首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The expression of the Adh1 gene (alcohol dehydrogenase, EC 1.1.1.1) was studied in the aleurone layer of barley ( Hordeum vulgare cv. Himalaya). Expression increased markedly during grain development at the levels of activity, enzyme protein and mRNA. mRNA content, but not enzyme activity, could be increased further by exogenous abscisic acid (ABA) when isolated, de-embryonated developing grains were pre-treated with gibberellic acid (GA3) or fluridone. In isolated mature aleurone layers incubated with exogenous hormones, ADH mRNA was strongly up-regulated by ABA and down-regulated by GA3 within 6 h. With ABA, this increase in mRNA was followed by an increase in ADH protein and activity, peaking at 18 h. With GA3, the decrease in mRNA was accompanied by simultaneous decreases in protein and activity. In general, GA3 counteracted the effect of ABA and vice versa. In the aleurone of germinating grain, ADH activity decayed in a distal direction from the embryo, consistent with down-regulation by gibberellin(s) diffusing from it. It was concluded that ADH gene expression in the aleurone of the intact grain is regulated by an ABA/gibberellin interaction.  相似文献   

2.
Three genes specify alcohol dehydrogenase (EC 1.1.1.1.; ADH) enzymes in barley (Hordeum vulgare L.) (Adh 1, Adh 2, and Adh 3). Their polypeptide products (ADH 1, ADH 2, ADH 3) dimerize to give a total of six ADH isozymes which can be resolved by native gel electrophoresis and stained for enzyme activity.

Under fully aerobic conditions, aleurone layers of cv Himalaya had a high titer of a single isozyme, the homodimer containing ADH 1 monomers. This isozyme was accumulated by the aleurone tissue during the later part of seed development, and survived seed drying and rehydration. The five other possible ADH isozymes were induced by O2 deficit. The staining of these five isozymes on electrophoretic gels increased progressively in intensity as O2 levels were reduced below 5%, and were most intense at 0% O2.

In vivo35S labeling and specific immunoprecipitation of ADH peptides, followed by isoelectric focusing of the ADH peptides in the presence of 8 molar urea (urea-IEF) demonstrated the following. (a) Aleurone layers incubated in air synthesized ADH 1 and a trace of ADH 2; immature layers from developing seeds behaved similarly. (b) At 5% O2, synthesis of ADH 2 increased and ADH 3 appeared. (c) At 2% and 0% O2, the synthesis of all three ADH peptides increased markedly.

Cell-free translation of RNA isolated from aleurone layers, followed by immunoprecipitation and urea-IEF of in vitro synthesized ADH peptides, showed that levels of mRNA for all three ADH peptides rose sharply during 1 day of O2 deprivation. Northern hybridizations with a maize Adh 2 cDNA clone established that the clone hybridized with barley mRNA comparable in size to maize Adh 2 mRNA, and that the level of this barley mRNA increased 15- to 20-fold after 1 day at 5% or 2% O2, and about 100-fold after 1 day at 0% O2.

We conclude that in aleurone layers, expression of the three barley Adh genes is maximal in the absence of O2, that regulation of mRNA level is likely to be a major controlling factor, and that whereas the ADH system of barley has strong similarities to that of maize, it also has some distinctive features.

  相似文献   

3.
4.
The pathway of malate synthesis in the developing aleurone layer of barley ( Hordeum vulgare L. cv. Himalaya) was investigated. Malate formation did not occur under anoxia. Labelling with [2‐14C]acetate showed that the glyoxylate pathway was not a significant source of malate. The partitioning of glycolytic carbon flux at the branchpoint between phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) and pyruvate kinase (PK, EC 2.7.1.40) was studied using [U‐14C]glucose. It was concluded that in aleurone from maturing, rapidly acidifying grains the flux through the PEPC branch relative to that through PK is 3‐5 times greater than in young aleurone. This increase in flux can be accounted for by a 5‐fold increase in PEPC protein determined by western blotting and in PEPC activity measured in vitro.  相似文献   

5.
The barley (Hordeum vulgare) gene HvALMT1 encodes an anion channel in guard cells and in certain root tissues indicating that it may perform multiple roles. The protein localizes to the plasma membrane and facilitates malate efflux from cells when constitutively expressed in barley plants and Xenopus oocytes. This study investigated the function of HvALMT1 further by identifying its tissue‐specific expression and by generating and characterizing RNAi lines with reduced HvALMT1 expression. We show that transgenic plants with 18–30% of wild‐type HvALMT1 expression had impaired guard cell function. They maintained higher stomatal conductance in low light intensity and lost water more rapidly from excised leaves than the null segregant control plants. Tissue‐specific expression of HvALMT1 was investigated in developing grain and during germination using transgenic barley lines expressing the green fluorescent protein (GFP) with the HvALMT1 promoter. We found that HvALMT1 is expressed in the nucellar projection, the aleurone layer and the scutellum of developing barley grain. Malate release measured from isolated aleurone layers prepared from imbibed grain was significantly lower in the RNAi barley plants compared with control plants. These data provide molecular and physiological evidence that HvALMT1 functions in guard cells, in grain development and during germination. We propose that HvALMT1 releases malate and perhaps other anions from guard cells to promote stomatal closure. The likely roles of HvALMT1 during seed development and grain germination are also discussed.  相似文献   

6.
Jones RL 《Plant physiology》1969,44(1):101-104
Both polyethylene glycol (PEG) and mannitol inhibit gibberellic acid-induced α-amylase production in barley aleurone layers. The effect of the osmotic solution is on enzyme synthesis rather than α-amylase secretion. The inhibition of α-amylase synthesis does not appear to be mediated via an indirect effect on respiration or protein synthesis. Rather it seems that the osmotic solutions reduce the extent of proteolysis of the stored aleurone grain protein thus making available less substrate for new protein synthesis.  相似文献   

7.
This report describes the isolation procedure and properties of tightly coupled flight muscle mitochondria of the bumblebee Bombus terrestris (L.). The highest respiratory control index was observed upon oxidation of pyruvate, whereas the highest respiration rates were registered upon oxidation of a combination of the following substrates: pyruvate + malate, pyruvate + proline, or pyruvate + glutamate. The respiration rates upon oxidation of malate, glutamate, glutamate + malate, or succinate were very low. At variance with flight muscle mitochondria of a number of other insects reported earlier, B. terrestris mitochondria did not show high rates of respiration supported by oxidation of proline. The maximal respiration rates were observed upon oxidation of α-glycerophosphate. Bumblebee mitochondria are capable of maintaining high membrane potential in the absence of added respiratory substrates, which was completely dissipated by the addition of rotenone, suggesting high amount of intramitochondrial NAD-linked oxidative substrates. Pyruvate and α-glycerophosphate appear to be the optimal oxidative substrates for maintaining the high rates of oxidative metabolism of the bumblebee mitochondria.  相似文献   

8.
Summary Cessation of gluconeogenesis during oocyte maturation inMisgurnus fossilis L. is accompanied by an increase of pyruvate dehydrogenase activity (EC 1.2.4.1). The activity of other enzymes of citrate and pyruvate metabolism (citrate synthetase, EC 4.1.3.7, pyruvate carboxylase, EC 6.4.1.1., malate dehydrogenase, EC 1.1.1.37) remains constant during oocyte maturation and early embryogenesis.In the course of oocyte maturation the levels of acetyl-CoA, pyruvate and citrate remained unchanged, but the level of malate and oxaloacetate underwent drastic increase. The level of phosphoenolpyruvate increased about two-fold. The mitochondrial (NAD+)/(NADH) ratio was calculated by measurement of intermediates of the glutamate dehydrogenase reaction and it was found to increase six-fold during oocyte maturation. The lower mitochondrial (NAD+)/(NADH) ratio in oocytes compared to that in the embryos is likely to be responsible for the transfer of reducing equivalents from mitochondria to cytoplasm, while in embryos transfer in the opposite direction takes place.  相似文献   

9.
The mechanism of depletion of tricarboxylic acid cycle intermediates by isolated rat heart mitochondria was studied using hydroxymalonate (an inhibitor of malic enzymes) and mercaptopicolinate (an inhibitor of phosphoenolpyruvate carboxykinase) as tools. Hydroxymalonate inhibited the respiration rate of isolated mitochondria in state 3 by 40% when 2 mM malate was the only external substrate, but no inhibition was found with 2 mM malate plus 0.5 mM pyruvate as substrates. In the prescence od bicarbonate, arsenite and ATP, propionate was converted to pyruvate and malate at the rates of 14.0 ± 2.9 and 2.8 ± 1.8 nmol/mg protein in 5 min, respectively. Under these conditions, 0.1 mM mercaptopicolinate did not affect this conversion, but 2 mM hydroxymalonate inhibited pyruvate formation completely and resulted in an accumulation of malate up to 13.2 ± 2.9 nmol/mg protein. No accumulation of phosphoenolpyruvate was found under any condition tested. It is concluded that malic enzymes but not phosphoenolpyruvate carboxykinase, are involved in conversion of propionate to pyruvate in isolated rat heart mitochondria.  相似文献   

10.
In order to gain a first insight into the alternative oxidase (AO) function in durum wheat mitochondria (DWM), we investigated some activation pathways of this enzyme in DWM purified from both etiolated shoots and green leaves. AO was activated when DWM were added with either pyruvate, known as an AO activator in other plant mitochondria, or alanine plus 2-oxoglutarate, which can generate intramitochondrial pyruvate and glutamate via transamination. In contrast, no AO activity was observed during oxidation of malate plus glutamate or succinate (which can generate malate). In this regard DWM differ from other plant mitochondria. Moreover, DWM were found: (i) to have a very low malic enzyme (ME) activity, (ii) to release oxaloacetate rather than pyruvate during malate oxidation and (iii) to poorly oxidise malate in the absence of glutamate, which removes oxaloacetate via transamination. Therefore, we show that, unlike other plant mitochondria, no pyruvate is generated inside DWM from malate via ME, allowing no AO activity. Other AO activators, alternative to pyruvate, were checked by evaluating the capability of several compounds to induce oxygen uptake and/or electrical membrane potential (Delta Psi) in cyanide-treated DWM. Hydroxypyruvate and glyoxylate, photorespiratory cycle intermediates, were found to be powerful AO activators, capable of inducing a maximal rate of cyanide-insensitive oxygen uptake 1.7 times and 2.3 times higher than pyruvate, respectively. These results suggest that in durum wheat a link may exist between AO activity and photorespiratory metabolism rather than malate metabolism. Moreover, we observed that AO activation resulted in both a partially coupled respiration and a reduction by half of the rate of superoxide anion generation; therefore, AO is expected to work as an antioxidative defence system when the photorespiratory cycle is highly active, as under environmental stress.  相似文献   

11.
Kalanchoë pinnata mitochondria readily oxidized succinate, malate, NADH, and NADPH at high rates and coupling. The highest respiration rates usually were observed in the presence of succinate. The high rate of malate oxidation was observed at pH 6.8 with thiamine pyrophosphate where both malic enzyme (ME) and pyruvate dehydrogenase were activated. In CAM phase III of K. pinnata mitochondria, both ME and malate dehydrogenase (MDH) simultaneously contributed to metabolism of malate. However, ME played a main function: malate was oxidized via ME to produce pyruvate and CO2 rather than via MDH to produce oxalacetate (OAA). Cooperative oxidation of two or three substrates was accompanied with the dramatic increase in the total respiration rates. Our results showed that the alternative (Alt) pathway was more active in malate oxidation at pH 6.8 with CoA and NAD+ where ME operated and was stimulated, indicating that both ME and Alt pathway were related to malate decarboxylation during the light. In K. pinnata mitochondria, NADH and NADPH oxidations were more sensitive with KCN than that with succinate and malate oxidations, suggesting that these oxidations were engaged to cytochrome pathway rather than to Alt pathway and these capacities would be desirable to supply enough energy for cytosol pyruvate orthophosphate dikinase activity.  相似文献   

12.
13.
Filipin-treated bovine epididymal spermatozoa have been used to study mitochondrial l-acetylcarnitine, l-palmitoylcarnitine, and pyruvate metabolism. The cells were supplemented with malate to allow rapid rates of substrate oxidation. The rate of l-palmitoylcarnitine-supported state 3 respiration was slow. In contrast, pyruvate, acetylcarnitine, or lactate supported rapid and approximately equal respiratory rates. l-Palmitoylcarnitine was a weak inhibitor of pyruvate-supported respiration and pyruvate use and a more potent inhibitor of l-acetylcarnitine. l-Carnitine was an effective inhibitor of l-acetylcarnitine oxidation; however, it did not influence l-palmitoylcarnitine oxidation or inhibit pyruvate utilization. Pyruvate (1.4 mm) disappearance was rapid and was complete within 6–7 min; the lactate produced during pyruvate metabolism was then oxidized. ATP synthesis was constant throughout the 20-min incubation. With pyruvate plus l-acetylcarnitine as substrate, the l-acetylcarnitine concentration initially dropped and then recovered to a level that was dependent on free carnitine addition. Data obtained from experiments using [2-14C]pyruvate indicated that the 14C label from pyruvate and lactate entered the l-acetylcarnitine pool and labeling was maximal when free l-carnitine was added. The rate of citrate synthesis was maximal when pyruvate was being metabolized; the largest total accumulation occurred when all three substrates were included in the incubation. The data suggest that the high NAD+/ NADH maintained during pyruvate metabolism may restrict flux through the citric acid cycle. The relationships of l-carnitine and the l-carnitine esters to pyruvate metabolism are discussed.  相似文献   

14.
15.
Rhizomes of the marsh plant Acorus calamus (L.) and tubers of the flooding-intolerant Solanum tuberosum (L.) var. Bintje, both kept under strict anoxia, differ markedly in their fermentation properties. The fermentation capacities as measured by ADH and LDH activities and their respective product concentrations were estimated. While rhizomes of Acorus calamus, having high ADH and low LDH activities, accumulate mainly ethanol, tubers of Solanum tuberosum tend towards lactic acid fermentation. The total amount of adenine nucleotides is quite stable in Acorus calamus, whereas they show a sharp decline in S. tuberosum during the first 6h of anoxia. The adenylate energy charge of A. calamus recovers after a short initial drop (AEC > 0.8). AEC values of S. tuberosum decrease rapidly and remain at very low values (AEC ~ 0.3). Tuber tissues became soft and lost viability after about 48–72 h of anoxia at 25 °C. This might be due to tissue acidification and impaired energy metabolism, but not to the lack of energy reserves. Energy metabolism of A. calamus is well adapted to anoxia.  相似文献   

16.
Jacobsen JV  Shaw DC 《Plant physiology》1989,91(4):1520-1526
[35S]Methionine labeling experiments showed that abscisic acid (ABA) induced the synthesis of at least 25 polypeptides in mature barley (Hordeum vulgare) aleurone cells. The polypeptides were not secreted. Whereas most of the proteins extracted from aleurone cells were coagulated by heating to 100°C for 10 minutes, most of the ABA-induced polypeptides remained in solution (heat-stable). ABA had little effect on the spectrum of polypeptides that were synthesized and secreted by aleurone cells, and most of these secreted polypeptides were also heatstable. Coomassie blue staining of sodium dodecyl sulfate polyacrylamide gels indicated that ABA-induced polypeptides already occurred in high amounts in mature aleurone layers having accumulated during grain development. About 60% of the total protein extracted from mature aleurone was heat stable. Amino acid analyses of total preparations of heat-stable and heat-labile proteins showed that, compared to heat-labile proteins, heat-stable intracellular proteins were characterized by higher glutamic acid/glutamine (Glx) and glycine levels and lower levels of neutral amino acids. Secreted heat-stable proteins were rich in Glx and proline. The possibilities that the accumulation of the heat-stable polypeptides during grain development is controlled by ABA and that the function of these polypeptides is related to their abundance and extraordinary heat stability are considered.  相似文献   

17.
Localization of carboxypeptidase I in germinating barley grain   总被引:2,自引:0,他引:2       下载免费PDF全文
Activity measurements and Northern blot hybridizations were used to study the temporal and spatial expression of carboxypeptidase I in germinating grains of barley (Hordeum vulgare L. cv Himalaya). In the resting grain no carboxypeptidase I activity was found in the aleurone layer, scutellum, or starchy endosperm. During germination high levels of enzyme activity appeared in the scutellum and in the starchy endosperm but only low activity was found in the aleurone layer. No mRNA for carboxypeptidase I was observed in the resting grain. By day 1 of germination the mRNA appeared in the scutellum where its level remained high for several days. In contrast, little mRNA was observed in the aleurone layer. These results indicate that the scutellum plays an important role in the production of carboxypeptidase I in germinating barley grain.  相似文献   

18.
P. Rustin  C. Queiroz-Claret 《Planta》1985,164(3):415-422
Kalanchoe blossfeldiana plants grown under long days (16 h light) exhibit a C3-type photosynthetic metabolism. Switching to short days (9 h light) leads to a gradual development of Crassulacean acid metabolism (CAM). Under the latter conditions, dark CO2 fixation produces large amounts of malate. During the first hours of the day, malate is rapidly decarboxylated into pyruvate through the action of a cytosolic NADP+-or a mitochondrial NAD+-dependent malic enzyme. Mitochondria were isolated from leaves of plants grown under long days or after treatment by an increasing number of short days. Tricarboxylic acid cycle intermediates as well as exogenous NADH and NADPH were readily oxidized by mitochondria isolated from the two types of plants. Glycine, known to be oxidized by C3-plant mitochondria, was still oxidized after CAM establishment. The experiments showed a marked parallelism in the increase of CAM level and the increase in substrate-oxidation capacity of the isolated mitochondria, particularly the capacity to oxidize malate in the presence of cyanide. These simultaneous variations in CAM level and in mitochondrial properties indicate that the mitochondrial NAD+-malic enzyme could account at least for a part of the oxidation of malate. The studies of whole-leaf respiration establish that mitochondria are implicated in malate degradation in vivo. Moreover, an increase in cyanide resistance of the leaf respiration has been observed during the first daylight hours, when malate was oxidized to pyruvate by cytosolic and mitochondrial malic enzymes.Abbreviations CAM Crassulacean acid metabolism - MDH malate dehydrogenase - ME malic enzyme  相似文献   

19.
Rhodospirillum rubrum (F1) maintained electron balance mainly by producing propionate, formate and H2 during fermentation metabolism. H2 formation was inversely correlated with the production of propionate.In diluted, growing cultures high amounts of H2 and only traces or no propionate were produced from pyruvate. In dense cultures or in resting cultures without (NH4)2SO4, however, propionate was formed from pyruvate in relatively high amounts Cultures always produced much more propionate than H2 from fructose in contrast to cells with pyruvate. Kinetic studies of growth and excretion of fermentation products indicated that the enzyme system for H2 formation is adaptive. Chloramphenicol (3 μg/ml) completely inhibited the formation of H2 if the cells were not adapted to fermentation metabolism. The production of propionate, on the other hand, was not prevented by chloramphenicol after shifting the cells from aerobic dark culture with malate to fermentation conditions with pyruvate.H2 formation was not influenced by sodium ascorbate but it was significantly decreased by K3[Fe(CN)6].Poly(β-hydroxybutyric acid) was also synthesized by the cells during anaerobic dark metabolism especially in dense cultures, probably favoured by the rapid acidification of the medium. Formate can also accumulate in the fermentation metabolism, especially in young growing cultures.These results give an explanation for the differing reports in the literature on the fermentation metabolism of R. rubrum.  相似文献   

20.
In barley (Hordeum vulgare L.), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH) are induced by anaerobiosis in both aleurone layers and roots. Under aerobic conditions, developing seeds of cv Himalaya accumulate ADH activity, which survives seed drying and rehydration. This activity consists almost entirely of the ADH1 homodimer. Activity of LDH also increases during seed development, but the level of activity in dry or rehydrated seeds is very low, indicating that this enzyme may not be involved in anaerobic glycolysis during the initial stages of germination. In contrast to ADH, the LDH isozymes present in developing seeds are similar to those found in uninduced and induced roots. Developmental expression of ADH and LDH was monitored from 0 to 24 days postgermination. Neither activity was induced to any extent in the germinating seeds; however, both enzymes were highly induced by anoxia in root tissue during development. Based on gel electrophoresis, this increase in activity results from the differential expression of different Adh and Ldh genes in root tissue. The changes in ADH and LDH activity levels were matched by changes in the amount of these particular proteins, indicating that the increase in activity results from de novo synthesis of these two proteins. The level of inducible LDH activity in an ADH1 mutant was not found to differ from cv Himalaya. We suggest that although the ADH plants are more susceptible to flooding, they are not capable of responding to the lack of ADH1 activity by increasing the amount of LDH activity in root tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号