isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible promoters. After transposase induction, IS903phikan insertion mutants were readily selected in Escherichia coli by their resistance to kanamycin. We used IS903phikan to isolate three catalase-deficient mutants of the periodontal pathogen Actinobacillus actinomycetemcomitans from a library of random insertions. The mutants display increased sensitivity to hydrogen peroxide, and all have IS903phikan insertions within an open reading frame whose predicted product is closely related to other bacterial catalases. Nucleotide sequence analysis of the catalase gene (designated katA) and flanking intergenic regions also revealed several occurrences of an 11-bp sequence that is closely related to the core DNA uptake signal sequence for natural transformation of Haemophilus influenzae. Our results demonstrate the utility of the IS903phikan mutagenesis system for the study of A. actinomycetemcomitans. Because IS903phikan is carried on a mobilizable, broad-host-range IncQ plasmid, this system is potentially useful in a variety of bacterial species.  相似文献   

7.
A transposon mutagenesis procedure functional in the gram-negative swine pathogen Actinobacillus pleuropneumoniae was developed for the first time. The technique involved the use of a suicide conjugative plasmid, pLOF/Km, carrying a mini-Tn10 with an isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible transposase located outside the mobile element (M. Herrero, V. de Lorenzo, and K. N. Timmis, J. Bacteriol. 172:6557-6567, 1990). The plasmid was mobilized from Escherichia coli to A. pleuropneumoniae through the RP4-mediated broad-host-range conjugal transfer functions provided by the chromosome of the donor strain. When IPTG was present in the mating medium, A. pleuropneumoniae CM5 transposon mutants were obtained at a frequency of 10(-5), while no mutants were detected in the absence of IPTG. Since the frequency of conjugal transfer of the RP4 plasmid from E. coli to A. pleuropneumoniae CM5 was found to be as low as 10(-4), the above result indicated that the expression level of the transposase was a critical factor for obtaining a workable efficiency of transposon mutagenesis. The transposon insertions occurred at random, as determined by Southern blotting of chromosomal DNA of randomly selected mutants and by the ability to generate mutants defective for the selected phenotypes. Almost all the mutants analyzed resulted from a single insertion of the Tn10 element. About 1.2% of the mutants resulted from the cointegration of pLOF/Km into the A. pleuropneumoniae chromosome. The applicability of this transposon mutagenesis system was verified on other A. pleuropneumoniae strains of different serotypes. The usefulness of this transposon mutagenesis system in genetic studies of A. pleuropneumoniae is discussed.  相似文献   

8.
Helicobacter pylori mutagenesis by mariner in vitro transposition   总被引:3,自引:0,他引:3  
We have developed a method for generating transposon insertion mutants using mariner in vitro mutagenesis. The gene of interest was PCR-amplified and cloned. A kanamycin-marked mariner transposon was randomly inserted into the purified plasmid in an in vitro transposition reaction. After repair and propagation in Escherichia coli, purified mutagenized plasmid was introduced into Helicobacter pylori by natural transformation. Transformants were selected by plating on kanamycin. Mutants were predominantly the result of double homologous recombination, and multiple mutants (with insertions in distinct positions) were often obtained. The site of insertion was determined by PCR or sequencing. We have made mutations in known or potential virulence genes, including ureA, hopZ, and vacA, using kanamycin- and kanamycin/lacZ-marked transposons. Colonies carrying a kanamycin/lacZ transposon appeared blue on medium containing the chromogenic agent X-gal, allowing discrimination of mutant and wild-type H. pylori in mixed competition experiments.  相似文献   

9.
Abstract The potential of the antibiotic resistance transposon Tn5 for random insertion mutagenesis in Rhodopseudomonas palustris was assessed. The Tn5 containing suicide vector plasmid pSUP2021, was transferred from Escherichia coli to Rhodopseudomonas palustris and kanamycin-resistant transconjugants arose at a frequency of 2.7×10−7 per recipient. In the majority of transconjugants tested, Tn5 was found to have successfully transposed to yield a single chromosomal insertion, with the concomitant loss of the vector plasmid through segregation. Two Tn5 mutants, one defective in carotenoid synthesis, and one exhibiting a reduced anaerobic growth rate on aromatic acids, were partially characterised. This is the first study to show that Tn5 mutagenesis can be applied successfully to isolate mutants of Rhodopseudomonas palustris .  相似文献   

10.
Francisella tularensis is the etiologic agent of an intracellular systemic infection of the lymphatic system in humans called tularemia. The organism has become the subject of considerable research interest due to its classification as a category A select agent by the CDC. To aid genetic analysis of this pathogen, we have constructed a temperature-sensitive Tn5-based transposon delivery system that is capable of generating chromosomal reporter fusions with lacZ or luxCDABE, enabling us to monitor gene expression. Transposition is catalyzed by the hyperactive Tn5 transposase, whose expression is driven by the Francisella groES promoter. When high-temperature selection (42 degrees C) is applied to a bacterial culture carrying the transposon delivery plasmid, approximately 0.1% of the population is recovered with Tn5 insertions in the chromosome. Nucleotide sequence analysis of a sample of mutants revealed that the insertions occur randomly throughout the chromosome. The kanamycin-selectable marker of the transposon is also flanked by FLP recombination target sequences that allow deletion of the antibiotic resistance gene when desired. This system has been used to generate transposon mutant libraries for the F. tularensis live vaccine strain as well as two different virulent F. tularensis strains. Chromosomal reporters delivered with the transposon were used to identify genes upregulated by growth in Chamberlain's defined medium. Genes in the fsl operon, reported to be involved in iron acquisition, as well as genes in the igl gene cluster were among those identified by the screen. Further experiments implicate the ferric uptake regulator (Fur) protein in the negative regulation of fsl but not igl reporters, which occurs in an iron-dependent manner. Our results indicate that we have created a valuable new transposon that can be used to identify and characterize virulence genes in F. tularensis strains.  相似文献   

11.
The adaptation of Rhodocccus erythropolis SQ1 to energy and carbon starvation was investigated in terms of both the capacity to survive starvation and the contribution of a nutrient-induced stationary phase to cross-protection to other types of environmental stress. It was found that R. erythropolis SQ1 survives for at least 43 days in LB and distilled water, and 65 days in chemically defined medium (CDM) containing high (1%) or low (0.1%) glucose. Furthermore, early stationary-phase R. erythropolis SQ1 grown in CDM 0.1% exhibited enhanced resistance to heat and oxidative stress compared with exponential-phase cells. A second objective of this study was to identify genetic elements involved in starvation/stationary-phase survival. A mutant bank of R. erythropolis SQ1 generated by random transposon insertion mutagenesis was screened; four mutants lost culturability when grown in CDM 1%. No drop in culturability was observed when these mutants were grown in CDM 0.1%. The DNA flanking transposon insertion could be recovered from three mutants. Transposon insertions were found in uvrB (UvrB, part of the DNA excision repair mechanism), between a putative guaB gene and another guaB-like gene, and between a gene encoding a putative phosphoglycerate mutase and putative thioredoxin/cytochrome c biogenesis genes. This represents a first study of the starvation/stationary-phase survival response of Rhodococcus, an organism of immense significance in environmental bioremediation and a number of industrial processes.  相似文献   

12.
With the increase of sequenced fungal genomes, high-throughput methods for functional analyses of genes are needed. We assessed the potential of a new transposon mutagenesis tool deploying a Fusarium oxysporum miniature inverted-repeat transposable element mimp1, mobilized by the transposase of impala, a Tc1-like transposon, to obtain knock-out mutants in Fusarium graminearum. We localized 91 mimp1 insertions which showed good distribution over the entire genome. The main exception was a major hotspot on chromosome 2 where independent insertions occurred at exactly the same nucleotide position. Furthermore insertions in promoter regions were over-represented. Screening 331 mutants for sexual development, radial growth and pathogenicity on wheat resulted in 19 mutants (5.7%) with altered phenotypes. Complementation with the original gene restored the wild-type phenotype in two selected mutants demonstrating the high tagging efficiency. This is the first report of a MITE transposon tagging system as an efficient mutagenesis tool in F. graminearum.  相似文献   

13.
Pathogenic Yersinia species are associated with both localized and systemic infections in mammalian hosts. In this study, signature-tagged transposon mutagenesis was used to identify Yersinia enterocolitica genes required for survival in a mouse model of infection. Approximately 2000 transposon insertion mutants were screened for attenuation. This led to the identification of 55 mutants defective for survival in the animal host, as judged by their ability to compete with the wild-type strain in mixed infections. A total of 28 mutants had transposon insertions in the virulence plasmid, validating the screen. Two of the plasmid mutants with severe virulence defects had insertions in an uncharacterized region. Several of the chromosomal insertions were in a gene cluster involved in O-antigen biosynthesis. Other chromosomal insertions identified genes not previously demonstrated as being required for in vivo survival of Y. enterocolitica. These include genes involved in the synthesis of outer membrane components, stress response and nutrient acquisition. One severely attenuated mutant had an insertion in a homologue of the pspC gene (phage shock protein C) of Escherichia coli. The phage shock protein operon has no known biochemical or physiological function in E. coli, but is apparently essential for the survival of Y. enterocolitica during infection.  相似文献   

14.
Transposon mutagenesis in Proteus mirabilis.   总被引:6,自引:0,他引:6       下载免费PDF全文
R Belas  D Erskine    D Flaherty 《Journal of bacteriology》1991,173(19):6289-6293
A technique of transposon mutagenesis involving the use of Tn5 on a suicide plasmid was developed for Proteus mirabilis. Analysis of the resulting exconjugants indicated that Tn5 transposed in P. mirabilis at a frequency of ca. 4.5 x 10(-6) per recipient cell. The resulting mutants were stable and retained the transposon-encoded antibiotic resistance when incubated for several generations under nonselective conditions. The frequency of auxotrophic mutants in the population, as well as DNA-DNA hybridizaiton to transposon sequences, confirmed that the insertion of the transposon was random and the Proteus chromosome did not contain significant insertional hot spots of transposition. Approximately 35% of the mutants analyzed possessed plasmid-acquired ampicillin resistance, although no extrachromosomal plasmid DNA was found. In these mutants, insertion of the Tn5 element and a part or all of the plasmid had occurred. Application of this technique to the study of swarmer cell differentiation in P. mirabilis is discussed.  相似文献   

15.
Tn5 mutagenesis of different fluorescent pseudomonads was achieved by conjugational transfer of the suicide vector pSUP 10141. Pyoverdine negative (Pvd-) mutants were detected by the absence of fluorescence on King's B medium and by their inability to grow in the presence of the iron chelator EDDHA [ethylenediamine di(o-hydroxyphenylacetic acid)]. In P. fluorescens ATCC 17400 and three rhizosphere isolates (one P. putida and two P. fluorescens), the percentage of Pvd- mutants ranged between 0 and 0.54%. In a P. chlororaphis rhizosphere isolate, this percentage was higher (4%). In these mutants both of the Tn5 antibiotic resistances (Km and Tc) were stable and the transposon could be detected by hybridization. In Pvd- mutants of P. fluorescens ATCC 17400, the transposon was found to be inserted twice in the chromosome while single insertions were detected in the DNA of other, randomly tested mutants. In P. aeruginosa PAO1, where 13.1% of the mutants were Pvd-, both antibiotic resistances were rapidly lost and accordingly no transposon insertion could be detected by hybridization. However, the Pvd- phenotype was generally stable in these mutants. The plasmid pNK862 containing a mini-Tn10 transposon was introduced by electroporation into P. aeruginosa PAO1 and Kmr mutants were recovered, 89% of which were Pvd- and confirmed to be P. aeruginosa by PCR amplification of the P. aeruginosa lipoprotein gene. The mini-Tn10 insertions were also found to be unstable in PAO1.  相似文献   

16.
Moorman NJ  Lin CY  Speck SH 《Journal of virology》2004,78(19):10282-10290
Current methods for determining the role of a given gene product in the gammaherpesvirus 68 (gammaHV68) life cycle require generation of a specific mutation by either homologous recombination in mammalian cells or bacterial artificial chromosome-mediated mutagenesis in Escherichia coli. The mutant virus is then compared to wild-type virus, and the role of the gene in the viral life cycle is deduced from its phenotype. This process is both time-consuming and labor intensive. Here we present the use of random, transposon-mediated signature-tagged mutagenesis for the identification of candidate viral genes involved in virus replication. Pools of viral mutants, each containing a random insertion of a transposon, were generated with a transposon donor library in which each transposon contains a unique sequence identifier. These pools were transfected into mammalian cells, and the ability of each mutant to replicate was assessed by comparing the presence of virus in the output pool to that present in the input pool of viral genomes. With this approach we could rapidly screen up to 96 individual mutants simultaneously. The location of the transposon insertion was determined by sequencing individual clones with a common primer specific for the transposon end. Here we present the characterization of 53 distinct viral mutants that correspond to insertions in 29 open reading frames within the gammaHV68 genome. To confirm the results of the signature-tagged mutagenesis screen, we quantitated the ability of each mutant to replicate compared to wild-type gammaHV68. From these analyses we identified 16 gammaHV68 open reading frames that, when disrupted by transposon insertions, score as essential for virus replication, and six other open reading frames whose disruption led to significant attenuation of virus replication. In addition, transposon insertion in five other gammaHV68 open reading frames did not affect virus replication. Notably, all but one of the candidate essential replication genes identified in this screen have been shown to be essential for the replication of at least one other herpesvirus.  相似文献   

17.
We have physically and genetically characterized 20 symbiotic and 20 auxotrophic mutants of Rhizobium meliloti, the nitrogen-fixing symbiont of alfalfa (Medicago sativa), isolated by transposon Tn5 mutagenesis. A "suicide plasmid" mutagenesis procedure was used to generate TN-5-induced mutants, and both auxotrophic and symbiotic mutants were found at a frequency of 0.3% among strains containing random TN5 insertions. Two classes of symbiotic mutants were isolated: 4 of the 20 formed no nodules at all (Nod-), and 16 formed nodules which failed to fix nitrogen (Fix-). We used a combination of physical and genetic criteria to determine that in most cases the auxotrophic and symbiotic phenotypes could be correlated with the insertion of a single Tn5 elements. Once the Tn5 element was inserted into the R. meliloti genome, the frequency of its transposition to a new site was approximately 10-8 and the frequency of precise excision was less than 10-9. In approximately 25% of the mutant strains, phage Mu DNA sequences, which originated from the suicide plasmid used to generate the Tn5 transpositions, were also found in the R. meliloti genome contiguous with Tn5. These later strains exhibited anomalous conjugation properties, and therefore we could not correlate the symbiotic phenotype with a Tn5 insertion. In general, we found that both physical and genetic tests were required to fully characterize transposon-induced mutations.  相似文献   

18.
The virB gene products of the Agrobacterium tumefaciens tumor-inducing (Ti) plasmid have been proposed to mediate T-DNA transport through the bacterial cell wall into plant cells. Previous genetic analysis of the approximately 9.5-kilobase-pair virB operon has been limited to transposon insertion mutagenesis. Due to the polarity of the transposon insertions, only the last gene in the operon, virB11, is known to provide an essential virulence function. We have now begun to assess the contribution of the other virB genes to virulence. First, several previously isolated Tn3-HoHo1 insertions in the 3' end of the virB operon were precisely mapped by nucleotide sequence analysis. Protein extracts from A. tumefaciens strains harboring these insertions on the Ti plasmid were subjected to immunostaining analysis with VirB4-, VirB10-, and VirB11-specific antisera to determine the effect of the insertion on virB gene expression. In this manner, avirulent mutants containing polar insertions in the virB9 and virB10 genes were identified. To carry out a complementation analysis with these virB mutants, expression vectors were constructed that allow cloned genes to be expressed from the virB promoter in A. tumefaciens. These plasmids were used to express combinations of the virB9, virB10, and virB11 genes in trans in the virB insertion mutants, thereby creating strains lacking only one of these three virB gene products. Virulence assays on Kalanchoe daigremontiana demonstrated that in addition to virB11, the virB9 and virB10 genes are required for tumorigenicity.  相似文献   

19.
Mutants of nitrogen-fixing rhizospheric bacterium Pseudomonas sp. 418, which lacked the competitive ability to colonize roots, were induced by random Tn5 mutagenesis. By means of Southern blot analysis, it was shown that single transposon insertions occurred in eight mutants, whereas in two mutants, the Tn5 insertion occurred twice in different DNA regions. Analysis of these mutants revealed the following disturbances of characters having adaptive significance: weakened attachment to the root surface; a defect in chemotaxis; impaired motility as a result of the loss of flagella or nondisjunction of cells after division; and alterations in the synthesis of exopolysaccharides. The effect of Tn5 insertions was, as a rule, pleiotropic, which suggests the coordinated expression of traits essential for the survival of bacterial cells in the root region.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号