首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary We recently reported that interleukin-2(IL-2)-activated peripheral blood lymphocytes and CD3+, lymphokine-activated killer (LAK) cell clones release tumor necrosis factor (TNF) and interferon (IFN) when stimulated with K562 erythroleukemia cells. We examined the phenotype of IL-2-activated peripheral blood leukocytes that secrete TNF and IFN when stimulated with K562 cells and demonstrated that TNF secretion is not due to the presence of contaminating mononuclear phagocytes. Further, we demonstrate that IL-2-activated natural killer (NK) cells release only IFN when stimulated with K562 cells while T lymphocytes exposed to monoclonal anti-CD3 and K562 cells secrete both TNF and IFN. However, T cells stimulated only with K562 cells did not release IFN or TNF while the admixture of these T cells with NK cells, when stimulated with K562 cells, released levels of TNF comparable to those produced by the unseparated cells. At present it is unclear whether only one or both effector cell types respond to K562 by releasing TNF or why the presence both cell types is needed.This work was supported by grants from the national Institutes of Health (CA 23074 and CA 17094) and the Arizona Disease Commission (8277-000000-1-0-YR-9301)  相似文献   

3.
4.
Vector‐borne parasites often manipulate hosts to attract uninfected vectors. For example, parasites causing malaria alter host odor to attract mosquitoes. Here, we discuss the ecology and evolution of fruit‐colonizing yeast in a tripartite symbiosis—the so‐called “killer yeast” system. “Killer yeast” consists of Saccharomyces cerevisiae yeast hosting two double‐stranded RNA viruses (M satellite dsRNAs, L‐A dsRNA helper virus). When both dsRNA viruses occur in a yeast cell, the yeast converts to lethal toxin‑producing “killer yeast” phenotype that kills uninfected yeasts. Yeasts on ephemeral fruits attract insect vectors to colonize new habitats. As the viruses have no extracellular stage, they depend on the same insect vectors as yeast for their dispersal. Viruses also benefit from yeast dispersal as this promotes yeast to reproduce sexually, which is how viruses can transmit to uninfected yeast strains. We tested whether insect vectors are more attracted to killer yeasts than to non‑killer yeasts. In our field experiment, we found that killer yeasts were more attractive to Drosophila than non‐killer yeasts. This suggests that vectors foraging on yeast are more likely to transmit yeast with a killer phenotype, allowing the viruses to colonize those uninfected yeast strains that engage in sexual reproduction with the killer yeast. Beyond insights into the basic ecology of the killer yeast system, our results suggest that viruses could increase transmission success by manipulating the insect vectors of their host.  相似文献   

5.
6.
Summary Subpopulations of peripheral blood lymhocytes (PBL) from healthy individuals were separated according to their capacity to form various rosettes and tested for their cytotoxic activity on cell lines of urinary bladder and breast carcinomas. The subpopulation exerting the highest natural cytotoxic activity was characterized by the presence of cell surface Fc-receptors and by the lack of receptors for sheep red blood cells and for C'3 on their surface. Treatment with vibrio cholera neuraminidase (VCN) increased the cytotoxicity of unseparated PBL to a level twice as high as that of untreated PBL. The attachment of T-lymphocytes to tumor monolayers was increased several fold after VCN-treatment, while the attachment of other lymphocyte subpopulations was not. Evidence is presented that the augmentation of the cytotoxicity of PBL following VCN-treatment results from the interaction of VCN-treated T-lymphocytes, attached to target cells, with normal killer cells. It is suggested that augmentation of the activity of killer cells by T-lymphocytes may play a role in antitumor defense mechanisms.Abbreviations CMC Cell-mediated cytolysis - E-rosettes Rosettes formed with sheep red blood cells - EA-rosettes Rosettes formed with red blood cells coated with antibody - EAC'-rosettes Rosettes formed with red blood cells coated with antibody and complement - FCS Heat inactivated fetal calf serum - PBL Peripheral blood lymphocytes - RBC Red blood cells - RF-TAL E-rosette forming, target-attached lymphocytes - SRBC Sheep red blood cells - VCN Vibrio cholera neuraminidase  相似文献   

7.
8.
Rhabdomyosarcoma (RMS) are soft-tissue sarcoma commonly encountered in childhood. RMS cells can acquire invasive behavior and form metastases. The metastatic dissemination implicates many proteases among which are μ-calpain and m-calpain.Study of calpain expression and activity underline the deregulation of calpain activity in RMS. Analysis of kinetic characteristics of RMS cells, compared to human myoblasts LHCN-M2 cells, shows an important migration velocity in RMS cells. One of the major results of this study is the positive linear correlation between calpain activity and migration velocity presenting calpains as a marker of tumor aggressiveness. The RMS cytoskeleton is disorganized. Specifying the role of μ- and m-calpain using antisense oligonucleotides led to show that both calpains up-regulate α- and β-actin in ARMS cells. Moreover, the invasive behavior of these cells is higher than that of LHCN-M2 cells. However, it is similar to that of non-treated LHCN-M2 cells, when calpains are inhibited.In summary, calpains may be involved in the anarchic adhesion, migration and invasion of RMS. The direct relationship between calpain activity and migration velocities or invasive behavior indicates that calpains could be considered as markers of tumor aggressiveness and as potential targets for limiting development of RMS tumor as well as their metastatic behavior.  相似文献   

9.
That HIV-specific cytotoxic T-lymphocytes (CTLs) might be defective in some way has stimulated much controversy and research. We use mathematical models to explore the predictions of two competing CTL-defect theories: "defective memory" and "defective activation". We discuss whether these models are consistent with adoptive-transfer experiments in HIV-infected patients and vaccine trials in simian immunodeficiency virus (SIV)-infected monkeys. Finally, we describe experimental tests that could decide among these two theories and a competitor: CTL exhaustion.  相似文献   

10.
An electrochemical indirect competitive immunoassay protocol as a promising cytosensing strategy was developed to detect integrin β1 expression on human breast cancer MCF-7 cells and adriamycin-resistant human breast cancer MCF-7 (MCF-7/ADR) cells and quantify the cell number. Integrin α5β1 was adsorbed on the gold-nanoparticle modified glassy carbon electrode to bind integrin β1 monoclonal antibody (anti-CD29 mAb). A sandwich structure was then formed using nanocomposites which consisted of horseradish peroxidase (HRP) labeled anti-antibody and gold nanoparticles. HRP bound on the electrode surface could cause an amperometric response of the hydroquinone-H(2)O(2) system. The assembly of the sandwich structure was inhibited by tumor cells to give decreased enzyme-catalytic signals due to the capture of anti-CD29 mAb by integrin β1 on cell membranes. Under optimal conditions the relative current change (S) was proportional to the cell concentration from 1.6×10(3) to 2.0×10(6)cellsmL(-1) with a detection limit of 700cellsmL(-1). Integrin β1 expression in MCF-7/ADR cells was found to be significantly higher than that in MCF-7 cells, indicating the increased adhesion ability of MCF-7/ADR cells.  相似文献   

11.
Th17 cells: positive or negative role in tumor?   总被引:1,自引:0,他引:1  
Th17 cells have been recently identified as a distinct Th cell lineage and found in an experimental animal model of cancer and in human cancers, but whether these cells promote tumor growth or regulate antitumor responses remains controversial. This review provides a summary of the current literature regarding interleukin (IL)-17/IL-23 and Th17 cells in cancer and discusses their potential roles in cancer development. Finally, we note several issues in this research area that must be resolved before the design of novel therapeutic approaches specifically targeting Th17 cells in cancer become feasible.  相似文献   

12.
Hans G. Klingemann 《Cytotherapy》2013,15(10):1185-1194
Although T-lymphocytes have received most of the attention in immunotherapy trials, new discoveries around natural killer (NK) cells suggest that they also should be suitable effector cells for cellular therapy of cancer. In addition to direct cytotoxicity, NK cells produce an array of immune-active cytokines, among them interferons and granulocyte-macrophage colony-stimulating factor, which places them at the crossroads of innate and adaptive immunity. They also augment monoclonal antibody activity through antibody-mediated cellular cytotoxicity and can be transfected with chimeric antigen receptors. One of the stumbling blocks for NK cell–based therapies has been the inability to predictably obtain and expand larger numbers from donors, but also to achieve sufficiently high transfection efficiency of target genes. The first clinical trials with NK cells suggest some benefit, but more definite evidence is needed to justify this relatively expensive treatment.  相似文献   

13.
For many, the final terminal event in life is cessation of the heart beat. In turn, this is generally because this organ has been deprived of oxygen and glucose as the blood can no longer deliver these requirements to the myocardium. The principal reason for this is blockage of one or more coronary arteries or arterioles by platelet rich thrombus. A similar process exists for the pathophysiology of stroke--a disabilitating and often fatal event caused by occlusion or rupture of arteries in, or feeding, the brain. These scenarios are best developed in cardiovascular disease, but apply to almost all human disease. Therefore, the ultimate culprit for these major life events is the overactive platelet-too ready to form an inappropriate thrombus. Thus, one way forward in postponing an occlusive thrombotic event is to minimise platelet activation, new tools and treatments for which are eagerly sought.  相似文献   

14.
15.
16.
Recent reports have provided evidence for cross-talk between regulatory T (Treg) cells and natural killer T (NKT) cells. However, it is unclear whether NKT cells play a role in the differentiation of Treg cells. By employing NKT cell-abundant Vα14 TCR transgenic (Tg) and NKT cell-deficient CD1d knock-out (KO) mice, we examined the effects of NKT cells on the in vitro differentiation of induced Treg (iTreg) cells with IL2 and TGFβ. We found that iTreg induction from CD1d KO mice was significantly increased compared to the control. Also, the addition of isolated NKT cells from Vα14 TCR Tg mice to naïve CD4+ T cells from CD1d KO mice during iTreg differentiation caused a remarkable reduction of iTreg cells. Through IFNγ neutralization, we showed that this reduction was mediated by IFNγ. Furthermore, the main source of IFNγ during iTreg differentiation was NK1.1CD4+Foxp3 T cells. This finding implied that early-activated NKT cells induced Th1-type cells and subsequently underwent apoptosis. Taken together, our results suggest that NKT cells inhibit the in vitro development of iTreg cells by increasing IFNγ.  相似文献   

17.
Interleukin-1 (IL-1) represents a family of polypeptides with a wide range of biological activities. cDNA from two gene products has been cloned; there are probably more. The human IL-1 family plays an important role in the pathogenesis of many diseases and functions as a key mediator of host response to various infectious, inflammatory, neoplastic, and immunologic challenges. Recombinant mouse (pI 5) and recombinant human (pI 7) IL-1s are being used to confirm the multiple biological properties of IL-1s. Some IL-1 biological activities seem to be involved with mechanisms of host tumor killing. Incubating purified or recombinant human IL-1 with human peripheral blood mononuclear cells in the presence of IL-2 or interferon-alpha results in a synergistic enhancement of certain tumor cells. More recent results indicate that IL-1 exhibits direct cytotoxicity for tumor cells in vitro. The peripheral blood mononuclear cells of patients with tumors demonstrate decreased production of IL-1 when challenged with endotoxin and show a comparable decrease in natural killer activity; adding exogenous IL-1 reverses this defect in these patients. However, induction of hepatic acute-phase proteins such as serum amyloid A serves as a negative feedback since the amyloid protein suppresses natural killer activity. Moreover, natural killer cell activity in the presence of IL-1 or interferon-alpha is suppressed by incubating temperatures of 39 degrees C. This effect is not reversed by inhibitors of prostaglandin synthesis. IL-1 is clearly important to host defense against malignancy, but some aspects of IL-1 biology seem to exert a contrary influence.  相似文献   

18.
Summary Human renal cell cancer (RCC) cell lines, ACHN and KRC/Y, with or without exposure to cytokines, were examined for their susceptibility to lymphokine-activated killer (LAK) cells. Flow-cytometric analysis demonstrated constitutional expression of class I antigen on both cell lines, which was enhanced by interferon (IFN), IFN and tumor necrosis factor (TNF). A 4-h51Cr-release cytotoxicity assay demonstrated that pretreatment of both cell lines with IFN or IFN, but not with TNF, decreased their susceptibility to LAK cells. IFN also decreased susceptibility to natural killer cells in a 16-h51Cr-release cytotoxicity assay. IFN treatment decreased the susceptibility of ACHN cells in a dose-dependent manner. Cold-target competition assay clearly showed that IFN- but not TNF-pretreated cells compete less effectively than do untreated target cells. Pretreatment with IFN, however, increased expression of intercellular adhesion molecule-1 (ICAM-1) to a degree comparable to that with TNF. Northern blot analyses using a 520-base-pair ICAM-1 cDNA as a probe demonstrated that more 3.3-kb mRNA is expressed in IFN- and TNF-pretreated cells. These results suggest that IFN-treated RCC cell lines may reduce their ability to be recognized by LAK cells, and that IFN-induced protection of RCC cell lines against LAK cells may depend upon a mechanism independent of the expression of class I antigens or ICAM-1 on tumor cells.  相似文献   

19.
Previously we have described the induction of MHC-unrestricted killer cells against bladder tumour cells by bacillus Calmette-Guérin (BCG), termed BCG-activated killer (BAK) cells. In the present paper we deal with the accessory-cell requirement for the activation of BAK cells. We show that monocytes are required for activating BAK cells, since no cytotoxicity can be induced in the absence of monocytes. Therefore, these phagocytes may represent the first step during the activation cascade of BAK cells. Furthermore, the presence of CD4+ T cells was essential for generating BAK cells: depleting peripheral blood mononuclear cells of CD4 cells prior to stimulation with BCG abolished the cytotoxicity against bladder tumour cells. Experiments with monoclonal antibodies (mAb) neutralizing the activity of either interleukin-2 (IL-2) or interferon (IFN) underlined the importance of these cytokines: both mAb blocked the induction of BAK cells. Since both cytokines are related to the so-called Th1 pattern of T cells, we consider the second step of the generation of BAK cells as follows: monocytes presenting antigens of BCG trigger Th1-like cells in a preferred manner. These Th1-like T cells secrete IL-2 and IFN and, thus, activate the BAK effector cells. Since CD4+ cells are dominant in the cells infiltrating the bladder wall after intravesical instillation of BCG in vivo, we postulate an important role for the Th1 subpopulation. We further postulate that the occurrence of macrophages in this infiltrate seems to be significant in the maintenance of the relapse-free state of the patient.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号