首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Methylglyoxal (MG) is one of the aldehydes accumulated in plants under environmental stress. Cytosolic ascorbate peroxidase (cAPX) plays a key role in the protection of cells from oxidative damage by scavenging reactive oxygen species in higher plants. A cDNA encoding cAPX, named NtcAPX, was isolated from Nicotiana tabacum. We characterized recombinant NtcAPX (rNtcAPX) as a fusion protein with glutathione S‐transferase to investigate the effects of MG on APX. NtcAPX consists of 250 amino acids and has a deduced molecular mass of 27.5 kDa. The rNtcAPX showed a higher APX activity. MG treatments resulted in a reduction of APX activity and modifications of amino groups in rNtcAPX with increasing Km for ascorbate. On the contrary, neither NaCl nor cadmium reduced the activity of APX. The present study suggests that inhibition of APX is in part due to the modification of amino acids by MG. © 2012 Wiley Periodicals, Inc. J Biochem Mol Toxicol 26:315–321, 2012; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21423  相似文献   

2.
A Lactobacillus delbrueckii subsp. bulgaricus HP1 strain with high exopolysaccharide activity was selected from among 40 strains of lactic acid bacteria, isolated from kefir grains. By associating the Lactobacillus delbrueckii subsp. bulgaricus HP1 strain with Streptococcus thermophilus T15, Lactococcus lactis subsp. lactis C15, Lactobacillus helveticus MP12, and Sacharomyces cerevisiae A13, a kefir starter was formed. The associated cultivation of the lactobacteria and yeast had a positive effect on the exopolysaccharide activity of Lactobacillus delbrueckii subsp. bulgaricus HP1. The maximum exopolysaccharide concentration of the starter culture exceeded the one by the Lactobacillus delbrueckii subsp. bulgaricus HP1 monoculture by approximately 1.7 times, and the time needed to reach the maximum concentration (824.3 mg exopolysacharides/l) was shortened by 6 h. The monomer composition of the exopolysaccharides from the kefir starter culture was represented by glucose and galactose in a 1.0:0.94 ratio, which proves that the polymer synthesized is kefiran.  相似文献   

3.
Summary Somatic hybrids were produced between Nicotiana tabacum and N. nesophila, two species incapable of conventional sexual hybridization. Sexual hybrids, though, could be produced between these two species by using ovule culture only when N. nesophila was female. Clones of somatic hybrids were compared with sexual hybrids. Statistically significant variation was observed between clones, but not between sexual hybrids, for pollen viability, flower morphology, leaf morphology, and trichome density. As all clones of somatic hybrids have 96 chromosomes, the variability could not be explained by interclonal variation in chromosome number. Variation between somatic hybrids could be the result of cytoplasmic segregation or recombination, mitotic recombination or small chromosomal rearrangements prior to plant regeneration. Variation between clones could be exploited as these interspecies hybrids are now being used to incorporate disease resistance into cultivated tobacco.  相似文献   

4.
5.
beta-Thujaplicin (hinokitiol) is a tropolone derivative present in the heartwood of cupressaceous plants and is used as a medicine, a food additive, and a preservative, and in cosmetics as hair tonic. The cultured plant cells of Nicotiana tabacum glycosylated beta-thujaplicin to two glucosides, 4-isopropyltropolone 2-O-beta-D-glucoside (6%) and 6-isopropyltropolone 2-O-beta-D-glucoside (12%), and two gentiobiosides, 4-isopropyltropolone 2-O-beta-D-gentiobioside (2%) and 6-isopropyltropolone 2-O-beta-D-gentiobioside (5%) after 48 h incubation. The use of immobilized cells of N. tabacum in sodium alginate gel much improved the yield of the products; the glycosylation of beta-thujaplicin with immobilized N. tabacum gave the glycoside products, 4-isopropyltropolone 2-O-beta-D-glucoside (11%), 4-isopropyltropolone 2-O-beta-D-gentiobioside (6%), 6-isopropyltropolone 2-O-beta-D-glucoside (20%), and 6-isopropyltropolone 2-O-beta-D-gentiobioside (10%). On the other hand, 4-isopropyltropolone 2-O-beta-D-glucoside (14%), 4-isopropyltropolone 2-O-beta-D-gentiobioside (7%), 6-isopropyltropolone 2-O-beta-D-glucoside (33%), and 6-isopropyltropolone 2-O-beta-D-gentiobioside (13%) were obtained through the biotransformation with immobilized cells in the medium without iron ions. In comparison with the case of bioconversion in the normal medium containing iron ions, removal of iron ions improved the yields of products.  相似文献   

6.
Hilbi H 《Cellular microbiology》2006,8(11):1697-1706
Phosphoinositide metabolism plays a pivotal role in the regulation of receptor-mediated signal transduction, actin remodelling and membrane dynamics. Phosphoinositides co-ordinate these processes by recruiting protein effectors to distinct cellular membranes in a time- and organelle-dependent manner. Intracellular bacterial pathogens interfere with phosphoinositide metabolism to direct their entry into eukaryotic cells, form replication-permissive vacuoles, modulate apoptosis, or trigger fluid secretion. Gram-negative pathogens such as Legionella pneumophila, Shigella flexneri, or Salmonella enterica employ secretion systems to invade host cells by 'pathogen-triggered phagocytosis' and thereby bypass a requirement for phosphatidylinositol 3-kinases [PI(3)Ks]. Contrarily, 'receptor-mediated phagocytosis' of Yersinia spp., Listeria monocytogenes and other pathogenic bacteria depends on PI(3)Ks. Secreted effector proteins have been found to directly bind to and modify host cell phosphoinositides, thus modulating phagocytosis and intracellular survival of the pathogens. These effectors include L. pneumophila proteins that specifically attach to phosphatidylinositol 4-phosphate [PI(4)P] on the Legionella-containing vacuole, and phosphoinositide phosphatases produced by S. flexneri, S. enterica or Mycobacterium tuberculosis. This review covers current knowledge about subversion of host cell phosphoinositide metabolism by intracellular bacterial pathogens with an emphasis on recently identified secreted effector proteins directly engaging phosphoinositides.  相似文献   

7.
Summary Tobacco plants (Nicotiana tabacum L.) of four varieties (Badischer Burley, White Burley, Techne, Kupchunos) were raised at different temperatures and daylengths and the effect of genotype on embryogenic pollen grain formation in situ and on pollen plant formation in anther and pollen cultures from these plants was studied. Genotype controlled embryogenic pollen grain and pollen plant formation by defining productivity under standard growth conditions (long days at 24 °C). Kupchunos was the most productive variety, followed by White Burley, Techne, and Badischer Burley. Furthermore, genotype defined which environmental factor was able to affect embryogenic pollen grain and pollen plant formation and also to which degree. In anther cultures, in addition to these effects, genotype controlled the formation of (an) inhibitory substance(s) in the anther wall in interaction with the plant growth conditions. In Badischer Burley and Techne, inhibitor action could be prevented by isolation of the pollen after one week of anther culture. Finally, direct pollen cultures in Badischer Burley and Techne produced embryos were only when the pollen was isolated from nearly mature anthers, while in White Burley and Kupchunos, embryos also produced at earlier stages and at higher yields. This indicated that genotype controls the time when the embryogenic pollen grains become ready to divide. The results are discussed in relation to strategies to overcome recalcitrance of species and genotypes.  相似文献   

8.
Bacteriocins from plant pathogenic bacteria   总被引:1,自引:0,他引:1  
Many bacteria produce antimicrobial substances such as nonribosomally synthesized antibiotics and ribosomally synthesized proteinaceous compounds referred to as bacteriocins. Secretion of antimicrobials is generally thought to contribute to the competitiveness of the producing organism, but there are indications that these compounds in some cases may have regulatory roles too. Bacteriocins most often act on closely related species only and are thus of interest for application as targeted narrow-spectrum antimicrobials with few side effects. Although the application of bacteriocins in plant disease control is an attractive option, very little is known about the occurrence and roles of these compounds in plant pathogenic bacteria and their natural competitors occurring in the same biotopes. This study presents an overview of current knowledge of bacteriocins from plant pathogenic bacteria.  相似文献   

9.
10.
Plant cells of tobacco (Nicotiana tabacum L.) were grown for several generations in suspension cultures. Cells were immobilized in continuous bioreactors in calcium alginate (Ca Alg) beads or in poly-L-lysine (PLL) encapsulated calcium alginatehydrogels. In each case, the cells were fed continuously a modified Linsmaier-Skoog plant cell culture medium. The bioreactor effluent was analyzed for total phenolic compounds. The net specific productivity of phenolics was calculated on a daily basis for several test runs. For comparison, productivity in suspension cultures was monitored. Productivity of suspended cells declined to zero within 9 d; both immobilized and encapsulated cells remained productive for 16 d following inoculation. Specific productivity by encapsulated cells was higher than that by immobilized cells; in both types similar rates of decline in productivity occurred.  相似文献   

11.
Nonstructural carbohydrate status and activities of ADP-glucose pyrophosphorylase (EC 2.7.7.27, ADPG pyrophosphorylase) and sucrose phosphate synthase (EC 2.4.1.14, SPS) were determined during ageing of tobacco ( Nicotiana tabacum L., cvs KY 14 and Speight G28) leaves sampled from control plants and from plants that had the apical meristem and subsequent axillary growth removed (detopped plants). Over the 30-day period shoot growth increased much more for control compared to detopped plants, but the increase in root growth was similar for both treatments. Dry matter and leaf area of the individual leaf used for enzyme and metabolite analysis were constant over time for controls but increased 5-fold for detopped plants. Ageing of control leaves was indicated by a progressive loss of chlorophyll and ribulose 1, 5-bisphosphate carboxylase (EC 4.1.1.39, Rubisco) activity; loss of these components was diminished for detopped plants. In contrast to chlorophyll and Rubisco activity, activities of ADPG pyrophosphorylase and SPS remained relatively constant over time for controls. Thus, under normal ageing conditions, changes in activities of ADPG pyrophosphorylase and SPS were not closely associated with changes in the standard senescence indicators chlorophyll and Rubisco activity. The activities of ADPG pyrophosphorylase and SPS were enhanced, relative to controls, within 6 days after applying the detopping treatment and activities remained high for the duration of the 30-day period. Detopping also led to increased concentrations of starch and sucrose, but the increases were not well correlated with changes in enzyme activities. The data indicated that the leaves of detopped plants functioned as both source leaves, with enhanced ability to synthesize carbohydrate, and sink leaves, with enhanced growth. Therefore, activities of ADPG pyrophosphorylase and SPS were more responsive to changes within an individual leaf than to changes in whole plant growth.  相似文献   

12.
13.
We have examined the structure and chromatin organization of telomeres in Nicotiana tabacum. In tobacco the blocks of simple telomeric repeats (TTTAGGG)n are many times larger than in other plants, e.g., Arabidopsis thatiana or tomato. They are resolved as multiple fragments 60–160 kb in size (in most cases 90–130 kb) on pulsed-field gel electrophoresis (PFGE) of restriction endonuclease-digested DNA. The major subtelomeric repeat of the HRS60 family forms large homogeneous blocks of a basic 180 by motif having comparable lengths. Micrococcal nuclease (MNase) cleaves tobacco telomeric chromatin into subunits with a short repeat length of 157±5 bp; the subtelomeric heterochromatin characterized by tandemly repeated sequences of the HRS60 family is cut by MNase with a 180 by periodicity. The monomeric and dimeric particles of telomeric and subtelomeric chromatin differ in sensitivity to MNase treatment: the telomeric particles are readily digested, producing ladders with a periodicity of 7 bp, while the subtelomeric particles appear to be rather resistant to intranucleosomal cleavage. The results presented show apparent similarities in the organization of telomeric chromatin in higher plants and mammals.  相似文献   

14.
The accumulation and metabolism of exogenously applied and endogenously produced auxins and cytokinins were studied in relation to organogenesis in thin cell layers of Nicotiana tabacum L. It was shown that, in order to obtain maximal flower bud formation, both exogenous auxin and cytokinin needed to be present during the first 4 days of culture (to the formation of a subepidermal meristematic zone) whereas cytokinins needed to be present for at least 4 days more (until formation of organogenic centres). Explants taken from floral branches have higher endogenous indole-3-acetic acid (IAA) levels compared with explants from the basal part of the stem which form only vegetative buds. This might be related to a different IAA metabolism in these two types of explants as was shown by the different accumulation of exogenously applied IAA. Both 'floral' and 'vegetative' cells layers contained comparable amounts of zeatin riboside (ZR) as their major cytokinin. Free bases, zeatin (Z) and dihydrozeatin [(diH)Z], given exogenously, were largely metabolised to their respective ribosides. The observation that Z was less effective than (diH)Z in the induction of flower buds could be related to (diH)ZR apparently not being a substrate for cytokinin oxidase.  相似文献   

15.
16.
Top 10 plant pathogenic bacteria in molecular plant pathology   总被引:7,自引:0,他引:7  
Many plant bacteriologists, if not all, feel that their particular microbe should appear in any list of the most important bacterial plant pathogens. However, to our knowledge, no such list exists. The aim of this review was to survey all bacterial pathologists with an association with the journal Molecular Plant Pathology and ask them to nominate the bacterial pathogens they would place in a 'Top 10' based on scientific/economic importance. The survey generated 458 votes from the international community, and allowed the construction of a Top 10 bacterial plant pathogen list. The list includes, in rank order: (1) Pseudomonas syringae pathovars; (2) Ralstonia solanacearum; (3) Agrobacterium tumefaciens; (4) Xanthomonas oryzae pv. oryzae; (5) Xanthomonas campestris pathovars; (6) Xanthomonas axonopodis pathovars; (7) Erwinia amylovora; (8) Xylella fastidiosa; (9) Dickeya (dadantii and solani); (10) Pectobacterium carotovorum (and Pectobacterium atrosepticum). Bacteria garnering honourable mentions for just missing out on the Top 10 include Clavibacter michiganensis (michiganensis and sepedonicus), Pseudomonas savastanoi and Candidatus Liberibacter asiaticus. This review article presents a short section on each bacterium in the Top 10 list and its importance, with the intention of initiating discussion and debate amongst the plant bacteriology community, as well as laying down a benchmark. It will be interesting to see, in future years, how perceptions change and which bacterial pathogens enter and leave the Top 10.  相似文献   

17.
Using a conventional sexual crossing technique, Nicotiana tabacum x N. acuminata was not produced. After the fertilized ovules were cultured for 20 days in a liquid Nitsch H medium, germination was observed. The roots grew rapidly but leaves did not. However, plantlets were produced in an H medium containing Benzyladenine or Kinetin (0.01–0.1 mg/l). The plantlets grew and flowered in a greenhouse. The chromosome number of the hybrid was 36 and its morphological characteristics were intermediate between those of parental species.Abbreviations BA Benzyl adenine - K Kinetin  相似文献   

18.
Summary Methionine, up to 10–3 M, added to a basal medium enhanced bacterial ethylene production in 14 of the 20 bacteria tested. The effects of substrate, cofactors, light, and temperature on ethylene production byPseudomonas solanacearum #25 revealed that the greatest effect occurred when 10–5 M methionine and 10–4 M FMN were combined, from which 4.10l/l of ethylene were produced. Higher levels of methionine resulted in production of high levels of non-enzymically produced ethylene and death of the bacteria. This non-enzymic production of ethylene was eliminated in the dark. Copper had no effect upon ethylene production. Twenty-nine and 35°C were inhibitory, whereas 19°C appeared to be near optimum for ethylene production.Pseudomonas solanacaerum #25 and some other bacteria are capable of ethylene production and methionine and FMN enhance this production.This work was supported by the Fred C. Gloeckner Foundation and the University of Minnesota Graduate School Grant in Aid #496-0307-4909-02.  相似文献   

19.
Volatile organic compounds (VOCs) released by soil microorganisms influence plant growth and pathogen resistance. Yet, very little is known about their influence on herbivores and higher trophic levels. We studied the origin and role of a major bacterial VOC, 2,3‐butanediol (2,3‐BD), on plant growth, pathogen and herbivore resistance, and the attraction of natural enemies in maize. One of the major contributors to 2,3‐BD in the headspace of soil‐grown maize seedlings was identified as Enterobacter aerogenes, an endophytic bacterium that colonizes the plants. The production of 2,3‐BD by E. aerogenes rendered maize plants more resistant against the Northern corn leaf blight fungus Setosphaeria turcica. On the contrary, E. aerogenes‐inoculated plants were less resistant against the caterpillar Spodoptera littoralis. The effect of 2,3‐BD on the attraction of the parasitoid Cotesia marginiventris was more variable: 2,3‐BD application to the headspace of the plants had no effect on the parasitoids, but application to the soil increased parasitoid attraction. Furthermore, inoculation of seeds with E. aerogenes decreased plant attractiveness, whereas inoculation of soil with a total extract of soil microbes increased parasitoid attraction, suggesting that the effect of 2,3‐BD on the parasitoid is indirect and depends on the composition of the microbial community.  相似文献   

20.
Binyamin L  Falah M  Portnoy V  Soudry E  Gepstein S 《Planta》2001,212(4):591-597
To better understand the genetic controls of leaf senescence, a tobacco (Nicotiana tabacum L. cv. SR1) mRNA that is up-regulated during senescence was isolated by the cDNA-amplified restriction fragment polymorphism method and the cDNA was cloned. The mRNA coded for the early light-induced protein (ELIP), a member of the chlorophyll a/b-binding protein family that has been implicated in assembly or repair of the photosynthetic machinery during early chloroplast development and abiotic stress. A protein antigenically recognized by antibodies to ELIP appeared during senescence with kinetics similar to those of its mRNA. The mRNA, designated ELIP-TOB, was detected earlier when senescence was enhanced by leaf detachment and treatment with 1-amino-cyclopropane-1-carboxylic acid, and was detected later when senescence was retarded by benzyladenine. However, no ELIP-TOB mRNA was seen in the dark even though senescence was accelerated under these conditions. Furthermore, water stress and anaerobiosis stimulated the appearance of ELIP-TOB mRNA before losses of chlorophyll could be detected. We discuss the conditions that may lead to the up-regulation of ELIP-TOB during senescence and speculate as to the role of the gene product in this terminal phase of leaf development. Received: 18 May 2000 / Accepted: 24 June 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号