首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuroglobin (Ngb) and cytoglobin (Cygb), recent additions to the globin family, display a hexa-coordinated (bis-histidyl) heme in the absence of external ligands. Although these proteins have the classical globin fold they reveal a very high thermal stability with a melting temperature (Tm) of 100 degrees C for Ngb and 95 degrees C for Cygb. Moreover, flash photolysis experiments at high temperatures reveal that Ngb remains functional at 90 degrees C. Human Ngb may have a disulfide bond in the CD loop region; reduction of the disulfide bond increases the affinity of the iron atom for the distal (E7) histidine, and leads to a 3 degrees C increase in the T(m) for ferrous Ngb. A similar Tm is found for a mutant of human Ngb without cysteines. Apparently, the disulfide bond is not involved directly in protein stability, but may influence the stability indirectly because it modifies the affinity of the distal histidine. Mutation of the distal histidine leads to lower thermal stability, similar to that for other globins. Only globins with a high affinity of the distal histidine show the very high thermal stability, indicating that stable hexa-coordination is necessary for the enhanced thermal stability; the CD loop which contains the cysteines appears as a critical region in the neuroglobin thermal stability, because it may influence the affinity of the distal histidine.  相似文献   

2.
Fordel E  Geuens E  Dewilde S  De Coen W  Moens L 《IUBMB life》2004,56(11-12):681-687
  相似文献   

3.
Recent evidence suggests that the reaction of nitrite with deoxygenated hemoglobin and myoglobin contributes to the generation of nitric oxide and S-nitrosothiols in vivo under conditions of low oxygen availability. We have investigated whether ferrous neuroglobin and cytoglobin, the two hexacoordinate globins from vertebrates expressed in brain and in a variety of tissues, respectively, also react with nitrite under anaerobic conditions. Using absorption spectroscopy, we find that ferrous neuroglobin and nitrite react with a second-order rate constant similar to that of myoglobin, whereas the ferrous heme of cytoglobin does not react with nitrite. Deconvolution of absorbance spectra shows that, in the course of the reaction of neuroglobin with nitrite, ferric Fe(III) heme is generated in excess of nitrosyl Fe(II)-NO heme as due to the low affinity of ferrous neuroglobin for nitric oxide. By using ferrous myoglobin as scavenger for nitric oxide, we find that nitric oxide dissociates from ferrous neuroglobin much faster than previously appreciated, consistently with the decay of the Fe(II)-NO product during the reaction. Both neuroglobin and cytoglobin are S-nitrosated when reacting with nitrite, with neuroglobin showing higher levels of S-nitrosation. The possible biological significance of the reaction between nitrite and neuroglobin in vivo under brain hypoxia is discussed.  相似文献   

4.
5.
Fago A  Hundahl C  Malte H  Weber RE 《IUBMB life》2004,56(11-12):689-696
Neuroglobin and cytoglobin are two recently discovered vertebrate globins, which are expressed at low levels in neuronal tissues and in all tissues investigated so far, respectively. Based on their amino acid sequences, these globins appear to be phylogenetically ancient and to have mutated less during evolution in comparison to the other vertebrate globins, myoglobin and hemoglobin. As with some plant and bacterial globins, neuroglobin and cytoglobin hemes are hexacoordinate in the absence of external ligands, in that the heme iron atom coordinates both a proximal and a distal His residue. While the physiological role of hexacoordinate globins is still largely unclear, neuroglobin appears to participate in the cellular defence against hypoxia. We present the current knowledge on the functional properties of neuroglobin and cytoglobin, and describe a mathematical model to evaluate the role of mammalian retinal neuroglobin in supplying O2 supply to the mitochondria. As shown, the model argues against a significant such role for neuroglobin, that more likely plays a role to scavenge reactive oxygen and nitrogen species that are generated following brain hypoxia. The O2 binding properties of cytoglobin, which is upregulated upon hypoxia, are consistent with a role for this protein in O2-requiring reactions, such as those catalysed by hydroxylases.  相似文献   

6.
Neuroglobin and cytoglobin reversibly bind oxygen in competition with the distal histidine, and the observed oxygen affinity therefore depends on the properties of both ligands. In the absence of an external ligand, the iron atom of these globins is hexacoordinated. There are three cysteine residues in human neuroglobin; those at positions CD7 and D5 are sufficiently close to form an internal disulfide bond. Both cysteine residues in cytoglobin, although localized in other positions than in human neuroglobin, may form a disulfide bond as well. The existence and position of these disulfide bonds was demonstrated by mass spectrometry and thiol accessibility studies. Mutation of the cysteines involved, or the use of reducing agents to break the S-S bond, led to a decrease in the observed oxygen affinity of human neuroglobin by an order of magnitude. The critical parameter is the histidine dissociation rate, which changes by about a factor of 10. The same effect is observed with human cytoglobin, although to a much lesser extent (less than a factor of 2). These results suggest a novel mechanism for the regulation of oxygen binding; contact with an appropriate electron donor would provoke the release of oxygen. Hence the oxygen affinity would be directly linked to the redox state of the cell.  相似文献   

7.
Several pH-dependent low-spin ferric haem forms are identified in a frozen solution of the ferric 121Cys→Ser mutant of Drosophila melanogaster haemoglobin (DmHb1*) using electron paramagnetic resonance (EPR) techniques. Different forms with EPR parameters typical of bis-histidine coordinated haem iron centers were observed. Strong pH-dependent changes in the EPR signatures were observed related to changes in the haem pocket. The pulsed EPR data indicate that both the distal and proximal histidine exhibit a large libration around the Fe-N(His) axis. The resonance Raman spectra of the CO-ligated ferrous form of Drosophila melanogaster haemoglobin are typical of an open conformation, with little stabilization of the CO ligand by the surrounding amino-acid residues. The EPR data of the cyanide-ligated ferric DmHb1* indicates a close similarity with cyanide-ligated ferric myoglobin. The structural characteristics of DmHb1* are found to clearly differ from those of other bis-histidine-coordinated globins.  相似文献   

8.
The physiological role of neuroglobin and cytoglobin, two vertebrate globins discovered in the last 5 years, is not yet clearly understood. In this work, we review the structural information on these globins and its implication on the possible protein function, obtained by electron paramagnetic resonance and resonance Raman spectroscopy. All studies reveal a high flexibility in the heme-pocket region of neuroglobin. Together with the observation that the distal ligand of the heme iron is the endogenous E7-histidine in both the ferric and ferrous form of neuroglobin and cytoglobin, the flexibility of the heme environment in neuroglobin will play a crucial role in the globins' ability to bind and stabilize exogenous ligands.  相似文献   

9.
Neuroglobin (Ngb) and cytoglobin (Cygb) are two recently discovered intracellular members of the vertebrate hemoglobin (Hb) family. Ngb, predominantly expressed in nerve cells, is of ancient evolutionary origin and is homologous to nerve-globins of invertebrates. Cygb, present in many different tissues, shares common ancestry with myoglobin (Mb) and can be traced to early vertebrate evolution. Ngb is held to facilitate O2 diffusion to the mitochondria and to protect neuronal cells from hypoxic-ischemic insults, may be an oxidative stress-responsive sensor protein for signal transduction, and may carry out enzymatic activities, such as NO/O2 scavenging. Cygb is linked to collagen synthesis, may provide O2 for enzymatic reactions, and may be involved in a ROS(NO)-signaling pathway(s). Ngb and Cgb display the classical three-over-three alpha-helical fold of Hb and Mb, and are endowed with a hexa-coordinate heme-Fe atom, in their ferrous and ferric forms, having the heme distal HisE7 residue as the endogenous ligand. Reversible hexa- to penta-coordination of the heme Fe atom modulates ligand binding properties of Ngb and Cygb. Moreover, Ngb and Cygb display a tunnel/cavity system within the protein matrix held to facilitate ligand channeling to/from the heme, multiple ligand copies storage, multi-ligand reactions, and conformational transitions supporting ligand binding.  相似文献   

10.
11.
12.
Structural basis of human cytoglobin for ligand binding   总被引:3,自引:0,他引:3  
Cytoglobin (Cgb), a newly discovered member of the vertebrate globin family, binds O(2) reversibly via its heme, as is the case for other mammalian globins (hemoglobin (Hb), myoglobin (Mb) and neuroglobin (Ngb)). While Cgb is expressed in various tissues, its physiological role is not clearly understood. Here, the X-ray crystal structure of wild type human Cgb in the ferric state at 2.4A resolution is reported. In the crystal structure, ferric Cgb is dimerized through two intermolecular disulfide bonds between Cys38(B2) and Cys83(E9), and the dimerization interface is similar to that of lamprey Hb and Ngb. The overall backbone structure of the Cgb monomer exhibits a traditional globin fold with a three-over-three alpha-helical sandwich, in which the arrangement of helices is basically the same among all globins studied to date. A detailed comparison reveals that the backbone structure of the CD corner to D helix region, the N terminus of the E-helix and the F-helix of Cgb resembles more closely those of pentacoordinated globins (Mb, lamprey Hb), rather than hexacoordinated globins (Ngb, rice Hb). However, the His81(E7) imidazole group coordinates directly to the heme iron as a sixth axial ligand to form a hexcoordinated heme, like Ngb and rice Hb. The position and orientation of the highly conserved residues in the heme pocket (Phe(CD1), Val(E11), distal His(E7) and proximal His(F8)) are similar to those of other globin proteins. Two alternative conformations of the Arg84(E10) guanidium group were observed, suggesting that it participates in ligand binding to Cgb, as is the case for Arg(E10) of Aplysia Mb and Lys(E10) of Ngb. The structural diversities and similarities among globin proteins are discussed with relevance to molecular evolutionary relationships.  相似文献   

13.
To examine the effects of a replacement of the proximal or the distal histidine on the structure of hemoglobin (Hb), absorption and circular dichroic (CD) spectra of five species of Hbs M in the visible region were measured. Four Hbs M had a characteristic but a similar absorption spectrum upon amino acid substitution, however, the proximal histidine replaced Hbs M (Hb M Iwate and Hb M Hyde Park) showed considerably different CD spectra from those of the distal histidine replaced ones (Hb M Boston and Hb M Saskatoon). The former exhibited large positive CD but the latter gave a complex CD spectrum with positive and negative extrema. On the other hand, absorption and CD spectra of Hb M Milwaukee did not changed very much from those of Hb A.  相似文献   

14.
Two new globin proteins have recently been discovered in vertebrates, neuroglobin in neurons and cytoglobin in all tissues, both showing heme hexacoordination by the distal His(E7) in the absence of gaseous ligands. In analogy to hemoglobin and myoglobin, neuroglobin and cytoglobin are supposedly involved in O2 storage and delivery, although their physiological role remains to be solved. Here we report O2 equilibria of recombinant human neuroglobin (NGB) and cytoglobin (CYGB) measured under close to physiological conditions and at varying temperature and pH ranges. NGB shows both alkaline and acid Bohr effects (pH-dependent O2 affinity) and temperature-dependent enthalpy of oxygenation. O2 and CO binding equilibrium studies on neuroglobin mutants strongly suggest that the bound O2 is stabilized by interactions with His(E7) and that this residue functions as a major Bohr group in the presence of Lys(E10). As shown by the titration of free thiols with 4,4'-dithiodipyridine and by mass spectrometry, this mechanism of modulating O2 affinity is independent of formation of an internal disulfide bond under the experimental conditions used, which stabilize thiols in the reduced form. In CYGB, O2 binding is cooperative, consistent with its proposed dimeric structure. Similar to myoglobin but in contrast to NGB, O2 binding to CYGB is pH-independent and exothermic throughout the temperature range investigated. Our data support the hypothesis that CYGB may be involved in O2-requiring metabolic processes. In contrast, the lower O2 affinity in NGB does not appear compatible with a physiological role involving mitochondrial O2 supply at the low O2 tensions found within neurons.  相似文献   

15.
Neuroglobin (Ngb) is a globin present in the brain and retina of mammals. This hexacoordinated hemoprotein binds small diatomic molecules, albeit with lower affinity compared with other globins. Another distinctive feature of most mammalian Ngb is their ability to form an internal disulfide bridge that increases ligand affinity. As often seen for prosthetic heme b containing proteins, human Ngb exhibits heme heterogeneity with two alternative heme orientations within the heme pocket. To date, no details are available on the impact of heme orientation on the binding properties of human Ngb and its interplay with the cysteine oxidation state. In this work, we used 1H NMR spectroscopy to probe the cyanide binding properties of different Ngb species in solution, including wild-type Ngb and the single (C120S) and triple (C46G/C55S/C120S) mutants. We demonstrate that in the disulfide-containing wild-type protein cyanide ligation is fivefold faster for one of the two heme orientations (the A isomer) compared with the other isomer, which is attributed to the lower stability of the distal His64–iron bond and reduced steric hindrance at the bottom of the cavity for heme sliding in the A conformer. We also attribute the slower cyanide reactivity in the absence of a disulfide bridge to the tighter histidine–iron bond. More generally, enhanced internal mobility in the CD loop bearing the disulfide bridge hinders access of the ligand to heme iron by stabilizing the histidine–iron bond. The functional impact of heme disorder and cysteine oxidation state on the properties of the Ngb ligand is discussed.  相似文献   

16.
Protein dynamics observed by the transient grating (TG) method are studied for some site-directed mutants at the distal histidine of myoglobin (H64L, H64Q, H64V). The time profiles of the TG signals are very sensitive to the amino acid residue of the 64 position. It was found that the sensitivity is mostly caused by the different rates of the ligand escape from the protein to solvent and the magnitude of the molecular volume change. Several molecular origins of the volume difference between MbCO and Mb, such as the electrostatic interaction in the distal pocket, movement of helices, and distal water, are proposed. Interestingly, the volume difference between the CO-trapped Mb inside the protein interior and Mb is similar to that of the partial molar volume of CO in organic solvent. The effect of mutation on the nature of the CO trapped site is discussed.  相似文献   

17.
18.
The 1H NMR chemical shifts of the heme methyl groups of the ferriheme complex of metneuroglobin (Du et al. in J. Am. Chem. Soc. 125:8080–8081, 2003) predict orientations of the axial histidine ligands (Shokhirev and Walker in J. Biol. Inorg. Chem. 3:581–594, 1998) that are not consistent with the X-ray data (Vallone et al. in Proteins Struct. Funct. Bioinf. 56:85–94, 2004), and the EPR spectrum (Vinck et al. in J. Am. Chem. Soc. 126:4516–4517, 2004) is only marginally consistent with these data. The reasons for these inconsistencies appear to be rooted in the high degree of aqueous solution exposure of the heme group and the fact that there are no strong hydrogen-bond acceptors for the histidine imidazole N–H protons provided by the protein. Similar inconsistencies may exist for other water-soluble heme proteins, and 1H NMR spectroscopy provides a simple means to verify whether the solution structure of the heme center is the same as or different from that in the crystalline state.  相似文献   

19.
Fordel E  Thijs L  Martinet W  Schrijvers D  Moens L  Dewilde S 《Gene》2007,398(1-2):114-122
Several studies support the hypothesis that neuroglobin and cytoglobin play a protective role against cell death when cellular oxygen supply is critical. Although the underlying molecular mechanisms are unknown, previous reports suggest that this protection can be realised by the fact that they act as ROS scavengers. In this study, expression of neuroglobin and cytoglobin was evaluated in a human neuroblastoma cell line (SH-SY5Y) under conditions of anoxia or oxygen and glucose deprivation (OGD). The cells could survive prolonged anoxia without significant loss of viability. They became anoxia sensitive when deprived of glucose. OGD induced significant cell death after 16 h resulting in 54% dead cells after 32 h. Necrosis was the main process involved in OGD-induced cell death. After reoxygenation, apoptotic neurons became more abundant. Real-time quantitative PCR and Western blotting revealed that neuroglobin and cytoglobin were upregulated, the former under OGD and the latter under anoxic conditions. Under OGD, cell survival was significantly reduced after inhibiting cytoglobin expression by transfection with antisense ODN. Moreover, cell survival was significantly enhanced by neuroglobin or cytoglobin overexpression. When neuroglobin or cytoglobin protein expression increased or decreased, the H(2)O(2) level was found to be lower or higher, respectively. We conclude that neuroglobin or cytoglobin act as ROS scavengers under ischemic conditions.  相似文献   

20.
Proximal and distal tubule suspensions were prepared from kidneys of Sprague-Dawley rats by an isolation procedure on a PercollR gradient. The marker enzymes alkaline phosphatase (brush border) and hexokinase (cytoplasmic) as well as p-aminohippurate transport capacity, gluconeogenic activity and electron microscopy were used to characterize the two kidney tubule suspensions. The results of this study indicate that cytochrome P-450 is localized to the proximal tubular cells and that the O-deethylation of 7- ethoxycoumarin was higher in the proximal than distal fraction. Both proximal and distal tubules showed glucuronidation and deacetylation capacities and a relatively equal distribution of non-protein sulfhydryls. These studies demonstrate metabolic heterogeneity of the nephron, the proximal tubule being the main site of renal xenobiotic metabolism. Understanding of metabolic heterogeneity of proximal and distal kidney tubules should provide important information regarding cell specific mechanisms of nephrotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号