首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The three electrophoretic variants of phosphoglucomutase in Saccharomyces cerevisiae breeding stocks are produced by two unlinked genes, pgm-1 and pgm-2; pgm-1 contains two known alleles, pgm-1a and pgm-1b, each of which specifies a minor phosphoglucomutase component, and pgm-2 specifies the major phosphoglucomutase component.  相似文献   

2.
Seven strains of Saccharomyces cerevisiae all produced lipase when grown in shake flask culture. The best strain, DSM 1848, produced 4.0U of lipase in the medium containing olive oil and yeast extract. Production of the lipase was growth-associated.  相似文献   

3.
The benzylisoquinoline alkaloids (BIAs) are a diverse class of metabolites that exhibit a broad range of pharmacological activities and are synthesized through plant biosynthetic pathways comprised of complex enzyme activities and regulatory strategies. We have engineered yeast to produce the key intermediate reticuline and downstream BIA metabolites from a commercially available substrate. An enzyme tuning strategy was implemented that identified activity differences between variants from different plants and determined optimal expression levels. By synthesizing both stereoisomer forms of reticuline and integrating enzyme activities from three plant sources and humans, we demonstrated the synthesis of metabolites in the sanguinarine/berberine and morphinan branches. We also demonstrated that a human P450 enzyme exhibits a novel activity in the conversion of (R)-reticuline to the morphinan alkaloid salutaridine. Our engineered microbial hosts offer access to a rich group of BIA molecules and associated activities that will be further expanded through synthetic chemistry and biology approaches.  相似文献   

4.
Inactivation of TPI1, the Saccharomyces cerevisiae structural gene encoding triose phosphate isomerase, completely eliminates growth on glucose as the sole carbon source. In tpi1-null mutants, intracellular accumulation of dihydroxyacetone phosphate might be prevented if the cytosolic NADH generated in glycolysis by glyceraldehyde-3-phosphate dehydrogenase were quantitatively used to reduce dihydroxyacetone phosphate to glycerol. We hypothesize that the growth defect of tpi1-null mutants is caused by mitochondrial reoxidation of cytosolic NADH, thus rendering it unavailable for dihydroxyacetone-phosphate reduction. To test this hypothesis, a tpi1Δ nde1Δ nde2Δ gut2Δ quadruple mutant was constructed. NDE1 and NDE2 encode isoenzymes of mitochondrial external NADH dehydrogenase; GUT2 encodes a key enzyme of the glycerol-3-phosphate shuttle. It has recently been demonstrated that these two systems are primarily responsible for mitochondrial oxidation of cytosolic NADH in S. cerevisiae. Consistent with the hypothesis, the quadruple mutant grew on glucose as the sole carbon source. The growth on glucose, which was accompanied by glycerol production, was inhibited at high-glucose concentrations. This inhibition was attributed to glucose repression of respiratory enzymes as, in the quadruple mutant, respiratory pyruvate dissimilation is essential for ATP synthesis and growth. Serial transfer of the quadruple mutant on high-glucose media yielded a spontaneous mutant with much higher specific growth rates in high-glucose media (up to 0.10 h−1 at 100 g of glucose·liter−1). In aerated batch cultures grown on 400 g of glucose·liter−1, this engineered S. cerevisiae strain produced over 200 g of glycerol·liter−1, corresponding to a molar yield of glycerol on glucose close to unity.  相似文献   

5.
Metabolic engineering of microorganisms is an alternative and attractive route for production of valuable terpenoids that are usually extracted from plant sources. Tanshinones are the bioactive components of Salvia miltiorrhizha Bunge, which is a well‐known traditional Chinese medicine widely used for treatment of many cardiovascular diseases. As a step toward microbial production of tanshinones, copalyl diphosphate (CPP) synthase, and normal CPP kaurene synthase‐like genes, which convert the universal diterpenoid precursor geranylgeranyl diphosphate (GGPP) to miltiradiene (an important intermediate of the tanshinones synthetic pathway), was introduced into Saccharomyces cerevisiae, resulting in production of 4.2 mg/L miltiradiene. Improving supplies of isoprenoid precursors was then investigated for increasing miltiradiene production. Although over‐expression of a truncated 3‐hydroxyl‐3‐methylglutaryl‐CoA reductase (tHMGR) and a mutated global regulatory factor (upc2.1) gene did improve supply of farnesyl diphosphate (FPP), production of miltiradiene was not increased while large amounts of squalene (78 mg/L) were accumulated. In contrast, miltiradiene production increased to 8.8 mg/L by improving supply of GGPP through over‐expression of a fusion gene of FPP synthase (ERG20) and endogenous GGPP synthase (BTS1) together with a heterologous GGPP synthase from Sulfolobus acidocaldarius (SaGGPS). Auxotrophic markers in the episomal plasmids were then replaced by antibiotic markers, so that engineered yeast strains could use rich medium to obtain better cell growth while keeping plasmid stabilities. Over‐expressing ERG20‐BTS1 and SaGGPS genes increased miltiradiene production from 5.4 to 28.2 mg/L. Combinatorial over‐expression of tHMGR‐upc2.1 and ERG20‐BTS1‐SaGGPS genes had a synergetic effects on miltiradiene production, increasing titer to 61.8 mg/L. Finally, fed‐batch fermentation was performed, and 488 mg/L miltiradiene was produced. The yeast strains engineered in this work provide a basis for creating an alternative way for production of tanshinones in place of extraction from plant sources. Biotechnol. Bioeng. 2012; 109: 2845–2853. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Tao  Xin-Yi  Lin  Yang-Chen  Wang  Feng-Qing  Liu  Qing-Hai  Ma  Yu-Shu  Liu  Min  Wei  Dong-Zhi 《Biotechnology letters》2022,44(4):571-580
Biotechnology Letters - Patchoulol is a natural sesquiterpene, which is widely used in perfumes and cosmetics. In the work, the mitochondria of S. cerevisiae were engineered for patchoulol...  相似文献   

7.
8.
Glycerol has become an attractive carbon source in the biotechnology industry owing to its low price and reduced state. However, glycerol is rarely used as a carbon source in Saccharomyces cerevisiae because of its low utilization rate. In this study, we used glycerol as a main carbon source in S. cerevisiae to produce 1,2-propanediol. Metabolically engineered S. cerevisiae strains with overexpression of glycerol dissimilation pathway genes, including glycerol kinase (GUT1), glycerol 3-phosphate dehydrogenase (GUT2), glycerol dehydrogenase (gdh), and a glycerol transporter gene (GUP1), showed increased glycerol utilization and growth rate. More significant improvement of glycerol utilization and growth rate was accomplished by introducing 1,2-propanediol pathway genes, mgs (methylglyoxal synthase) and gldA (glycerol dehydrogenase) from Escherichia coli. By engineering both glycerol dissimilation and 1,2-propanediol pathways, the glycerol utilization and growth rate were improved 141% and 77%, respectively, and a 2.19 g 1,2- propanediol/l titer was achieved in 1% (v/v) glycerolcontaining YEPD medium in engineered S. cerevisiae.  相似文献   

9.
This review describes progress using the yeast Saccharomyces cerevisiae as a model organism for the fast and efficient analysis of genes and enzyme activities involved in the lipid biosynthetic pathways of several donor organisms. Furthermore, we assess the impact of bakers yeast on the production of novel, high-value lipid compounds. Yeast can be genetically modified to produce selected substances in relatively high amounts. A major advantage in choosing yeast as an object for metabolic engineering is the fact that the lipid pathways in this organism have been described in detail and are well characterized. We focus on the de novo production of three major families of lipid products. These are: (1) sterols, providing some previously known and some novel applications as examples of the lipid pathway enhancement that occurs naturally in yeast, (2) the reconstitution of the biosynthetic pathway of steroid hormones and (3) the biosynthesis of polyunsaturated fatty acids, leading to the biosynthesis of different omega-3 and omega-6 fatty acids which do not occur naturally in yeast. We utilize the current knowledge and point out perspectives and problems for future biotechnological applications in the field of lipid compounds.  相似文献   

10.
Human serum albumin has been constitutively expressed in a Saccharomyces cerevisiae brewing yeast. After cell growth and disruption the product was associated with the insoluble fraction and represented approximately 1% of total cell protein. After the cell debris was extensively washed, the albumin was solubilized with 8 M urea and 28 mM 2-mercaptoethanol in 50 mM sodium carbonate buffer, pH 10. The denatured albumin was refolded by dialysis and further purified by anion exchange and gel filtration chromatography. Losses of renatured material could be reduced, or higher protein concentrations used during refolding, if the denatured product was purified by cation-exchange chromatography in urea prior to refolding. Apart from an additional N-terminal N-acetyl methionine, the refolded product proved identical to human serum albumin derived from plasma when compared by a variety of physical, chemical, and biological analytical methods.  相似文献   

11.
The yeast Saccharomyces cerevisiae was metabolically modified for enhanced biofuel precursor production by knocking out genes encoding mitochondrial isocitrate dehydrogenase and over-expression of a heterologous ATP-citrate lyase. A comparative iTRAQ-coupled 2D LC-MS/MS analysis was performed to obtain a global overview of ubiquitous protein expression changes in S. cerevisiae engineered strains. More than 300 proteins were identified. Among these proteins, 37 were found differentially expressed in engineered strains and they were classified into specific categories based on their enzyme functions. Most of the proteins involved in glycolytic and pyruvate branch-point pathways were found to be up-regulated and the proteins involved in respiration and glyoxylate pathway were however found to be down-regulated in engineered strains. Moreover, the metabolic modification of S. cerevisiae cells resulted in a number of up-regulated proteins involved in stress response and differentially expressed proteins involved in amino acid metabolism and protein biosynthesis pathways. These LC-MS/MS based proteomics analysis results not only offered extensive information in identifying potential protein-protein interactions, signal pathways and ubiquitous cellular changes elicited by the engineered pathways, but also provided a meaningful biological information platform serving further modification of yeast cells for enhanced biofuel production.  相似文献   

12.
A research project was initiated to examine the possibility of using supercritical carbon dioxide for in situ recovery of ethanol during its production by yeast Saccharomyces cerevisiae. As a preliminary step, it was necessary to study the behavior of ethanol production under high-pressure conditions, up to 7 MPa (1000 psi). The results show that pressure has a significant inhibiting effect on the production of ethanol. There is a significant decrease in the initial rate of production as well as in the final ethanol concentration as pressure is increased. This decrease is more significant when carbon dioxide is used to pressurize the fermentor. The pressure affects the ability of the cells to produce ethanol in a reversible way. When the fermentor is returned to atmospheric conditions, the reaction resumes its normal fermentation rate.  相似文献   

13.
《Process Biochemistry》2010,45(4):441-445
The present research was aimed at inducing, in a post fermentative procedure (biotransformation) and by modifying cell permeability, glutathione (GSH) accumulation and subsequent release from cells of Saccharomyces cerevisiae. With the aim of limiting process costs, research considered the possibility of employing baker's yeasts (S. cerevisiae), inexpensive cells source available on the market, in comparison with a collection strain. The tested yeasts showed different sensitivity to the chemical/physical treatments performed to alter cell permeability. Modest effects were evidenced with Triton, active only on Zeus yeast samples (1.7 g GSH/l, near 60% of which in extracellular form). Lauroyl sarcosine showed an interesting action on GB Italy sample (2.8 g GSH/l, near 80% extracellular). Lyophilization evidenced good performance with Lievitalia yeast strain (2.9 g GSH/l, 90% extracellular). The possibility of obtaining GSH directly in extracellular form represents an interesting opportunity of reducing GSH production cost and furthering the range of application of this molecule.  相似文献   

14.
  1. Download : Download high-res image (77KB)
  2. Download : Download full-size image
  相似文献   

15.
Summary The continuous production of mead was achieved with whole cells of Saccharomyces cerevisiae immobilized in calcium alginate gels. The alcohol production was stable in the pH range of 2.5–6.0 and a temperature range of 18–30°C with a sharp increase at 35°C. The process reduced the problems of contamination and secondary fermentation which are associated with traditional mead production.  相似文献   

16.
Studies of the human defensins have been hampered by the lack of a simple expression system allowing for rapid production of functional peptide forms. Here, we describe a Saccharomyces cerevisiae AH22 expression system that meets that condition. The 42 amino acid form of human beta-defensin-1 was expressed under the control of the ADH1 promoter. The optimum conditions for expression were determined and the stable maintenance of the pVT103L-hBD-1 chimeric vector in the yeast population was confirmed. Expressed hBD-1 was secreted into the medium (approximately 55 microg l(-1)) and purified using cation-exchange chromatography. Isolated defensin exhibited strong bactericidal effect on Escherichia coli ML-35p. We conclude that the expression system described here will be a useful tool where readily prepared and active forms of the human defensins are needed.  相似文献   

17.
18.
Caffeine (1, 3, 7-trimethylxanthine) and theobromine (3, 7-dimethylxanthine) are the major purine alkaloids in plants, e.g. tea (Camellia sinensis) and coffee (Coffea arabica). Caffeine is a major component of coffee and is used widely in food and beverage industries. Most of the enzymes involved in the caffeine biosynthetic pathway have been reported previously. Here, we demonstrated the biosynthesis of caffeine (0.38 mg/L) by co-expression of Coffea arabica xanthosine methyltransferase (CaXMT) and Camellia sinensis caffeine synthase (TCS) in Saccharomyces cerevisiae. Furthermore, we endeavored to develop this production platform for making other purine-based alkaloids. To increase the catalytic activity of TCS in an effort to increase theobromine production, we identified four amino acid residues based on structural analyses of 3D-model of TCS. Two TCS1 mutants (Val317Met and Phe217Trp) slightly increased in theobromine accumulation and simultaneously decreased in caffeine production. The application and further optimization of this biosynthetic platform are discussed.  相似文献   

19.
Physicochemical properties of human к-casein were studied by ultracentrifugal analysis and circular dichroism (CD) measurement. The result of sedimentation velocity analysis in 50mm imidazole-HCl buffer at pH 7.0 showed that human к-casein was present in a monomerie form with S°20.w of 2.7S. The molecular weight of this protein was estimated to be 38,000 by a short column method. The molecular shape was considered to be a flat ellipsoid with the shape factor of 16.74 and with the frictional coefficient of 2.17. From the result of CD measurement, human к-casein was computed to have 2% α-helix, 43% α-sheet and 26% α-turn structures. Interaction of human к-casein with human к-casein was observed by sedimentation velocity analysis and discpolyacrylamide gel electrophoresis, but no association occurred between human к-casein and human lactoferrin under the conditions we studied.  相似文献   

20.
A 100%-respiration-deficient nuclear petite amylolytic Saccharomyces cerevisiae NPB-G strain was generated, and its employment for direct fermentation of starch into ethanol was investigated. In a comparison of ethanol fermentation performances with the parental respiration-sufficient WTPB-G strain, the NPB-G strain showed an increase of ca. 48% in both ethanol yield and ethanol productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号