首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Geotrichum candidum CMICC 335426 was previously shown to produce two lipases termed lipase A and lipase B, lipase B being highly specific for hydrolysis of esters of cis-delta 9 fatty acids. We now describe the isolation of polyclonal antibodies specific for lipase A and lipase B. These antibodies were used in Western blotting techniques to detect the appearance of the lipases during the course of the fermentation of G. candidum CMICC 335426. A and B were found to be produced simultaneously in the extracellular medium at the start of the growth phase. The two lipases were always present at similar levels in the medium. The specific antibodies were then used to detect the presence of A- and B-like lipases in crude lipase samples from other strains of G. candidum. The lipases were found at different levels in all these samples, and the specificities of the crude lipases varied significantly from one strain to another. Differences in specificity could therefore be explained by different levels of specific (B-type) and non-specific (A-type) lipases in the medium. This was verified by purifying A- and B-type lipases from the G. candidum strain ATCC 34614.  相似文献   

2.
A psychrotrophic bacterium producing a cold-adapted lipase was isolated from the deep-sea sediment of Prydz Bay, Antarctic and identified as a Pseudomonas strain. Determination of the nucleotide sequence of the gene encoding a lipase from Pseudomonas sp. 7323 (lipA) revealed that LipA is composed of 617 amino acid residues with a calculated molecular weight of 64,466 Da. LipA has a GXSXG motif, which is conserved in lipases/esterases and generally contains the active-site serine. The lipase purified from the Escherichia coli transformant (rLipA) by metal-chelating chromatography exhibited the same electrophoretic mobility as did the wild-type lipase (wLipA) purified from strain 7323, and both enzymes were quite similar in physicochemical properties. The optimal temperature and pH value for the lipases activity were 30 degrees C and 9.0, respectively. They were unstable at temperatures above 25 degrees C and only retained half of their highest activity after incubation at 60 degrees C for 5 min. These results indicated that the enzymes were typical alkaline cold-adapted enzymes. Both enzymes were particularly activated by Ca(2+). Additionally, the enzymes hydrolyzed p-nitrophenyl caprate and tributyrin at the highest velocity among the other p-nitrophenyl esters and triglycerides.  相似文献   

3.
Labrasol is a lipid-based self-emulsifying excipient used in the preparation of lipophilic drugs intended for oral delivery. It is mainly composed of PEG esters and glycerides with medium acyl chains, which are potential substrates for digestive lipases. The hydrolysis of Labrasol by porcine pancreatic extracts, human pancreatic juice and several purified digestive lipases was investigated in the present study. Classical human pancreatic lipase (HPL) and porcine pancreatic lipase, which are the main lipases involved in the digestion of dietary triglycerides, showed very low levels of activity on the entire Labrasol excipient as well as on separated fractions of glycerides and PEG esters. On the other hand, gastric lipase, pancreatic lipase-related protein 2 (PLRP2) and carboxyl ester hydrolase (CEH) showed high specific activities on Labrasol. These lipases were found to hydrolyze the main components of Labrasol (PEG esters and monoglycerides) used as individual substrates, whereas these esters were found to be poor substrates for HPL. The lipolytic activity of pancreatic extracts and human pancreatic juice on Labrasol(R) is therefore mainly due to the combined action of CEH and PLRP2. These two pancreatic enzymes, together with gastric lipase, are probably the main enzymes involved in the in vivo lipolysis of Labrasol taken orally.  相似文献   

4.
The gene coding for an extracellular lipase of Bacillus licheniformis was cloned using PCR techniques. The sequence corresponding to the mature lipase was subcloned into the pET 20b(+) expression vector to construct a recombinant lipase protein containing 6 histidine residues at the C-terminal. High-level expression of the lipase by Escherichia coli cells harbouring the lipase gene-containing expression vector was observed upon induction with IPTG at 30 degrees C. A one step purification of the recombinant lipase was achieved with Ni-NTA resin. The specific activity of the purified enzyme was 130 units/mg with p-nitrophenyl-palmitate as substrate. The enzyme showed maximum activity at pH 10-11.5 and was remarkably stable at alkaline pH values up to 12. The enzyme was active toward p-nitrophenyl esters of short to long chains fatty acids but with a marked preference for esters with C(6) and C(8) acyl groups. The amino acid sequence of the lipase shows striking similarities to lipases from Bacillus subtilis and Bacillus pumilus. Based on the amino acid identity and biochemical characteristics, we propose that Bacillus lipases be classified into two distinct subfamilies of their own.  相似文献   

5.
糖脂修饰的脂肪酶在有机溶剂中催化酯化反应   总被引:8,自引:0,他引:8  
本文研究了不同糖脂化合物修饰的脂肪酶在有机溶剂中催化长碳链脂肪酸和脂肪醇的酯化反应,不同的脂肪酶经糖脂修饰后,催化活性均有不同程度的提高。在4种糖脂和6种脂肪酶中,以蔗糖酯SE-7修饰脂肪酶CES活性最高,本文还对pH、溶剂和温度等对修饰脂肪酶生的影响进行了研究。  相似文献   

6.
A Sayari  N Agrebi  S Jaoua  Y Gargouri 《Biochimie》2001,83(9):863-871
Staphylococcus simulans strain secretes a non-induced lipase in the culture medium. Staphylococcus simulans lipase (SSL), purified to homogeneity, is a tetrameric protein (160 kDa) corresponding to the association of four lipase molecules. The 30 N-terminal amino acid residues were sequenced. This sequence is identical to the one of Staphylococcus aureus PS54 lipase (SAL PS54) and exhibits a high degree of homology with Staphylococcus aureus NCTC8530 lipase (SAL NCTC8530), Staphylococcus hyicus lipase (SHL) and Staphylococcus epidermis RP62A lipase (SEL RP62A) sequences. But the cloning and sequencing of the part of the gene encoding the mature lipase show some differences from SAL PS54 sequence, which suggest that it is a new sequence. The lipase activity was maximal at pH 8.5 and 37 degrees C. SSL is able to hydrolyze triacylglycerols without chain length specificity. A specific activity of about 1000 U/mg was measured on tributyrin or triolein as substrate at 37 degrees C and at pH 8.5 in the presence of 3 mM CaCl(2). In contrast to other staphylococcal lipases previously characterized, Ca(2+) is not required to express the activity of SSL. SSL was found to be stable between pH 4 and pH 9. The enzyme is inactivated after a few minutes when incubated at 60 degrees C. Using tripropionin as substrate, SSL does not present the interfacial activation phenomenon. In contrast to many lipases, SSL is able to hydrolyze its substrate in the presence of bile salts or amphiphilic proteins.  相似文献   

7.
微生物脂肪酶是一类广泛应用于诸多工业领域的生物催化剂。提高微生物脂肪酶的产量、活性和稳定性,增强产品的市场竞争力,一直是微生物脂肪酶研究的重点和热点。本文从产脂肪酶菌株的改造、脂肪酶基因的改良、脂肪酶发酵工程和脂肪酶后期处理等四个方面概述了提高微生物脂肪酶产量、活性和稳定性的方法,以期为微生物脂肪酶的规模化工业生产提供方法性指导。  相似文献   

8.
We have studied the enzymatic hydrolysis of solutions and emulsions of vinyl propionate, vinyl butyrate and tripropionin by lipases of various origin and specificity. Kinetic studies of the hydrolysis of short-chain substrates by microbial triacylglycerol lipases from Rhizopus oryzae, Mucor miehei, Candida rugosa, Candida antarctica A and by (phospho)lipase from guinea-pig pancreas show that these lipolytic enzymes follow the Michaelis-Menten model. Surprisingly, the activity against solutions of tripropionin and vinyl esters ranges from 70% to 90% of that determined against emulsions. In contrast, a non-hyperbolic (sigmoidal) dependence of enzyme activity on ester concentration is found with human pancreatic lipase, triacylglycerol lipase from Humicola lanuginosa (Thermomyces lanuginosa) and partial acylglycerol lipase from Penicillium camembertii and the same substrates. In all cases, no abrupt jump in activity (interfacial activation) is observed at substrate concentration corresponding to the solubility limit of the esters. Maximal lipolytic activity is always obtained in the presence of emulsified ester. Despite progress in the understanding of structure-function of lipases, interpretation of the mode of action of lipases active against solutions of short-chain substrates remains difficult. Actually, it is not known whether these enzymes, which possess a lid structure, are in open or/and closed conformation in the bulk phase and whether the opening of the lid that gives access to the catalytic triad is triggered by interaction of the enzyme molecule with monomeric substrates or/and multimolecular aggregates (micelles) both present in the bulk phase. From the comparison of the behaviour of lipases used in this study which, in some cases, follow the Michaelis-Menten model and, in others, deviate from classical kinetics, it appears that the activity of classical lipases against soluble short-chain vinyl esters and tripropionin depends not only on specific interaction with single substrate molecules at the catalytic site of the enzyme but also on physico-chemical parameters related to the state of association of the substrate dispersed in the aqueous phase. It is assumed that the interaction of lipase with soluble multimolecular aggregates of tripropionin or short-chain vinyl esters or the formation of enzyme-substrate mixed micelles with ester bound to lipase, might represent a crucial step that triggers the structural transition to the open enzyme conformation by displacement of the lid.  相似文献   

9.
Based on sequence homology to mammalian acid lipases, yeast reading frame YKL140w was predicted to encode a triacylglycerol (TAG) lipase in yeast and was hence named as TGL1, triglyceride lipase 1. A deletion of TGL1, however, resulted in an increase of the cellular steryl ester content. Fluorescently labeled lipid analogs that become covalently linked to the enzyme active site upon catalysis were used to discriminate between the lipase and esterase activities of Tgl1p. Tgl1p preferred single-chain esterase inhibitors over lipase inhibitors in vitro. Under assay conditions optimal for acid lipases, Tgl1p exhibited steryl esterase activity only and lacked any triglyceride lipase activity. In contrast, at pH 7.4, Tgl1p also exhibited TAG lipase activity; however, steryl ester hydrolase activity was still predominant. Tgl1p localized exclusively to lipid droplets which are the intracellular storage compartment of steryl esters and triacylglycerols in the yeast S. cerevisiae. In a tgl1 deletion mutant, the mobilization of steryl esters in vivo was delayed, but not abolished, suggesting the existence of additional enzymes involved in steryl ester mobilization.  相似文献   

10.
Five microbial lipase preparations from several sources were immobilized by hydrophobic adsorption on small or large poly-hydroxybutyrate (PHB) beads and the effect of the support particle size on the biocatalyst activity was assessed in the hydrolysis of olive oil, esterification of butyric acid with butanol and transesterification of babassu oil (Orbignya sp.) with ethanol. The catalytic activity of the immobilized lipases in both olive oil hydrolysis and biodiesel synthesis was influenced by the particle size of PHB and lipase source. In the esterification reaction such influence was not observed. Geobacillus thermocatenulatus lipase (BTL2) was considered to be inadequate to catalyze biodiesel synthesis, but displayed high esterification activity. Butyl butyrate synthesis catalyzed by BTL2 immobilized on small PHB beads gave the highest yield (≈90 mmol L(-1)). In biodiesel synthesis, the catalytic activity of the immobilized lipases was significantly increased in comparison to the free lipases. Full conversion of babassu oil into ethyl esters was achieved at 72 h in the presence of Pseudozyma antarctica type B (CALB), Thermomyces lanuginosus lipase (Lipex(?) 100 L) immobilized on either small or large PHB beads and Pseudomonas fluorescens (PFL) immobilized on large PHB beads. The latter preparation presented the highest productivity (40.9 mg of ethyl esters mg(-1) immobilized protein h(-1)).  相似文献   

11.
Jin J  Li D  Zhu XM  Adhikari P  Lee KT  Lee JH 《New biotechnology》2011,28(2):190-195
The ability of free and immobilized lipase on the production of diacylglycerols (DAG) by transesterification of glycerol monooleate (GMO) and ethyl oleate was investigated. Among three free lipases such as lipase G (Penicillium cyclopium), lipase AK (Pseudomonas fluorescens) and lipase PS (Pseudomonas cepacia), lipase PS exhibited the highest DAG productivity, and the DAG content gradually increased up to 24 hours reaction and then remained steady. The comparative result for DAG productivity between free lipase PS and immobilized lipases (lipase PS-D and Lipozyme RM IM) during nine times of 24 hours reaction indicated that total DAG production was higher in immobilized lipase PS-D (183.5mM) and Lipozyme RM IM (309.5mM) than free lipase PS (122.0mM) at the first reaction, and that the DAG production rate was reduced by consecutive reactions, in which more sn-1,3-DAG was synthesized than sn-1,2-DAG. During the consecutive reactions, the activity of lipase PS was relatively steady by showing similar DAG content, whereas DAG production of lipase PS-D and Lipozyme RM IM was gradually decreased to 69.9 and 167.1mM at 9th reaction, respectively, resulting in 62% and 46% reduced production when compared with 1st reaction. Interestingly, from 7th reaction lipase PS produced more DAG than immobilized lipase PS-D, and exhibited a stable activity for DAG production. Therefore, the present study suggested that DAG productivity between GMO and ethyl oleate was higher in immobilized lipases than free lipases, but the activity was reduced with repeated uses.  相似文献   

12.
We have studied the enzymatic hydrolysis of solutions and emulsions of vinyl propionate, vinyl butyrate and tripropionin by lipases of various origin and specificity. Kinetic studies of the hydrolysis of short-chain substrates by microbial triacylglycerol lipases from Rhizopus oryzae, Mucor miehei, Candida rugosa, Candida antarctica A and by (phospho)lipase from guinea-pig pancreas show that these lipolytic enzymes follow the Michaelis–Menten model. Surprisingly, the activity against solutions of tripropionin and vinyl esters ranges from 70% to 90% of that determined against emulsions. In contrast, a non-hyperbolic (sigmoidal) dependence of enzyme activity on ester concentration is found with human pancreatic lipase, triacylglycerol lipase from Humicola lanuginosa (Thermomyces lanuginosa) and partial acylglycerol lipase from Penicillium camembertii and the same substrates. In all cases, no abrupt jump in activity (interfacial activation) is observed at substrate concentration corresponding to the solubility limit of the esters. Maximal lipolytic activity is always obtained in the presence of emulsified ester. Despite progress in the understanding of structure–function of lipases, interpretation of the mode of action of lipases active against solutions of short-chain substrates remains difficult. Actually, it is not known whether these enzymes, which possess a lid structure, are in open or/and closed conformation in the bulk phase and whether the opening of the lid that gives access to the catalytic triad is triggered by interaction of the enzyme molecule with monomeric substrates or/and multimolecular aggregates (micelles) both present in the bulk phase. From the comparison of the behaviour of lipases used in this study which, in some cases, follow the Michaelis–Menten model and, in others, deviate from classical kinetics, it appears that the activity of classical lipases against soluble short-chain vinyl esters and tripropionin depends not only on specific interaction with single substrate molecules at the catalytic site of the enzyme but also on physico-chemical parameters related to the state of association of the substrate dispersed in the aqueous phase. It is assumed that the interaction of lipase with soluble multimolecular aggregates of tripropionin or short-chain vinyl esters or the formation of enzyme–substrate mixed micelles with ester bound to lipase, might represent a crucial step that triggers the structural transition to the open enzyme conformation by displacement of the lid.  相似文献   

13.
The partitioning of a variety of extracellular lipases, both pro- and eucaryotic, in detergent-based aqueous two-phase systems was examined. The results revealed that all procaryotic lipases showed a clear preference for the detergent-rich coacervate phase. In contrast, all eucaryotic lipases were significantly excluded from this phase, most probably caused by their glycosylation. The potential of such detergent-based systems for the isolation of extracellular lipases directly from cell-free culture broth was analyzed using the bacterium Pseudomonas cepacia (DSM 50181). This strain was identified after a limited screening for lipase activity. About 76% of the lipase could be extracted into the coacervate phase in just one purification step, leading to a four-fold concentration of lipase and a purification factor of 24.  相似文献   

14.
X Wu  J Xu  P You  B Gao  E Su  D Wei 《BMC biotechnology》2012,12(1):58
ABSTRACT: BACKGROUND: Microbial lipases particularly Pseudomonas lipases are widely used for biotechnological applications. It is a meaningful work to design experiments to obtain high-level active lipase. There is a limiting factor for functional overexpression of the Pseudomonas lipase that a chaperone is necessary for effective folding. As previously reported, several methods had been used to resolve the problem. In this work, the lipase (LipA) and its chaperone (LipB) from a screened strain named AB which belongs to Pseudomonas aeruginosa were overexpressed in E.coli with two dual expression plasmid systems to enhance the production of the active lipase LipA without in vitro refolding process. RESULTS: In this work, we screened a lipase-produced strain named AB through the screening procedure, which was identified as P. aeruginosa on the basis of 16S rDNA. Genomic DNA obtained from the strain was used to isolate the gene lipA (936 bp) and lipase specific foldase gene lipB (1023 bp). One single expression plasmid system E.coli BL21/pET28a-lipAB and two dual expression plasmid systems E.coli BL21/pETDuet-lipA-lipB and E.coli BL21/pACYCDuet-lipA-lipB were successfully constructed. The lipase activities of the three expression systems were compared to choose the optimal expression method. Under the same cultured condition, the activities of the lipases expressed by E.coli BL21/pET28a-lipAB and E.coli BL21/pETDuet-lipA-lipB were 1300U/L and 3200U/L, respectively, while the activity of the lipase expressed by E.coli BL21/pACYCDuet-lipA-lipB was up to 8500U/L. The lipase LipA had an optimal temperature of 30[degree sign]C and an optimal pH of 9 with a strong pH tolerance. The active LipA could catalyze the reaction between fatty alcohols and fatty acids to generate fatty acid alkyl esters, which meant that LipA was able to catalyze esterification reaction. The most suitable fatty acid and alcohol substrates for esterification were octylic acid and hexanol, respectively. CONCLUSIONS: The effect of different plasmid system on the active LipA expression was significantly different. pACYCDuet-lipA-lipB was more suitable for the expression of active LipA than pET28a-lipAB and pETDuet-lipA-lipB. The LipA showed obvious esterification activity and thus had potential biocatalytic applications. The expression method reported here can give reference for the expression of those enzymes that require chaperones.  相似文献   

15.
Biochemical and molecular characterization of Staphylococcus xylosus lipase   总被引:1,自引:0,他引:1  
The Staphylococcus xylosus strain secretes a non-induced lipase in culture medium: S. xylosus lipase (SXL). Pure SXL is a monomeric protein (43 kDa). The 23 N-terminal amino acid residues were sequenced. This sequence is identical to that of Staphylococcus simulans lipase (SSL); in addition, it exhibits a high degree of homology with Staphylococcus aureus lipase (SAL NCTC 8530) sequences. The cloning and sequencing of gene part encoding the mature lipase shows one nucleotide difference with SSL, which corresponds to the change of one residue at a position 311. The lipase activity is maximal at pH 8.2 and 45 degrees C. SXL is able to hydrolyse triacylglycerols without chain length specificity. The specific activity of about 1900 U/mg was measured using tributyrin or triolein as substrate at pH 8.2 and at 45 degrees C in the presence of 2 mM CaCl2. In contrast to some previously characterized staphylococcal lipases, Ca2+ is not required to trigger the activity of SXL. SXL was found to be stable between pH 5 and pH 8.5. The enzyme maintains 50% of its activity after a 15-min incubation at 60 degrees C. Using tripropionin or vinyl esters as substrates, SXL does not present the interfacial activation phenomenon. Unlike many lipases, SXL is able to hydrolyse its substrate in the presence of bile salts or amphiphilic proteins. SXL is a serine enzyme, which is inhibited by THL.  相似文献   

16.
The gene encoding a poly(DL-lactic acid) (PLA) depolymerase from Paenibacillus amylolyticus strain TB-13 was cloned and overexpressed in Escherichia coli. The purified recombinant PLA depolymerase, PlaA, exhibited degradation activities toward various biodegradable polyesters, such as poly(butylene succinate), poly(butylene succinate-co-adipate), poly(ethylene succinate), and poly(epsilon-caprolactone), as well as PLA. The monomeric lactic acid was detected as the degradation product of PLA. The substrate specificity toward triglycerides and p-nitrophenyl esters indicated that PlaA is a type of lipase. The gene encoded 201 amino acid residues, including the conserved pentapeptide Ala-His-Ser-Met-Gly, present in the lipases of mesophilic Bacillus species. The identity of the amino acid sequence of PlaA with Bacillus lipases was no more than 45 to 50%, and some of its properties were different from those of these lipases.  相似文献   

17.
Summary Three strains of Geotrichum candidum (ATCC 34614, NRRL Y-552 and NRRL Y-553) were examined for lipase production and activity. Variables including medium, pH, temperature, agitation rate and incubation time were examined to define the optimal culture conditions. Growth on oil in complex medium at 30°C, 300 rpm, and pH 7 produced maximal lipase activity. Fatty acid specificity of these strains and of two crude G. candidum enzyme preparations (lipase 26557 RP, Rhône Poulenc and lipase GC-4, Amano) was measured using equimolar mixtures of methyl or butyl esters of palmitic and oleic acids. The lipase from NRRL Y-553 and lipase 26557 RP displayed preferential specificity for hydrolyzing oleic acid esters, while the lipases from ATCC 34614, NRRL Y-552 and lipase GC-4 failed to discriminate between plamitic and oleic acids.  相似文献   

18.
Low-temperature lipase from psychrotrophic Pseudomonas sp. strain KB700A   总被引:6,自引:0,他引:6  
We have previously reported that a psychrotrophic bacterium, Pseudomonas sp. strain KB700A, which displays sigmoidal growth even at -5 degrees C, produced a lipase. A genomic DNA library of strain KB700A was introduced into Escherichia coli TG1, and screening on tributyrin-containing agar plates led to the isolation of the lipase gene. Sequence analysis revealed an open reading frame (KB-lip) consisting of 1,422 nucleotides that encoded a protein (KB-Lip) of 474 amino acids with a molecular mass of 49,924 Da. KB-Lip showed 90% identity with the lipase from Pseudomonas fluorescens and was found to be a member of Subfamily I.3 lipase. Gene expression and purification of the recombinant protein were performed. KB-Lip displayed high lipase activity in the presence of Ca2+. Addition of EDTA completely abolished lipase activity, indicating that KB-Lip was a Ca2+-dependent lipase. Addition of Mn2+ and Sr2+ also led to enhancement of lipase activity but to a much lower extent than that produced by Ca2+. The optimal pH of KB-Lip was 8 to 8.5. The addition of detergents enhanced the enzyme activity. When p-nitrophenyl esters and triglyceride substrates of various chain-lengths were examined, the lipase displayed highest activity towards C10 acyl groups. We also determined the positional specificity and found that the activity was 20-fold higher toward the 1(3) position than toward the 2 position. The optimal temperature for KB-Lip was 35 degrees C, lower than that for any previously reported Subfamily I.3 lipase. The enzyme was also thermolabile compared to these lipases. Furthermore, KB-Lip displayed higher levels of activity at low temperatures than did other enzymes from Subfamily I.3, indicating that KB-Lip has evolved to function in cold environments, in accordance with the temperature range for growth of its psychrotrophic host, strain KB700A.  相似文献   

19.
The fluorescent organophosphorus esters, diethyl 4-methylumbelliferyl phosphate (1), ethyl hexyl 4-methylumbelliferyl phosphate (2) and ethyl 4-methylumbelliferyl heptylphosphonate (3) have been synthesized and evaluated as a sensitive active-site titrant of lipase. The phosphorus esters 1, 2 and 3 inactivated the lipase from Pseudomonas aeruginosa (LPL-312) with a second-order rate constant for enzyme inactivation (k(on)) of 1.8, 32 and 5600 s(-1) M(-1), respectively. The long-chain phosphonate 3 turned out to be the most potent inactivator of the lipase to release a stoichiometric amount of highly fluorescent 4-methylumbelliferone (4MU) as a leaving group. By using the phosphate 3 as an active-site titrant, the low concentration (4.5 nM) of the active lipase was titrated successfully. The highly sensitive active-site titration with 3 enabled the direct determination of the concentration of the active lipase expressed in a microscale culture medium. Although the expression level differed significantly from one culture to another, the titrated concentration of the active lipase was proportional to the apparent activity for all the independent cultures. The molecular activity calculated for the expressed lipase was found to be the same as that of the purified lipase. The present active-site titration method is widely applicable to the biocatalytic engineering of lipases such as directed evolution, site-directed mutagenesis, chemical modification and immobilization.  相似文献   

20.
Thermostable and organic solvent-tolerant enzymes have significant potential in a wide range of synthetic reactions in industry due to their inherent stability at high temperatures and their ability to endure harsh organic solvents. In this study, a novel gene encoding a true lipase was isolated by construction of a genomic DNA library of thermophilic Aneurinibacillus thermoaerophilus strain HZ into Escherichia coli plasmid vector. Sequence analysis revealed that HZ lipase had 62% identity to putative lipase from Bacillus pseudomycoides. The closely characterized lipases to the HZ lipase gene are from thermostable Bacillus and Geobacillus lipases belonging to the subfamily I.5 with ≤ 57% identity. The amino acid sequence analysis of HZ lipase determined a conserved pentapeptide containing the active serine, GHSMG and a Ca2+-binding motif, GCYGSD in the enzyme. Protein structure modeling showed that HZ lipase consisted of an α/β hydrolase fold and a lid domain. Protein sequence alignment, conserved regions analysis, clustal distance matrix and amino acid composition illustrated differences between HZ lipase and other thermostable lipases. Phylogenetic analysis revealed that this lipase represented a new subfamily of family I of bacterial true lipases, classified as family I.9. The HZ lipase was expressed under promoter Plac using IPTG and was characterized. The recombinant enzyme showed optimal activity at 65°C and retained ≥ 97% activity after incubation at 50°C for 1h. The HZ lipase was stable in various polar and non-polar organic solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号