首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
S Kürten  G Obe 《Mutation research》1975,27(2):285-294
The Chinese hamster bone marrow was used as a test system in vivo to analyse the chromosome-danaging effect of bleomycin. Both chromosome and chromatid aberrations were found. Mitoses with aberrations (Ma) show a linear dose-effect relationship after a recovery time of 24 h, the same hold true for cells with micronuclei (Cm) and for mitoses with premature chromosome condensation (PCC). The dose-effect relationships for Ma, Cm and PCC run parallel to each other with Ma at the highest and PCC at the lowest level (Ma greater than Cm greater than PCC). The time-effect relationships for Ma, Cm and PCC show that after 12 h recovery time there are no PCCs but the highest frequencies of Ma and Cm indicating that most cells are in their first post-treatment mitoses or Gi-phases at this fixation time. In addition to the frequency determinations autoradiographic analysis were performed to clarigy the nature of the PCCs. The results are interpreted as follows: bleomycin induces chromosomal aberrations that in turn give rise to micronuclei by means of lagging chromatin, main and micronuclei eventually become asynchronous in their cell cycles and mitosing main nuclei induce PCC in the micronuclei.  相似文献   

2.
K. Miller   《Mutation research》1991,251(2):241-251
The effects of bleomycin (BM), cyclophosphamide (CP), and ethyl methanesulfonate (EMS) on the frequencies of chromosomal aberrations were tested in mitogen-stimulated highly purified human B- and T-lymphocytes. In unstimulated G0/G1 B- and T-lymphocytes the clastogen induction of chromosome fragments was investigated in prematurely condensed chromosomes (PCC) induced by cell fusion with xenogenic mitotic cells. BM, CP (with metabolic activation), and EMS induced a significant increase in chromosome aberrations in proliferating human B- and T-lymphocytes. There were no significant differences in the BM-induced aberration rates between the cell populations. CP and EMS induced more aberrations in T- than in B-lymphocytes. In the PCC tests, BM-exposed G0/G1 lymphocytes showed dose-dependent high yields of chromosome fragments. No significant differences between B- and T-lymphocytes were observed. CP and EMS induced no clear increase in fragments in either cell population.  相似文献   

3.
The metabolic inhibitor of DNA synthesis cytosine arabinoside (ara-C) is known to induce chromosome aberrations in human lymphocytes. It has been recently argued, however, that there is no unequivocal evidence that ara-C can damage chromosomes directly. Therefore, the effect of ara-C on unstimulated human lymphocytes was examined directly by means of the premature chromosome condensation technique. In about 50% of the cells, ara-C effectively induced chromosome fragments, which did not show rejoining even after the chemical was washed out. These results suggest that a possible selection against damaged cells in their progress to mitosis could result in the low yields of ara-C-induced chromosome aberrations reported in the literature. The effect of ara-C on the repair of radiation-induced chromosome aberrations was also examined. Ara-C did not affect the rejoining of the chromosome fragments induced in unstimulated human lymphocytes by 6 Gy of X-rays.  相似文献   

4.
We developed a simple and rapid method to study chromosome aberrations involving specific chromosomes using unstimulated human peripheral blood lymphocytes (HPBL). Premature chromosome condensation (PCC) was induced by incubating unstimulated HPBL in the presence of okadaic acid (OA, a phosphatase inhibitor), adenosine triphosphate (ATP), and p34(cdc2)/cyclin B kinase [an essential component of mitosis-promoting factor (MPF)], which eliminated the need for fusion with mitotic cells. OA concentration and duration of incubation for PCC induction was optimized using mitogen-stimulated HPBL; a final concentration of 0.75 microM incubated for 3 h was optimum, resulting in approximately 20% PCC yield. In unstimulated HPBL, PCC was induced by the addition of p34(cdc2)/cyclin B kinase at concentrations as low as 5 units/ml to a cell culture medium containing OA. Increases in the concentration of p34(cdc2)/cyclin B kinase from 5 to 50 units/ml resulted in a concentration-dependent increase in PCC yield (30% to 42%). We demonstrate that this technique of inducing PCC in unstimulated HPBL is suitable for studying radiation-induced aberrations involving a specific chromosome (chromosome 1) after 24 h repair using a whole-chromosome in situ hybridization probe and chromosome painting. Cells with aberrant chromosome number 1 are characterized with more than two chromosome spots. The frequency of cells with aberrant chromosome 1 increased with 60Co gamma-radiation doses in the region 0-7.5 Gy. The observed dose-effect relationship for the percentage of cells with aberrant chromosome 1 (Y) was explained by using both a linear [Y=(2.77+/-0.230)D+0.90+/-0.431, r(2)=0.966] and a nonlinear power [Y=(5.70+/-0.46)D((0.61+/-0.05)), r(2)=0.9901) model. This technique can be applied to biological dosimetry of radiation exposures involving uniform whole-body low linear energy transfer (LET) exposures.  相似文献   

5.
The effect of aphidicolin on Fanconi's anemia lymphocyte chromosomes   总被引:1,自引:0,他引:1  
The cytogenetic effect of the DNA polymerase alpha inhibitor aphidicolin (APC) at a dose which did not affect cell cycle progression was determined in normal and Fanconi's anemia (FA) lymphocytes. APC enhanced sister-chromatid exchange (SCE) levels by about twice both in control and FA cells, while the yields of chromosome breakage increased up to 20 times in normal lymphocytes and 4 times in FA cells. APC did not act synergistically with the bifunctional alkylating diepoxybutane in terms of SCE either in normal or in FA lymphocytes. However, chromosome aberrations in cultures from normal subjects were much more than expected by an additive mode of action.  相似文献   

6.
In a study of X-ray-induced chromosome aberrations in human G(0) lymphocytes irradiated with 4 Gy using premature chromosome condensation (PCC) and fluorescence in situ hybridization (FISH), the time-dependent pattern of chromosome fragments and interchromosomal exchanges involving chromosome 4 was recorded after postirradiation incubation times varying from 0.5 to 46.5 h. Unattached acentric fragments and incomplete interchromosomal exchanges have high initial yields, followed by an exponential decrease, while complete interchromosomal exchanges have almost zero initial yield with a subsequent increase in their number. Plateau values of all yields are reached after about 25 h. This temporal variation of aberration yields can consistently be explained by the competition of disruptive PCC stress with the progress of postirradiation structural restitution at the sites of radiation-induced chromatin instabilities. Details of the temporal pattern of incomplete exchanges reflect the different kinetics of the alpha and beta components of the yield of aberrations. The observed large difference between late-PCC and metaphase yields of unattached acentric fragments and the almost perfect conversion from incomplete prematurely condensed chromosomes into complete metaphase exchanges are explained by a difference in the magnitude of chromosome condensation stress between PCC and mitotic conditions. Chromatin sites prone to fragmentation and incompleteness under conditions of PCC can therefore persist as genetic instabilities hidden during mitosis.  相似文献   

7.
The frequency of chromosome aberrations was studied in minimal essential medium (MEM) with and without folic acid (FA) in lymphocytes of 4 normal individuals, each sampled 12 times over a 1-year period. The cells cultured without FA had significantly more breaks and gaps. In both media about 75% of aberrations were classified as gaps. Calculations based on variance estimates suggest that the use of medium without FA could enhance the statistical power to distinguish differences in proportions of chromosome breakage between groups in the same study.  相似文献   

8.
The interaction between centrosomes and kinetochores was studied in multinucleate cells induced by Colcemid treatment or by random cell fusion. Except for prematurely condensed chromosomes (PCC) of the G2-phase, PCCs do not develop their own spindle area. Perhaps the maturation promoting factor (MPF) fails to activate these centrosomes. In such PCCs, the kinetochore-centrosome interaction was found to be non-specific: sometimes only a few chromosomes of a group could establish connections with centrosomes, sometimes chromosomes from the same PCC group developed microtubule (MT) attachment with different centrosomes (not the pair), and sometimes kinetochores of PCC groups failed to interact with MTs. These findings explain the abnormal mitotic behaviour of PCCs as seen in the light microscope. These PCCs develop micronuclei or normal nuclei by nuclear re-formation in telophase. All the different PCC groups revealed kinetochores with kinetochore plates. It was shown that transformation of presumptive kinetochores to a trilaminar kinetochore does not depend on nuclear envelope breakdown or on the degree of chromosome condensation. This may be induced by the MPF which may initiate different events like chromosome condensation, nuclear envelope breakdown and kinetochore transformation by secondary factors. Other observations like establishment of connections by different chromosome groups to a common centrosome, kinetochore attachment of PCCs to different centrosomes, interaction of one kinetochore with two centrosomes, kinetochores being stretched and bent to receive microtubules and finally the failure of some kinetochores to develop MT attachment, all strongly suggest that the kinetochores serve as the point of termination rather than the nucleation sites of kinetochore MTs.  相似文献   

9.
Phytohemagglutinin (PHA)-stimulated human peripheral blood lymphocytes were shown to be distinguishable from unstimulated lymphocytes by the technique of premature chromosome condensation (PCC). Greater than 70% of the PCC from lymphocytes stimulated by incubating with PHA for 18–22 h showed greatly extended PCC as compared with only 30% in the unstimulated cultures. This decondensation pattern of the PCC paralleled with the previously reported increase in the template activity of chromatin. The PCC method can be useful in determining the proliferative potential of bone marrows of leukemic patients during and after chemotherapy.  相似文献   

10.
The inhibition of poly(ADP-ribose) polymerase by 3-aminobenzamide (3AB) has been reported to have very different effects on X-ray-induced chromosome aberrations in G0 human lymphocytes. One group of investigators observed a 2-3-fold increase in the yield of rings, dicentrics and chromosome breaks after X-irradiation and 3AB treatment, whereas another group found that 3AB had no effect on X-ray-induced chromosome aberrations. To resolve this discrepancy, we repeated the experiments as described by both groups and found no effect of 3 mM or 5 mM 3AB on the frequency of chromosome aberrations induced by either 1 Gy or 2 Gy of X-rays. Furthermore, we found no effect of 3AB on X-ray-induced aberration yields in C-banded prematurely condensed chromosome preparations from unstimulated human lymphocytes. These results indicate that poly(ADP-ribose) polymerase is not involved in the repair of cytogenetic damage in G0 human lymphocytes.  相似文献   

11.
DNA damage and cytogenetic effects of ionizing radiation were investigated in Chinese hamster ovary (CHO) cells and unstimulated human peripheral blood lymphocytes. DNA damage and repair were analysed by alkaline elution under conditions that predominantly measured DNA single-strand breaks (ssb). X-radiation (2.5 Gy) induced ssb in both CHO cells and unstimulated lymphocytes, and the breaks were repaired within 30 and 90 min, respectively. This rapid repair was delayed by the poly(ADP-ribose) polymerase inhibitor, 3-aminobenzamide (3AB). The cytogenetic effects of the 3AB-induced delay in DNA repair were examined by analysing sister chromatid exchange (SCE) frequency in CHO cells and fragmentation of prematurely condensed chromosomes (PCC) in unstimulated human lymphocytes after 2.5 Gy of X-rays. Although 3AB delayed the rejoining of DNA ssb, this delay did not result in increased cytogenetic damage manifested as either SCE or fragmentation of PCC. These results indicate that the rapidly rejoining DNA ssb are not important in the production of chromosome damage.  相似文献   

12.
The authors studied the effect of mitomycin C (MMC) and bromodeoxyuridine (BrdU) on the induction of chromosome aberrations on lymphocytes of four patients with Fanconi anemia (FA) and of one normal subject. A control culture and six experiments were designed to test the possible synergic effect of MMC and BrdU. Their results revealed no evidence of MMC-BrdU synergism on the induction of chromosome aberrations in FA lymphocytes. However, chromosomes showed more damage when FA cells were harvested 24 h after MMC stress than when cells were harvested shortly after treatment. This can be explained by a DNA repair defect or by a toxic effect of oxygenation of cells during the procedure.  相似文献   

13.
Chromosome aberrations were investigated in human lymphocytes after in vitro exposure to 1H-, 3He-, 12C-, 40Ar-, 28Si-, 56Fe-, or 197Au-ion beams, with LET ranging from approximately 0.4-1393 keV/microm in the dose range of 0.075-3 Gy. Dose-response curves for chromosome exchanges, measured at the first mitosis postirradiation using fluorescence in situ hybridization (FISH) with whole-chromosome probes, were fitted with linear or linear-quadratic functions. The relative biological effectiveness (RBE) was estimated from the initial slope of the dose-response curve for chromosomal damage with respect to low- or high-dose-rate gamma rays. Estimates of RBEmax values for mitotic spreads, which ranged from near 0.7 to 11.1 for total exchanges, increased with LET, reaching a maximum at about 150 keV/microm, and decreased with further increase in LET. RBEs for complex aberrations are undefined due to the lack of an initial slope for gamma rays. Additionally, the effect of mitotic delay on RBE values was investigated by measuring chromosome aberrations in interphase after chemically induced premature chromosome condensation (PCC), and values were up to threefold higher than for metaphase analysis.  相似文献   

14.
Development of the procedure to stimulate peripheral blood lymphocytes has greatly facilitated the understanding of chromosome aberration formation and repair mechanisms in human cells. Yet, because radiation induces far more initial chromosome breaks than are observed as aberrations in metaphase, it has not been possible to examine the kinetics of primary chromosome breakage and rejoining with this procedure. An improved method to induce premature chromosome condensation in unstimulated lymphocytes has been used to study primary chromosome breakage, rejoining, and ring formation at various times after irradiation with up to 800 rad of X-rays. The dose-response relations for chromosome fragments analyzed immediately or 1, 2, or 24 h after exposure were found to be linear. Rapid rejoining of chromosome fragments, which takes place in the first 3 h after X-ray exposure, was not correlated with a simultaneous increase in the formation of rings. The yield of rings per cell scored 24 h after irradiation, however, increased significantly and fit a linear quadratic equation. Both chromosome fragment rejoining and ring formation were completed about 6 h after irradiation. The frequency distributions of rings among cells followed a Poisson distribution, whereas chromosome fragments were overdispersed.  相似文献   

15.
An analysis was performed of unstable chromosomal aberrations in peripheral blood of 36 cosmonauts after long-term space missions on "Mir" orbital station. 25 cosmonauts were examined before their flights to score spontaneous yields of cytogenetical damage. In all cases the doses absorbed by crews during space flights did not exceed permissible levels of irradiation, adopted for cosmonauts. The frequencies of chromosomal-type aberrations after space missions were found to increase significantly compared to the pre-flight levels. The yields of dicentrics and centric rings on the average were as high as 0.12 +/- 0.02 and 0.47 +/- 0.06% before and after the 1st flight, 0.18 +/- 0.05 and 0.71 +/- 0.11% before and after the 2nd flight respectively. During the inter-flight periods, usually lasted 1.5-2 years, the yields of chromosome damage lowered, but did not reach their spontaneous values. After each next flight the yields of chromosome aberrations increased again. The cytogenetical damage detected in cosmonauts' peripheral blood lymphocytes after chronic action of low doses of space radiation points out a possible increase in risks of stochastic effects in distant future for crews after long-term space missions.  相似文献   

16.
Phaeochromocytomas (PCCs) and paragangliomas (PGLs) are rare, catecholamine-producing tumors. Most familial PCC/PGLs have been detected to be autosomal dominantly inherited. However, this study was undertaken in a family with PCCs to determine candidate genes in a dominant or recessive inheritance pattern. After excluding mutations in ten PCC/PGL susceptibility genes by Sanger sequencing, we used whole exome sequencing for screening on the four family members to discover novel candidate genes associated with PCCs. Based on the inexistence of non-synonymous mutations or indels in the ten known genes and the structure of this pedigree, 3 damaging loci with dominant inheritance pattern, and 5 damaging loci with recessive homozygous inheritance pattern and 6 damaging genes with compound heterozygous inheritance pattern were narrowed down to indicate the association with PCCs. According to the Gene Ontology (GO) category analysis on the combined results, cell adhesion showed the most significant enrichment.  相似文献   

17.
Clastogen-induced chromosome damage was investigated in peripheral lymphocytes of five patients with Fanconi anemia (FA), 10 obligate heterozygotes, 25 normal controls, and four individuals with some clinical manifestations of FA. The two agents used were diepoxybutane (DEB) and mitomycin C (MMC), previously reported to be specific for the induction of increased chromosome breakage in FA cells. Following clastogenic stress, two of the five FA patients did not exhibit the expected increase in chromosomal damage while three of the four "non-FA" individuals did. In this series of subjects, the possibility of misdiagnosis is considerable when based on either clinical delineation or cytogenetic results alone. Therefore, the integration of both laboratory data and physical findings is essential before reaching a diagnosis. Furthermore, the broad range of response in both the control group and the parents of FA patients yields overlapping results, making reliable heterozygote detection impractical by these procedures.  相似文献   

18.
Pheochromocytomas (PCCs) are neuroendocrine tumors arising from chromaffin cells of the adrenal medulla. Related tumors that arise from the paraganglia outside the adrenal medulla are called paragangliomas (PGLs). PCC/PGLs are usually benign, but approximately 17% of these tumors are malignant, as defined by the development of metastases. Currently, there are no generally accepted markers for identifying a primary PCC or PGL as malignant. In 2002, Favier et al. described the use of vascular architecture for the distinction between benign and malignant primary PCC/PGLs. The aim of this study was to validate the use of vascular pattern analysis as a test for malignancy in a large series of primary PCC/PGLs. Six independent observers scored a series of 184 genetically well-characterized PCCs and PGLs for the CD34 immunolabeled vascular pattern and these findings were correlated to the clinical outcome. Tumors were scored as malignant if an irregular vascular pattern was observed, including vascular arcs, parallels and networks, while tumors with a regular pattern of short straight capillaries were scored as benign. Mean sensitivity and specificity of vascular architecture, as a predictor of malignancy was 59.7% and 72.9%, respectively. There was significant agreement between the 6 observers (mean κ = 0.796). Mean sensitivity of vascular pattern analysis was higher in tumors >5 cm (63.2%) and in genotype cluster 2 tumors (100%). In conclusion, vascular pattern analysis cannot be used in a stand-alone manner as a prognostic tool for the distinction between benign and malignant PCC, but could be used as an indicator of malignancy and might be a useful tool in combination with other morphological characteristics.  相似文献   

19.
Summary Premature chromosome condensation (PCC) was induced by electrofusion of metaphase cells of an Ehrlich ascites tumor cell line with interphase cells of a Muntjac cell line or of a Chinese Hamster subline. Electrofusion was performed by cell alignment in a weakly inhomogeneous a.c. field of 200 V/cm amplitude (peak-to-peak value) and of 1.7 MHz frequency, followed by the application of a series of breakdown (fusion) pulses of 5 kV/cm strength and 15 µs duration. Most of the PCC's were of the G2 type despite the large proportion of G1 and S cells in the suspension. The number of chromatid aberrations observed in electrofused cells which had not been subjected to irradiation was not significantly above the spontaneous level. This indicates that electrofusion, at least as used here, did not lead to lesions expressed as structural aberrations. When interphase cells were irradiated by X-ray doses below 3 Gy before electrofusion PCC analysis showed chromosome damage consisting mainly of breaks and gaps. The frequency of aberrations recorded by PCC was 6 to 40 fold larger than that seen in conventional metaphase analysis. This large increase probably arose because of an effective suppression of the G2 repair of chromosomal lesions by the fast condensation process which took place within about 30 min. This assumption was supported by PCC experiments in which the time between X-irradiation and fusion with subsequent chromosome condensation was varied. The results demonstrated that G2 repair of chromosomal lesions was not detectable until 20 min after fusion with a half-time of the repair kinetics of about 1.5 h. The selectivity of premature chromosome condensation in G2 cells is discussed in terms of the differences between electrofusion and chemically or virally induced fusion. It is assumed that the concentration and the transfer rate of the chromosome condensation factor from the metaphase to the interphase cell are the limiting factors in achieving PCC. This is because the localised permeabilisation of the membrane and the dominance of two-cell fusions are characteristic of electrofusion.  相似文献   

20.
Patients with the autosomal recessive disorder Fanconi anemia (FA) present with progressive pancytopenia, skeletal abnormalities and a predisposition to leukemia. In addition to elevated rates of spontaneous chromosome aberrations occurring in cultured fibroblasts and lymphoblastoid cell lines, an increased susceptibility to DNA cross-linking agents and oxygen has been found. To explain this hypersensitivity to clastogenic agents a defective function of DNA topoisomerase I or II could be invoked, a suggestion which is supported by the co-localization of the DNA topoisomerase I gene and a putative FA gene to chromosome 20q. In order to investigate the function of DNA topoisomerases in FA, the sensitivity of lymphoid B-cell lines derived from FA patients and control cell lines to inhibitors of DNA topoisomerases I and II was compared using continuous bromodeoxyuridine labeling and bivariate Hoechst/ethidium bromide flow cytometry. Both agents inhibited cell proliferation mainly by arresting cells in the G2 phase of the cell cycle. However, no difference was found in sensitivity towards both DNA topoisomerase inhibitors between control and FA cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号