首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using a Ca2+-selective electrode and Quin 2 and chlortetracycline fluorescence, a Ca2+ release from terminal cysterns of skeletal muscle sarcoplasmic reticulum under effects of heparin, caffeine and Ca2+ has been studied. It was shown that Ca2+ release induced by heparin is insensitive to the blockers of Mg2+-dependent system of Ca2+-induced Ca2+ release, i.e., Mg2+, tetracaine and dimethylsulfoxide. Preliminary release of Ca2+ in the presence of caffeine, which activates Mg2+-dependent Ca2+ release, does not prevent the heparin-induced Ca2+ release. At the same time, after Ca2+ release caused by Ca2+ in a Mg2+-independent system, heparin cannot cause additional efflux of Ca2+. It has been shown that the heparin-induced release of Ca2+ diminishes with a decrease in a decrease in Ca2+ concentration. This effect is less pronounced in the presence of Na+ than with K+. The data obtained suggest that sarcoplasmic reticulum terminal cysterns contain two systems of Ca2+-induced release of Ca2+, i.e., a Mg2+-dependent, caffeine-sensitive and a Mg2+-independent heparin-sensitive ones. The mechanism of activation of both systems by caffeine and heparin consists, in all probability, in their increased affinity for Ca2+.  相似文献   

2.
W L Dean  R D Gray 《Biochemistry》1983,22(2):515-519
ATP-induced Ca2+ release from the purified sarcoplasmic reticulum Ca2+-ATPase has been monitored in several different ATPase environments. Arsenazo III was used as a Ca2+ indicator in stopped-flow experiments and was shown to detect the early burst in Ca2+ transport, slower steady-state transport, and release of Ca2+ from fragmented sarcoplasmic reticulum. ATP-induced rapid release of Ca2+ followed by a slower rebinding step could be demonstrated for purified Ca2+-ATPase in leaky vesicles if the reaction was slowed by lowering the pH to 6.1 and by including dimethyl sulfoxide in the reaction medium. At a dodecyl octaoxyethylene glycol monoether (C12E8) to protein weight ratio of 0.2, a detergent concentration too low for solubilization to occur, ATP-induced Ca2+ release occurred more rapidly than for native leaky membranes, whereas the rebinding step was slower. In contrast, no Ca2+ release was observed for any soluble preparation. The kinetics of Ca2+ release was studied under conditions where the ATPase was monomeric or aggregated, and also in the presence of added phospholipid. The ATPase was shown to be monomeric by sedimentation equilibrium measurements in the presence of Ca2+, ADP, and beta, gamma-methylene-ATP at a C12E8 to protein weight ratio of 2.0. It is concluded that solubilization of the Ca2+-ATPase may result in uncoupling of ATP hydrolysis from ATP-induced Ca2+ release.  相似文献   

3.
IP3-induced Ca2+ release from the endoplasmic reticulum (ER) of islets is believed to be a key intracellular event in glucose-induced insulin secretion. Calmodulin was shown to increase ATP-dependent Ca2+ steady-state and inhibit by 57.2% IP3-induced Ca2+ mobilization from the ER. Conversely, the calmodulin antagonist, N-(6-aminohexyl)-5-chloro-1-naphtalene sulfonamide (W-7), induced Ca2+ release from the ER. The combination of W-7 (100 microM) and IP3 (10 microM), resulted in a greater release of Ca2+ from the ER than either W-7 or IP3 alone. W-7 was shown not to affect the structural integrity of the ER. Our results suggest that IP3-induced Ca2+ release from the ER is regulated by a calmodulin-dependent process.  相似文献   

4.
Ca2+ release from mitochondria induced by oxalacetate or t-butyl hydroperoxide is accompanied by loss of endogenous Mg2+ and K+, swelling, loss of membrane potential, and other alterations which indicate that Ca2+ release is a result of increased inner membrane permeability. When ruthenium red is added after Ca2+ uptake, but before the releasing agent, the extent of Ca2+ release is diminished as is the extent of Mg2+ and K+ depletion and the extent of swelling. Under these conditions, the membrane potential appears to remain at a high value. When Ca2+ release is induced by oxalacetate or t-butyl hydroperoxide and ruthenium red is added subsequently, an apparent regeneration of membrane potential is observed providing that the associated swelling and Mg2+ loss had not been completed at the time ruthenium red was added. Under these conditions subsequent swelling and Mg2+ loss are inhibited.l Ultrastructural observations show the mitochondria become permeable in response to Ca2+ plus oxalacetate or Ca2+ plus t-butyl hydroperoxide in a heterogeneous manner. Conditions which appear to separate Ca2+ release from a decline in membrane potential or to produce an apparent recovery of membrane potential following partial collapse are shown to prevent a subpopulation of the mitochondria from becoming permeable. It is shown that membrane potential probes will not indicate a decline in potential or the presence of a permeable fraction under these conditions. It is concluded that the presence of Ca2+ accumulation inhibitors does not separate Ca2+ release from the development of increased inner membrane permeability.  相似文献   

5.
Using a Ca2+-selective electrode and Quin 2 and chlortetracycline fluorescence spectra, a comparative study of caffeine- and Ca2+-induced release of Ca2+ from the terminal cisterns of rabbit fast skeletal muscle sarcoplasmic reticulum was carried out. It was shown that the caffeine-induced release of Ca2+ depends on Ca2+ and Mg2+ concentration in the medium; Mg2+ inhibit, while Ca2+ stimulate this process. The caffeine-induced transport of Ca2+ is blocked by ruthenium red, tetracaine and dimethylsulfoxide. The Ca2+ release induced by Ca2+ was shown to occur in two ways, i. e., via Mg2+-dependent (inhibited by Mg2+ and caffeine blockers) and Mg2+-independent (insensitive to caffeine inhibitors, including Mg2+) routes. It was assumed that caffeine stimulates the Mg2+-dependent, Ca2+-induced release of Ca2+. The sensitivity of Ca2+ transport to caffeine testifies to the fact that about 80% of the total Ca2+ transport activity of fast skeletal muscle homogenates belongs to terminal cisterns. The total amount of sarcoplasmic reticulum membranes in the muscle makes up to 15-20 mg of protein/g of tissue.  相似文献   

6.
A sensitive and specific guanine nucleotide regulatory process has recently been shown to rapidly mediate a substantial release of Ca2+ from endoplasmic reticulum within the N1E-115 neuronal cell line (Gill, D. L., Ueda, T., Chueh, S. H., and Noel, M. W. (1986) Nature 320, 461-464). The relationship between this mechanism and Ca2+ efflux mediated by the intracellular regulator inositol 1,4,5-trisphosphate (IP3) has been investigated. Using saponin-permeabilized N1E-115 cells, studies reveal a number of distinctions between the activation of Ca2+ release mediated by GTP and IP3. Thus, the GTP-mediated Ca2+ release process is specifically activated by polyethylene glycol which increases both GTP sensitivity and the extent of GTP-activated Ca2+ release; in contrast, IP3-dependent Ca2+ release is unaffected by polyethylene glycol. The non-hydrolyzable GTP analogue guanosine 5'-O-(3-thio)triphosphate, which completely inhibits GTP-mediated Ca2+ release, does not alter release mediated by IP3. Decreasing the release temperature from 37 to 4 degrees C decreases IP3-activated Ca2+ release by only 20%, whereas the action of GTP on Ca2+ release is abolished at 4 degrees C. Activation of Ca2+ release by IP3 is completely inhibited by increasing free Ca2+ from 0.1 to 10 microM, whereas the fraction of GTP-dependent Ca2+ release (approximately 50% of ionophore-releasable Ca2+) remains unaltered with increasing free Ca2+. These distinctions between IP3- and GTP-mediated Ca2+ release indicate that the two effectors function via distinct mechanisms to activate Ca2+ release; however, they do not preclude the possibility that coupling between the two mechanisms can occur or that a common Ca2+-translocating pathway activated by both effectors exists.  相似文献   

7.
Using a Ca2+-selective electrode and the chlorotetracycline fluorescence technique, the effects of heparin on Ca2+ transport in the sarcoplasmic reticulum (SR) of skeletal muscles in the absence of oxalate were investigated. It was shown that heparin (0.5-10 micrograms/ml) causes a rapid release of 40-50 nmol Ca2+/mg protein from the terminal cistern SR vesicles bound to 130-150 nmol/mg protein of Ca2+ in the presence of ATP. However, heparin has practically no effect on the longitudinal cistern fraction of SR. The effects of heparin can be prevented by ruthenium red. No influence of heparin is observed in the case of the Ca2+-induced release of Ca2+ from the terminal cisterns. When the Ca2+ release is induced by heparin, no Ca2+-induced release of Ca2+ takes place.  相似文献   

8.
Prostaglandin E2 (PGE2) causes Ca2+ release from intracellular Ca2+ stores and stimulates phosphoinositide metabolism in bovine adrenal medullary cells. These results have been interpreted as PGE2 induces Ca2+ release from inositol trisphosphate (IP3)-sensitive stores. However, we have recently shown that pituitary adenylate cyclase-activating polypeptide (PACAP), bradykinin, and angiotensin II release Ca2+ from caffeine/ryanodine-sensitive stores, although they cause a concomitant increase of intracellular IP3. In light of these results, the mechanism of PGE2-induced Ca2+ release was investigated in the present study. PGE2 dose-dependently caused a transient but consistent Ca2+ release from internal Ca2+ stores. The PGE2-induced Ca2+ release was unaffected by cinnarizine, a blocker of IP3-induced Ca2+ release. By contrast, it was potently inhibited by prior application of caffeine and ryanodine. Although IP3 production in response to PGE2 was abolished by the phospholipase C inhibitor U-73122, Ca2+ release in response to PGE2 was unaffected by U-73122. The PGE2-induced Ca2+ release was unaffected by Rp-adenosine 3',5'-cyclic monophosphothioate, an inhibitor of protein kinase A, and forskolin, a cyclic AMP (cAMP)-elevating agent, did not cause Ca2+ release. The EP1 agonist 17-phenyl-trinorPGE2 and the EP1/EP3 agonist sulprostone mimicked the Ca(2+)-releasing effects of PGE2, whereas the EP2 agonist butaprost or the EP2/EP3 agonist misoprostol caused little or no Ca2+ release. The EP1 antagonist SC-51322 significantly suppressed the Ca2+ release response induced by PGE2, whereas the EP4 antagonist AH-23828B had little effect. These results suggest that PGE2, acting on EP1-like receptors, induces Ca2+ release from ryanodine/caffeine-sensitive stores through a mechanism independent of IP3 and cAMP and that PGE2 may share the same mechanism with PACAP and the other peptide ligands in causing Ca2+ release in bovine adrenal medullary cells.  相似文献   

9.
Reportedly, stimulation of D-2 dopamine receptors inhibits the depolarization-induced release of acetylcholine from the neostriatum in a cyclic AMP-independent manner. In the present study, we investigated the role of K+ and Ca2+ in the D-2 receptor-mediated inhibition of evoked [3H]acetylcholine release from rat striatal tissue slices. It is shown that the D-2 receptor-mediated decrease of K+-evoked [3H]acetylcholine release is not influenced by the extracellular Ca2+ concentration. However, increasing extracellular K+, in the presence and absence of Ca2+, markedly attenuates the effect of D-2 stimulation on the K+-evoked [3H]acetylcholine release. Furthermore, it is shown that activation of D-2 receptors in the absence of Ca2+ also inhibits the veratrine-evoked release of [3H]acetylcholine from rat striatum. These results suggest that the D-2 dopamine receptor mediates the decrease of depolarization-induced [3H]acetylcholine release from rat striatum primarily by stimulation of K+ efflux (opening of K+ channels) and inhibition of intracellular Ca2+ mobilization.  相似文献   

10.
Using the fluorescent probes, Quin 2 and chlortetracycline, a comparative study of the Ca2+ and inositol-1.4.5-triphosphate (IP3)-induced Ca2+ release from rabbit skeletal muscle sarcoplasmic reticulum (SR) terminal cisterns and rat brain microsomal vesicles was carried out. It was shown that Ca2+ release from rat brain microsomal vesicles is induced both by IP3 and Ca2+, whereas that in SR terminal cisterns is induced only by Ca2+. Data from chlorotetracycline fluorescence analysis revealed that CaCl2 (50 microM) causes the release of 15-20% and 40-50% of the total Ca2+ pool accumulated in rat brain microsomal vesicles and rabbit SR terminal cisterns, respectively. Using Quin 2, it was found that IP3 used at the optimal concentration (1.5 mM) caused the release of 0.4-0.6 nmol of Ca2+ per mg microsomal protein, which makes up to 10-15% of the total Ca2+ pool. IP3 does not induce Ca2+ release in SR. Preliminary release of Ca2+ from brain microsomes induced by IP3 diminishes the liberation of this cation induced by Ca2+. It is suggested that brain microsomes contain a Ca2+ pool which is exhausted under the action of the both effectors, Ca2+ and IP3.  相似文献   

11.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most potent activator of Ca2+ release from intracellular stores described. It acts on a mechanism distinct from inositol trisphosphate and ryanodine receptors, the two major Ca2+ release channels characterised. NAADP-gated Ca2+ release channels do not appear to be regulated by Ca2+ and may be better suited for triggering Ca2+ signals rather than propagating them. They exhibit a remarkable pharmacology for a putative intracellular Ca2+ release channel in that they are selectively blocked by potassium and L-type Ca2+ channel antagonists. Furthermore, in contrast to microsomal Ca2+ stores expressing IP3Rs and RyRs, those sensitive to NAADP are thapsigargin-insensitive, suggesting that they may be expressed on a different part of the endoplasmic reticulum. Perhaps the most unusual feature of the NAADP-gated Ca2+ release mechanisms is its inactivation properties. Unlike the mechanisms regulated by IP3 and cADPR in sea urchin eggs which after induction of Ca2+ release appear to become refractory to subsequent activation, very low concentrations of NAADP are able to inactivate NAADP-induced Ca2+ release fully at concentrations well below those required to activate Ca2+ release. The mechanism and physiological significance of this most unusual desensitisation phenomenon are unclear. More recently, NAADP has been shown to mobilise Ca2+ in ascidian oocytes, brain microsomes and pancreatic acinar cells suggesting a more widespread role in Ca2+ signalling. A possible role for this novel Ca2+ release mechanism in sea urchin egg fertilisation is discussed.  相似文献   

12.
Ruthenium red and/or EGTA prevent cyclic uptake and release of Ca2+ in mitochondria. These compounds inhibit but do not prevent the swelling of liver mitochondria induced by Ca2+ plus t-butyl hydroperoxide or Ca2+ plus N-ethylmaleimide. Ruthenium red and/or EGTA have complex effects on the release rate of Ca2+ and other cations induced by t-butyl hydroperoxide or N-ethylmaleimide. To determine the relationship between permeability changes and Ca2+ release in the absence of Ca2+ cycling, a novel method of data collection and analysis is developed which allows the relative time courses of Ca2+ release and Mg2+ release or swelling to be accurately and quantitatively compared. This method eliminates errors in time course comparisons which arise from the aging of mitochondrial preparations and allows data from different preparations to be directly contrasted. Using the method, it is shown that permeability changes caused by Ca2+-releasing agents are not secondary effects arising from Ca2+ cycling between uptake and release carriers. In the absence of Ca2+-cycling inhibitors, Ca2+ release induced by t-butyl hydroperoxide or N-ethylmaleimide is, in part, carrier-mediated. In the presence of EGTA and ruthenium red, Ca2+ release induced by either agent is mediated solely by the permeability pathway. No differences are apparent in the solute selectivity of the inner membrane permeability defect induced by Ca2+ plus t-butyl hydroperoxide or Ca2+ plus N-ethylmaleimide. A novel type of Ca2+ release from energized liver mitochondria is reported. This release is induced by EGTA, occurs in the absence of other releasing agents or nonspecific permeability changes, and is rapid (greater than or equal to 50 nmol/min/mg protein).  相似文献   

13.
Heavy metal ions have been shown to induce Ca2+ release from skeletal sarcoplasmic reticulum (SR) by binding to free sulfhydryl groups on a Ca2+ channel protein and are now examined in cardiac SR. Ag+ and Hg2+ (at 10-25 microM) induced Ca2+ release from isolated canine cardiac SR vesicles whereas Ni2+, Cd2+, and Cu2+ had no effect at up to 200 microM. Ag(+)-induced Ca2+ release was measured in the presence of modulators of SR Ca2+ release was compared to Ca2(+)-induced Ca2+ release and was found to have the following characteristics. (i) Ag(+)-induced Ca2+ release was dependent on free [Mg2+], such that rates of efflux from actively loaded SR vesicles increased by 40% in 0.2 to 1.0 mM Mg2+ and decreased by 50% from 1.0 to 10.0 mM Mg2+. (ii) Ruthenium red (2-20 microM) and tetracaine (0.2-1.0 mM), known inhibitors of SR Ca2+ release, inhibited Ag(+)-induced Ca2+ release. (iii) Adenine nucleotides such as cAMP (0.25-2.0 mM) enhanced Ca2(+)-induced Ca2+ release, and stimulated Ag(+)-induced Ca2+ release. (iv) Low Ag+ to SR protein ratios (5-50 nmol Ag+/mg protein) stimulated Ca2(+)-dependent ATPase activity in Triton X-100-uncoupled SR vesicles. (v) At higher ratios of Ag+ to SR proteins (50-250 nmol Ag+/mg protein), the rate of Ca2+ efflux declined and Ca2(+)-dependent ATPase activity decreased gradually, up to a maximum of 50% inhibition. (vi) Ag+ stimulated Ca2+ efflux from passively loaded SR vesicles (i.e., in the absence of ATP and functional Ca2+ pumps), indicating a site of action distinct from the SR Ca2+ pump. Thus, at low Ag+ to SR protein ratios, Ag+ is very selective for the Ca2+ release channel. At higher ratios, this selectivity declines as Ag+ also inhibits the activity of Ca2+,Mg2(+)-ATPase pumps. Ag+ most likely binds to one or more sulfhydryl sites "on" or "adjacent" to the physiological Ca2+ release channel in cardiac SR to induce Ca2+ release.  相似文献   

14.
Light stimulation of invertebrate microvillar photoreceptors causes a large rapid elevation in Cai, shown previously to modulate the adaptational state of the cells. Cai rises, at least in part, as a result of Ins(1,4,5)P3-induced Ca2+ release from the submicrovillar endoplasmic reticulum (ER). Here, we provide evidence for Ca(2+)- induced Ca2+ release (CICR) in an insect photoreceptor. In situ microphotometric measurements of Ca2+ fluxes across the ER membrane in permeabilized slices of drone bee retina show that (a) caffeine induces Ca2+ release from the ER; (b) caffeine and Ins(1,4,5)P3 open distinct Ca2+ release pathways because only caffeine-induced Ca2+ release is ryanodine sensitive and heparin insensitive, and because caffeine and Ins(1,4,5)P3 have additive effects on the rate of Ca2+ release; (c) Ca2+ itself stimulates release of Ca2+ via a ryanodine-sensitive pathway; and (d) cADPR is ineffective in releasing Ca2+. Microfluorometric intracellular Ca2+ measurements with fluo-3 indicate that caffeine induces a persistent elevation in Cai. Electrophysiological recordings demonstrate that caffeine mimics all aspects of Ca(2+)-mediated facilitation and adaptation in drone photoreceptors. We conclude that the ER in drone photoreceptors contains, in addition to the Ins(1,4,5)P3-sensitive release pathway, a CICR pathway that meets key pharmacological criteria for a ryanodine receptor. Coexpression of both release mechanisms could be required for the production of rapid light-induced Ca2+ elevations, because Ca2+ amplifies its own release through both pathways by a positive feedback. CICR may also mediate the spatial spread of Ca2+ release from the submicrovillar ER toward more remote ER subregions, thereby activating Ca(2+)-sensitive cell processes that are not directly involved in phototransduction.  相似文献   

15.
Inositol triphosphate-induced Ca2+ release from human platelet membranes   总被引:3,自引:0,他引:3  
Inositol (1,4,5) triphosphate (IP3) was observed to induce release of sequestered Ca2+ from crude human platelet membranes. This activity was also shown to be present in purified membranes enriched in Ca2+-ATPase activity. Maximal Ca2+ release occurred at 8 microM IP3 and half maximal activity was at 0.4 microM. Release was quite rapid and was complete by 40 s. Released Ca2+ was pumped back into the membrane vesicles and the rate of this reuptake was increased by the presence of phosphate. These results demonstrate that internal platelet membranes that possess an active Ca2+-pump will release sequestered Ca2+ in the presence of the second messenger IP3. IP3 did not induce release of Ca2+ from skeletal muscle sarcoplasmic reticulum when ATP was present.  相似文献   

16.
L-type voltage-gated Ca2+ channels (Cav1.2) mediate a major part of insulin secretion from pancreatic beta-cells. Cav1.2, like other voltage-gated Ca2+ channels, is functionally and physically coupled to synaptic proteins. The tight temporal coupling between channel activation and secretion leads to the prediction that rearrangements within the channel can be directly transmitted to the synaptic proteins, subsequently triggering release. La3+, which binds to the polyglutamate motif (EEEE) comprising the selectivity filter, is excluded from entry into the cells and has been previously shown to support depolarization-evoked catecholamine release from chromaffin and PC12 cells. Hence, voltage-dependent trigger of release relies on Ca2+ ions bound at the EEEE motif and not on cytosolic Ca2+ elevation. We show that glucose-induced insulin release in rat pancreatic islets and ATP release in INS-1E cells are supported by La3+ in nominally Ca2+-free solution. The release is inhibited by nifedipine. Fura 2 imaging of dispersed islet cells exposed to high glucose and La3+ in Ca2+-free solution detected no change in fluorescence; thus, La3+ is excluded from entry, and Ca2+ is not significantly released from intracellular stores. La3+ by interacting extracellularlly with the EEEE motif is sufficient to support glucose-induced insulin secretion. Voltage-driven conformational changes that engage the ion/EEEE interface are relayed to the exocytotic machinery prior to ion influx, allowing for a fast and tightly regulated process of release. These results confirm that the Ca2+ channel is a constituent of the exocytotic complex [Wiser et al. (1999) PNAS 96, 248-253] and the putative Ca2+-sensor protein of release.  相似文献   

17.
In this report we describe the application of spectroscopic methods to the study of Ca2+ release by isolated native sarcoplasmic reticulum (SR) membranes from rabbit skeletal muscle. To date, dual-wavelength spectroscopy of arsenazo III and antipyrylazo III difference absorbance have been the most common spectroscopic methods for the assay of SR Ca2+ transport. The utility of these methods is the ability to manipulate intraluminal Ca2+ loading of SR vesicles. These methods have also been useful for studying the effect of both agonists and antagonists upon SR Ca2+ release and Ca2+ uptake. In this study, we have developed the application of Calcium Green-2, a long-wavelength excitable fluorescent indicator, for the study of SR Ca2+ uptake and release. With this method we demonstrate how ryanodine receptor Ca2+ channel opening and closing is regulated in a complex manner by the relative distribution of Ca2+ between extraluminal and intraluminal Ca2+ compartments. Intraluminal Ca2+ is shown to be a key regulator of Ca2+ channel opening. However, these methods also reveal that the intraluminal Ca2+ threshold for Ca2+-induced Ca2+ release varies as a function of extraluminal Ca2+ concentration. The ability to study how the relative distribution of a finite pool of Ca2+ across the SR membrane influences Ca2+ uptake and Ca2+ release may be useful for understanding how the ryanodine receptor is regulated, in vivo.  相似文献   

18.
Inositol trisphosphate (IP3) was previously shown to release Ca2+ from a nonmitochondrial store in sea urchin eggs. In this study, egg homogenates and purified microsomes were monitored with either fura 2 or Ca2+-sensitive minielectrodes to determine whether other stimuli would induce Ca2+ release. Pyridine nucleotides (whose concentrations are known to change at fertilization) were found to release nearly as much Ca2+ as did IP3. Average releases/ml of homogenate were: 0.6 microM IP3, 10.9 nmol of Ca2+; 50 microM NADP, 7.3 nmol of Ca2+; and 100 microM NAD, 6.5 nmol of Ca2+ (n = 6). Specificity was demonstrated by screening a series of other phosphorylated metabolites, and none was found to reproducibly release Ca2+. Calcium release induced by IP3 or NADP was immediate, whereas a lag of 1-4 min occurred with NAD. This lag before NAD-induced Ca2+ release led to the discovery that a soluble egg factor (Mr greater than 100,000) converts NAD into a highly active metabolite that releases Ca2+ without a lag. The NAD metabolite (E-NAD) was purified to homogeneity by high pressure liquid chromatography and produced half-maximal Ca2+ release at about 40 nM. Injection of E-NAD into intact eggs produced both an increase in intracellular Ca2+ (as assayed with indo-1) and a cortical reaction. Following Ca2+ release by each of the active agents (IP3, NAD, and NADP), the homogenates resequestered the released Ca2+ but were desensitized to further addition of the same agent. A series of desensitization experiments showed that homogenates desensitized to any two of these agents still responded to the third, indicating the presence of three independent Ca2+ release mechanisms. This is further supported by experiments using Percoll density gradient centrifugation in which NADP-sensitive microsomes were partially separated from those sensitive to IP3 and NAD.  相似文献   

19.
The effect of bradykinin on intracellular free Ca2+ and neurotransmitter secretion was investigated in the rat pheochromocytoma cell line PC12. Bradykinin was shown to induce a rapid, but transient, increase in intracellular free Ca2+ which could be separated into an intracellular Ca2+ release component and an extracellular Ca2+ influx component. The bradykinin-induced stimulation of intracellular free Ca2+ displayed a similar time course, concentration dependencies and extracellular Ca2+ dependence as that found for neurotransmitter release, indicating an association between intracellular free Ca2+ levels and neurotransmitter secretion. The selective BK1-receptor antagonist des-Arg9,[Leu8]BK (where BK is bradykinin) did not significantly affect the stimulation of intracellular free Ca2+ or neurotransmitter release. In contrast, these effects of bradykinin were effectively blocked by the selective BK2-receptor antagonist [Thi5,8,D-Phe7]BK, and mimicked by the BK2 partial agonist [D-Phe7]BK in a concentration-dependent manner. The stimulation of intracellular free Ca2+ and neurotransmitter release induced by bradykinin was shown not to involve voltage-sensitive Ca2+ channels, since calcium antagonists had no effect on either response at concentrations which effectively inhibit depolarization-induced responses. These results indicate that bradykinin, acting through the interaction with the BK2 receptor, stimulates an increase in intracellular free Ca2+ leading to neurotransmitter secretion. Furthermore, bradykinin-induced responses involve the release of intracellular Ca2+ and the influx of extracellular Ca2+ that is not associated with the activation of voltage-sensitive Ca2+ channels.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号