首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phenylalanine (Phe) synthesis and the production of other related compounds by mixed ruminal bacteria (B), protozoa (P), and a combination of the two mixture (BP) in an in vitro system were quantitatively investigated using phenylpyruvic acid (PPY) and phenylacetic acid (PAA) as substrates. Rumen microorganisms were collected from fistulated goats fed lucerne cubes (Medicago sativa) and a concentrated mixture twice a day. Microbial suspensions were anaerobically incubated at 39 degrees C for 12 h. Phe and some other related compounds in both supernatants and microbial hydrolysates of the incubations were analysed by HPLC. A large quantity of Phe was produced from both PPY and PAA not only in B but also in P. In B suspensions, free Phe also accumulated in the medium only when PPY was used as a substrate. The ability of B to synthesize Phe from both PPY and PAA (expressed as unit 'per microbial nitrogen') was 5.1 and 24.8% higher than P, respectively. Phe production from PPY in B and P was 43.5 and 55.2% higher than that from PAA. Large amounts of PAA (17-27%) were produced from PPY in all microbial suspension and production amounts were similar in B and P. Small amounts of benzoic acid (BZA) were produced from PPY and PAA in B, P, and BP, and higher BZA production was observed in P as compared to B. Phenylpropionic acid (PPR) was produced in B from both PPY and PAA, but not in P or BP. A trace amount of phenyllactic acid (PLA) was detected only from PPY in B. Higher concentrations of an unknown compound from PPY and PAA were found to be accumulated in the body protein of B and also in the medium of P, and production of the compound from both PPY and PAA was also higher in B than P.  相似文献   

2.
A rapid method for determination of phenylalanine (Phe), tyrosine (Tyr), benzoic acid (BZA), phenylacetic acid (PAA), phenyllactic acid (PLA), phenylpyruvic acid (PPY), phenylpropionic acid (PPR), and cinnamic acid (CNM) in goat rumen fluid was established by high-performance liquid chromatography (HPLC). The mobile phase used for isocratic elution was methanol-sodium acetate buffer (pH 6.5) (8:92, v/v). The compounds were monitored at 220 nm with a UV detector. A 5-μl portion of the filtrated rumen was analyzed and the analysis was completed within 20 min. The minimum detectable limits (μM) of these compounds were: 12 for Phe, 3 for Tyr, 3 for BZA, 9 for PAA, 12 for PLA, 15 for PPY, 20 for PPR, and 8 for CNM. The average contents of Phe, BZA, PAA, PLA, and PPR in the rumen fluid of three goats were 15.4, 73.7, 615.9, 51.1, and 39.9 μM before morning feeding, 17.0, 123.7, 650.4, 208.2, and 502.4 μM at 3 h after feeeding, and 18.4, 124.2, 510.0, 129.9, and 178.5 μM at 6 h after feeding, respectively. Of these compounds PAA was present at the highest concentration both before and after feeding. The content of PPR extremely increased especially at 3 h after feeding. The other three compounds, i.e. Tyr, PPY, and CNM, were not detected in goat rumen fluid.  相似文献   

3.
A rapid method for the quantitative determination of tyrosine (Tyr), phenylalanine (Phe), p-hydroxybenzoic acid (HBA), p-hydroxyphenylacetic acid (HPA), benzoic acid (BZA), p-hydroxyphenylpyruvic acid (HPY), phenylacetic acid (PAA), phenyllactic acid (PLA), tryptophan (Trp), indoleacetic acid (IAA), phenylpyruvic acid (PPY), phenylpropionic acid (PPA) and cinnamic acid (CNA) in goat rumen fluid was established by high-performance liquid chromatography (HPLC). The mobile phase used for isocratic elution was 50 mM sodium phosphate buffer (pH 6.5)–methanol (97:3, v/v). The flow-rate was 1.0 ml/min; column temperature 40°C and compounds were monitored at 215 nm with a UV absorbance detector after injection of 10 μl of filtered rumen fluid. Analysis was completed within 40 min. The minimum detectable limits of quantification (μM) of these compounds were Tyr, 2; Phe, 3; HBA, 1; HPA, 2; BZA, 2; HPY, 8; PAA, 3; PLA, 4; Trp, 2; IAA, 2; PPY, 15; PPA, 8 and CNA, 4. Detectable levels of Tyr, Phe, HPA, BZA, HPY, PAA, PLA, Trp and PPA were found in the deproteinized rumen fluid of goat fed a haycube and concentrate mixture. PAA was the predominant compound before and after feeding. The concentrations of HPA, BZA, PAA, PLA and PPA in the goat rumen fluid increased after feeding, while the concentration of Tyr decreased. Phe, HPY and Trp were minor components at all times. PPY, IAA and CNA were not detected and HBA was not completely resolved in the goat rumen fluid.  相似文献   

4.
An in vitro study was conducted to examine the effects of salinomycin (SL) and vitamin B(6) (B(6)) on the production of phenylalanine (Phe) from phenylpyruvic acid (PPY) and phenylacetic acid (PAA) and of PAA from Phe and PPY by mixed rumen bacteria (B), mixed rumen protozoa (P) and their mixture (BP). Rumen microorganisms were collected from fistulated goats fed lucerne cubes (Medicago sativa) and a concentrate mixture (3 : 1) twice a day. Microbial suspensions were anaerobically incubated at 39 degrees C for 12 h. Phe and some other related compounds in both supernatants and microbial hydrolysates of the incubations were analyzed by HPLC. When PPY was used as a substrate, it completely disappeared without additives and converted mainly to Phe and PAA on the average by 396 and 178, 440 and 189, and 439 and 147 &mgr;M in B, P and BP, respectively, during the 12 h incubation period. The rate of disappearance showed no significant differences between the microbial suspensions with and without SL and B(6) during the incubation period. The production of Phe from PPY with SL was enhanced (p<0.05) by 40, 20 and 19% in B, P and BP, respectively, while PAA production from PPY with SL was inhibited (p<0.05) by 35, 37 and 38% in B, P and BP, respectively, during the 12 h incubation period. On the other hand, with B(6), the production of Phe and PAA from PPY tended to be enhanced by 14 and 17, 9 and 11, and 7 and 22% in B, P and BP, respectively, during the 12 h incubation period. When PAA added as a substrate was incubated in the incubation medium without any additives, it disappeared by 483, 462 and 507 &mgr;M and converted mainly to Phe on the average by 231, 244 and 248 &mgr;M in B, P and BP, respectively. The disappearance of PAA with SL was inhibited (p<0.05) by 16, 15 and 20%, in B, P and BP, respectively, whereas the disappearance of PAA with B6 was almost the same as that without B(6) in B and BP suspensions but tended to be enhanced by more than 9% in P suspensions during the 12 h incubation period. The production of Phe from PAA with SL tended to be inhibited by 12, 11 and 8% in B, P and BP, respectively, during the 6 h incubation period, but the inhibition was weakened during the 12 h incubation period, whereas Phe production from PAA with B(6) tended to be enhanced by 13, 16 and 8% in B, P and BP, respectively. When Phe was added as a substrate, the net Phe disappearance without additives was 549, 365 and 842 &mgr;M and converted mainly to PAA on the average by 254, 205 and 461 &mgr;M in B, P and BP, respectively. The net disappearance of Phe with SL was inhibited (p<0.05) by 38, 28 and 46%, whereas the net disappearance of Phe with B(6) was enhanced (p<0.05) by 9, 8 and 7% in B, P and BP, respectively. The production of PAA from Phe with SL was inhibited (p<0.05) by 73, 54 and 76% in B, P and BP, respectively. On the other hand, with B(6), PAA production from Phe was enhanced (p<0.05) by 19, 18 and 20% in B, P and BP, respectively. Based on these results, it seems that SL inhibited Phe disappearance and enhanced the synthesis of Phe from PPY, though not from PAA, and accumulated free Phe in the medium, whereas B(6) also enhanced Phe synthesis both from PPY and PAA, which could provide additional amino N for animals.  相似文献   

5.
Summary Rumen contents from three fistulated Japanese native goats fed Lucerne hay cubes (Medicago sativa) and concentrate mixture were collected to prepare the suspensions of mixed rumen bacteria (B), mixed protozoa (P) and a combination of the two (BP). Microbial suspensions were anaerobically incubated at 39°C for 12h with or without 1 MM ofl-phenylalanine (Phe). Phe, tyrosine (Tyr) and other related compounds in both supernatant and microbial hydrolysates of the incubations were analyzed by HPLC. Tyr can be produced from Phe not only by rumen bacteria but also by rumen protozoa. The production of Tyr during 12h incubation in B (183.6 mol/g MN) was 4.3 times higher than that in P. One of the intermediate products between Phe and Tyr seems to bep-hydroxyphenylacetic acid. The rate of the net degradation of Phe incubation in B (76.O mol/g MN/h) was 2.4 times higher than in P. In the case of all rumen microorganisms, degraded Phe was mainly (>53%) converted into phenylacetic acid. The production of benzoic acid was higher in P than in B suspensions. Small amount of phenylpyruvic acid was produced from Phe by both rumen bacteria and protozoa, but phenylpropionic acid and phenyllactic acid were produced only by rumen bacteria.  相似文献   

6.
Summary. Aromatic amino acid biosynthesis and production of related compounds from p-hydroxyphenylpyruvic acid (HPY) by mixed rumen bacteria (B), protozoa (P), and their mixture (BP) in an in vitro system were quantitatively investigated. Microbial suspensions prepared from mature, fistulated goats fed Lucerne (Medicago sativa) cubes and a concentrate mixture were anaerobically incubated at 39°C for 12 h. Tyrosine (Tyr), phenylalanine (Phe), tryptophan (Trp) and other related compounds in both supernatants and hydrolyzates of all incubations were analyzed by HPLC. Large amounts of Tyr (27.0, 47.0 and 50.8% of disappeared HPY in B, P and BP, respectively) were produced from 1 mM HPY during a 12-h incubation period. The formation of Tyr in P was 1.8 and 1.6 times higher than those in B and BP, respectively. Appreciable amounts of Phe (3–12% of the disappeared HPY) and Trp (2–10% of the disappeared HPY) were also produced from HPY in B, P, and BP. Phe synthesis in B and P was almost similar but Trp synthesis in B was 1.8 times higher than that in P. The biosynthesis of both Phe and Trp from HPY in BP was higher than those in B plus P. A large amount of p-hydroxyphenylacetic acid (about 45% of the disappeared HPY) was produced from HPY in B which was 1.9 times higher than that in P. p-Hydroxybenzoic acid produced from HPY in P was 1.6 times higher than that in B. Considerable amounts of phenylpropionic acid, phenyllactic acid, and phenylpyruvic acid (2–6% of the disappeared HPY) were produced only in B. Received March 21, 2001 Accepted July 4, 2001  相似文献   

7.
An in vitro study was conducted to examine the metabolism of histidine (His) by mixed rumen bacteria (B), mixed rumen protozoa (P), and a combination of the two (BP). Rumen microorganisms were collected from fistulated goats fed with lucerne cubes (Medicago sativa) and a concentrate mixture twice a day. Microbial suspensions were anaerobically incubated with or without 2 mm each of His, or histamine (HTM), or 1 mm urocanic acid (URA) at 39°C for 12 h. His and other related compounds in both supernatant and microbial hydrolysates were analyzed by HPLC. After 6- and 12-h incubations, the net degradation of His was 26.1% and 51.7% in B, 13.5% and 20.9% in P, and 21.7% and 46.0% in BP, respectively. The rate of the net degradation of His in B (98.0 μmol/g microbial nitrogen/h) was about 2.6 times higher than that of P during a 12-h incubation period. His was found to be degraded into urocanic acid (URA), imidazolelactic acid (ImLA), imidazoleacetic acid (ImAA), and histamine (HTM). Of these degraded His was mainly converted into URA in all microbial suspensions. The production of ImLA and ImAA was higher in B than in P suspensions, whereas the production of HTM was higher in P than in B suspensions. From these results, the existence of diverse catabolic routes of His in rumen microorganisms was indicated. Received: 23 May 2000 / Accepted: 31 July 2000  相似文献   

8.
The possibility of histidine (His) synthesis using a main biosynthetic pathway involving histidinol (HDL) and also the recycling capability of imidazolic compounds such as imidazolepyruvic acid (ImPA), imidazoleacetic acid (ImAA), and imidazolelactic acid (ImLA) to produce His were investigated using mixed ruminal bacteria (B), protozoa (P), and a mixture of both (BP) in an in vitro system. Rumen microorganisms were anaerobically incubated at 39 degrees C for 18 h with or without each substrate (2 mM) mentioned. His and other related compounds produced in both the supernatants and hydrolyzates of the incubation were analyzed by high-performance liquid chromatography. B, P, and BP suspensions failed to show His synthesizing ability when incubated with HDL. His was synthesized from ImPA by B, P, and BP. Expressed in units "per gram of microbial nitrogen (MN)", ImPA disappearance was greatest in B (72.7 micromol/g MN per hour), followed by BP (33.13 micromol/g MN per hour) and then P (18.6 micromol/g MN per hour) for the 18-h incubation period. The production of His from ImPA in B (240.0, 275.9, and 261.2 micromol/g MN in 6, 12, and 18 h incubation, respectively) was about 3.5 times higher than that in P (67.3, 83.8, and 72.7 micromol/g MN in 6, 12, and 18 h incubation, respectively). Other metabolites produced from ImPA were ImLA, ImAA, histamine (HTM), and urocanic acid (URA), found in all microbial suspensions. ImLA as a substrate remained without diminution in all microbial suspensions. Although ImAA was found to be degraded to a small extent (3.4-6.3%) only after 18 h incubation, neither His nor other metabolites were detected on the chromatograms. These results have been demonstrated for the first time in rumen microorganisms and suggest that His may be an essential amino acid for rumen microorganisms.  相似文献   

9.
This study quantitatively investigated the biosynthesis of methionine (Met) and the production of related compounds from homocysteine (Hcys), cystathionine (Cysta), and homoserine (Hser) plus cysteine (Cys) by rumen bacteria (B) or protozoa (P) alone and by a mixture of these bacteria and protozoa (BP). Rumen contents were collected from fistulated goats to prepare the microbial suspensions and were anaerobically incubated at 39 degrees C for 12 h. Hcys, Cysta, and Hser plus Cys were catabolized by all rumen microbial fractions to different extents. B, P, and BP converted Hcys to Met with 2-aminobutyric acid (2AB) and methionine sulfoxide. The Met-producing ability of B (83.2 micromol g(-1) microbial nitrogen; MN) from Hcys was about 3.6 times higher than that of P in a 6-h incubation period. The ability of BP, during the same incubation period, was about 30.0% higher than that of B. Hcys, Met, and 2AB were formed when Cysta was incubated with B, P, or BP. Rumen microbial fermentation of Hser plus Cys led to the formation of Cysta, Met (through Hcys), and 2AB. Thus the results indicated that a trans-sulfurylation pathway for Met synthesis was operating in the rumen bacteria and protozoa. The results mentioned above have been demonstrated for the first time in B, P, and BP in the present study.  相似文献   

10.
The biosynthesis of threonine (Thr) by using the main biosynthetic pathway involving homoserine (Hser) was quantitatively investigated by mixed rumen bacteria (B), protozoa (P), and their mixture (BP) in an in vitro system. Rumen contents were collected from fistulated goats to prepare the microbial suspensions and were incubated anaerobically at 39°C for 12 h with or without Hser (2 mm) as a substrate. Thr and other related compounds produced in both the supernatants and hydrolysates of the incubation were analyzed by HPLC. During a 12-h incubation period, 84.2%, 58.1%, and 92.0% of Hser disappeared in B, P, and BP suspensions, respectively. Rumen bacteria and the mixture of rumen bacteria and protozoa were demonstrated for the first time to produce Thr from Hser, and the production of Thr from Hser in BP (371.9 and 297.2 μmol/g MN) (MN, microbial nitrogen) was about 13.0% and 9.1% higher than that in B alone (329.2 and 272.5 μmol/g MN) during 6- and 12-h incubations, respectively. On the other hand, mixed rumen protozoa were unable to synthesize Thr from Hser. Other metabolites produced from Hser were found to be glycine (Gly) and 2-aminobutyric acid (2AB) in B and BP. In P, Gly and 2AB were not found. The results mentioned above indicated the abilities of rumen bacteria and the mixture of rumen bacteria and protozoa to synthesize Thr de novo from Hser and appeared as first-time report. Received: 24 May 2000/Accepted: 4 August 2000  相似文献   

11.
Tryptophan (Trp) biosynthesis and production of other related compounds from 1 mM each of indole (IND), L-serine (Ser), and IND plus Ser by mixed ruminal bacteria (B), protozoa (P), and their mixture (BP) in an in vitro system were quantitatively investigated. Ruminal microorganisms were anaerobically incubated at 39°C for 12 h. Trp and other related compounds produced in both the supernatants and microbial hydrolyzates of the incubation were analyzed by HPLC. B, P, and BP suspensions were not able to produce Trp when incubated with only IND or Ser. Appreciable amounts of Trp (9.8, 3.1, and 6.6% of substrate) were produced from IND plus Ser after 12 h by B, P, and BP suspensions, respectively. Trp produced from IND + Ser in B was found only in the hydrolyzate, whereas it was found in the medium as a free form in P after a 12-h incubation period. Rumen bacteria and protozoa were separately demonstrated for the first time to produce Trp from IND plus Ser, and the ability of P to produce Trp from IND plus Ser was about one-third that of B in 12 h. Trp produced from IND plus Ser by B, P, and BP suspensions was simultaneously degraded into its related compounds, and, among them, indoleacetic acid (IAA) was a major product found in B. Production of IAA was 4.3, 0.3, and 3.2% of IND in 12 h by B, P, and BP suspensions, respectively. A small amount of skatole (SKT) (1.1 and 2.5% in B and BP, respectively) and p-cresol (CRL) (2.4 and 3.4% in B and BP, respectively) were also produced from IND plus Ser during 12-h incubation. P suspension produced no SKT or CRL from IND plus Ser in 12-h incubation. These results suggested for the first time that both rumen bacteria and protozoa have an ability to produce Trp from IND plus Ser, and the ability was higher in B than in P. The ratios of Trp produced from IND plus Ser to that from indolepyruvic acid by B, P, and BP were 1:3.4, 1:14.2, and 1:6.6 during 12-h incubation period. From these results, the degree of importance of producing Trp from IND plus Ser in the rumen was indicated. Received: 18 February 1999 / Accepted: 18 May 1999  相似文献   

12.
Benzylideneacetone (BZA) is a metabolite of gram-negative entomopathogenic bacterium Xenorhabdus nematophila, and it acts as an enzyme inhibitor against phospholipase A2 (PLA2). PLA2 catalyzes a committed biosynthetic step of eicosanoids, which mediate insect immune reactions to infection by microbial pathogens. This study tested a hypothesis that a putative immunosuppressive activity of BZA may enhance virulence of Bacillus thuringiensis against the fifth instars of Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). In in vitro conditions, BZA significantly inhibited hemocyte microaggregation induced by B. thuringiensis and impaired hemocyte-spreading behavior of S. exigua in a dose-dependent manner. Oral administration of BZA gave similar immunosuppressive effect on the hemocytes of the fifth instars. Although BZA itself did not possess any insecticidal activity on oral administration, when BZA was treated in a mixture with a low dose of B. thuringiensis spp. aizawai to fifth instars, the bacterial virulence was significantly enhanced. BZA also enhanced virulence of B. thuringiensis spp. kurstaki, which alone was of limited effectiveness against S. exigua. This study suggests that an immunosuppression by BZA is positively linked to potentiation of B. thuringiensis.  相似文献   

13.
Summary. In vitro studies were conducted to examine the metabolism of methionine (Met) and threonine (Thr) using mixed ruminal bacteria (B), mixed ruminal protozoa (P), and a combination of these two (BP). Rumen microorganisms were collected from fistulated goats fed with lucerne cubes (Medicago sativa) and a concentrate mixture twice a day. Microbial suspensions were anaerobically incubated with or without 1 mM each of the substrates at 39°C for 12 h. Met, Thr and their related amino compounds in both the supernatants and microbial hydrolyzates of the incubation were analyzed by HPLC. Met was degraded by 58.7, 22.1, and 67.3% as a whole in B, P, and BP suspensions, respectively, during 12 h incubation. In the case of Thr, these values were 67.3, 33.4, and 76.2% in B, P, and BP, respectively. Met was catabolized by all of the three microbial suspensions to methionine sulfoxide and 2-aminobutyric acid. Catabolism of Thr by B and BP resulted in the production of glycine and 2-aminobutyric acid, while P produced only 2-aminobutyric acid. From these results, the existence of diverse catabolic routes of Met and Thr in rumen microorganisms was indicated. Received August 2, 2000 Accepted February 27, 2001  相似文献   

14.
Linoleic acid was differentially catabolized by the various rumen microbial fractions, such as rumen bacteria (B), protozoa (P), and their mixture (BP). The predominant isomer of conjugated linoleic acids (CLA) synthesized by B, P, and BP from linoleic acid was 9c11t-CLA. The formation of 9c11t-CLA was higher (P < 0.05) in P suspension (53.6 μg/mg microbial nitrogen) compared with B (38.3 μg/mg microbial nitrogen) and BP (28.8 μg/mg microbial nitrogen) suspensions by 12 h of incubation. The second most abundant CLA isomer was 10t12c. The accumulation of 10t12c-CLA in BP suspension was 2.3 times lower (P < 0.05) than that in B suspension (84.8 μg/mg microbial nitrogen) by 12 h of incubation. The accumulation of 10t-18:1 in BP suspension during 6- and 12-h incubation periods were not different (P > 0.05) than that in B suspension (6.8 and 14.0 μg/mg microbial nitrogen, respectively). However, the accumulation of 11t-18:1 in BP suspension at 6- and 12-h incubations were 2.7 and 3.3 times higher (P < 0.05), respectively, than that in B suspension. There were no significant accumulations of 11t-18:1, 10t-18:1, and 18:0 in P suspension throughout the incubation period. It was concluded that B, P, and BP metabolized linoleic acid to different isomers of CLA, whereas B, including BP, was only capable of biohydrogenating the CLA isomers to 18:0 by the reduction of 18:1 isomers. P was incapable of biohydrogenating LA, but its association with B in the BP suspension altered the biohydrogenation of LA significantly compared with B alone.  相似文献   

15.
K M Denno  T W Sadler 《Teratology》1990,42(5):565-570
The aim of this study was to determine the teratogenicity of phenylalanine (Phe) and Phe metabolites in neurulating mouse embryos. Therefore, the system of whole embryo culture was employed and D9 (neurulating) mouse embryos were exposed to Phe, phenylethylamine (PEA), phenylpyruvic acid (PPA), phenylacetic acid (PAA), 2-OH phenylacetic acid (2-OH PAA), and phenyl-lactic acid (PLA) at concentrations ranging from 0.01 mM to 10 mM for 24 hours. After 24 hours, embryos were examined for morphological abnormalities and protein content by the Lowry method. Phe at 1 and 6 mM concentrations was not teratogenic; however, 10 mM inhibited cranial neural tube closure in 82% of the embryos. PEA was the most toxic factor and concentrations of 1 and 10 mM were embryo-lethal, whereas neural tube closure defects (NTDs) were observed in 67% of the embryos at 0.1 mM. 2-OH PAA was the second most toxic metabolite with concentrations of 1 and 10 mM producing NTDs in 10 and 100% of the embryos, respectively. PLA and PAA produced no NTDs at concentrations of 1 mM, 60% at 5 mM, and 100% at 10 mM. Finally, PPA produced approximately 50% NTDs at both 1 mM and 10 mM concentrations. PLA, PAA, 2-OH PAA, and PPA produced a significant reduction in embryonic protein, and PEA and 2-OH PAA reduced yolk sac protein values. PEA, 2-OH PAA, PPA, PAA, and PLA also produced craniofacial abnormalities, i.e., incomplete expansion of the forebrain, collapse of the optic vesicle, and hypoplasia of the mandible and/or the maxilla.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Tryptophan (Trp) biosynthesis and the production of other related compounds by mixed ruminal bacteria (B), protozoa (P), and their mixture (BP) in an in vitro system were quantitatively investigated by using 1 mM of indole-3-pyruvic acid (IPA) as substrate. Ruminal microorganisms were anaerobically incubated at 39 degrees C for 12 h. Trp and other related compounds in both the supernatants and the microbial hydrolyzates of the incubation were analyzed by HPLC. As a whole, about 334, 440, and 436 &mgr;M of Trp were produced from IPA in 12 h by B, P, and BP suspensions, respectively. In the B suspension, a greater portion of synthesized Trp (242 &mgr;M) from IPA was accumulated as free form in the medium, whereas a large amount of Trp (92 &mgr;M) was incorporated into cell protein in a 12-h incubation. On the other hand, in the P suspension, a large amount of Trp (475 &mgr;M) from IPA was also found as free form in the supernatant in a 12-h incubation. Protozoa did not incorporate Trp into cell protein, but they liberated endogenous Trp (34 &mgr;M) into the medium. The net productions of Trp from IPA were 344.3 and 447.7 &mgr;mol/g of microbial nitrogen in 12 h by B and P suspensions, respectively. The ability of P to synthesize Trp from IPA was about 30% higher than that of B in 12 h. Trp produced from IPA by B, P, and BP suspensions were simultaneously degraded into its related compounds, and among them, indoleacetic acid (IAA) was a major product found in all microbial suspensions. Productions of IAA were 124, 25, and 99 &mgr;M from IPA in 12 h by B, P, and BP suspensions, respectively. The formation of indolelactic acid (ILA) from IPA was observed for the first time in all microbial suspensions, and it was about 84, 24, and 54 &mgr;M in 12 h by B, P, and BP, respectively. Higher IAA and ILA productions were observed in B when compared with P. A small amount of skatole (SKT) (26 &mgr;M) was produced from IPA in B, whereas a sizable amount of SKT (38 &mgr;M) was found in BP after a 12-h incubation. p-Cresol (CRL) was also produced from IPA by both B (43 &mgr;M) and BP (65 &mgr;M) suspensions in 12 h, and this is also the first discovery to show the formation of CRL from IPA by B and BP suspensions. BP suspension was more active to produce both SKT and CRL from IPA, though P suspension has no ability to produce either SKT or CRL from IPA during a 12-h incubation.  相似文献   

17.
Five total mixed rations prepared from finger millet (Eleusine Coracana) straw as a roughage (48%) and mixed concentrate (52%), supplemented with a 1% isoacid mixture (i-C4, i-C5, C5 and phenylacetic acid in equal proportions) or oil (groundnut oil, 5% more than the control) or urea (5% more nitrogen than the control), and protein (groundnut cake, 5% more nitrogen than the control) were given in a Latin square experiment to sheep. Enzymatic activities were estimated for urease, cellulase, protease, amylase, and lipase in various fractions of rumen fluid on the one hand and rumen microbial biomass on the other hand. Rumen samples were taken 3-4 hours after feeding and mixed rumen bacteria were separated as a strained rumen fluid without protozoa (SRFWP), cell free rumen fluid (CFRF) and enzymes associated with the bacteria cell (EABC). Samples of SRFWP and EABC contained higher enzyme activities than CFRF. Depending on the type of enzymes in each fraction, some significant coefficient of determination (r2) was seen. These values showed very close cooperative action between proteolytic and amylolytic enzymes under the experimental conditions, or perhaps the presence of some species of bacteria with both activities. Lipolytic bacteria are completely specialized for lipase production only (P < 0.05). The results showed oil, isoacid and crude protein enhanced microbial production (P < 0.05) and this can change the pattern of enzymes in the rumen of sheep.  相似文献   

18.
The entomopathogenic bacteria Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata suppress insect immune responses by inhibiting the catalytic activity of phospholipase A(2) (PLA(2)), which results in preventing biosynthesis of immune-mediating eicosanoids. This study identified PLA(2) inhibitors derived from culture broths of these two bacteria. Both X. nematophila and P. temperata subsp. temperata culture broths possessed significant PLA(2)-inhibitory activities. Fractionation of these bacterial metabolites in the culture broths using organic solvent and subsequent chromatography purified seven potent PLA(2) inhibitors, three of which (benzylideneacetone [BZA], proline-tyrosine [PY], and acetylated phenylalanine-glycine-valine [FGV]) were reported in a previous study. Four other compounds (indole, oxindole, cis-cyclo-PY, and p-hydroxyphenyl propionic acid) were identified and shown to significantly inhibit PLA(2). X. nematophila culture broth contained these seven compounds, while P. temperata subsp. temperata culture broth contained three compounds (BZA, acetylated FGV, and cis-cyclo-PY). BZA was detected in the largest amount among these PLA(2) compounds in both bacterial culture broths. All seven bacterial metabolites also showed significant inhibitory activities against immune responses, such as phenoloxidase activity and hemocytic nodulation; BZA was the most potent. Finally, this study characterized these seven compounds for their insecticidal activities against the diamondback moth, Plutella xylostella. Even though these compounds showed relatively low toxicities to larvae, they significantly enhanced the pathogenicity of Bacillus thuringiensis. This study reports bacterial-origin PLA(2) inhibitors, which would be applicable for developing novel insecticides.  相似文献   

19.
Or-Rashid MM  Onodera R  Wadud S 《Amino acids》2003,24(1-2):135-139
Summary.  An in vitro experiment was conducted to test the ability of mixed rumen bacteria (B), protozoa (P), and their mixture (BP) to utilize the oxidized forms of methionine (Met) e.g., methionine sulfoxide (MSO), methionine sulfone (MSO2). Rumen contents were collected from fistulated goats to prepare the microbial suspensions and were anaerobically incubated at 39°C for 12 h with or without MSO (1 mM) or MSO2 (1 mM) as a substrate. Met and other related compounds produced in both the supernatants and hydrolyzates of the incubation were analyzed by HPLC. During 6- and 12-h incubation periods, MSO disappeared by 28.3 and 42.0%, 0.0 and 0.0%, and 40.6 and 62.4% in B, P, and BP suspensions, respectively. Rumen bacteria and the mixture of rumen bacteria and protozoa were capable to reduce MSO to Met, and the production of Met from MSO in BP (156.6 and 196.1 μmol/g MN) was about 17.3 and 14.1% higher than that in B alone (133.5 and 171.9 μmol/g MN) during 6- and 12-h incubations, respectively. On the other hand, mixed rumen protozoa were unable to utilize MSO. Other metabolites produced from MSO were found to be MSO2 and 2-aminobutyric acid (2AB) in B and BP. MSO2 as a substrate remained without diminution in all-microbial suspensions. It was concluded that B, P, and BP cannot utilize MSO2; but MSO can be utilized by B and BP for producing Met. Received December 28, 2001 Accepted May 21, 2002 Published online October 14, 2002 Acknowledgements The authors are extremely grateful to Professor H. Ogawa, the University of Tokyo, Japan and Dr. Takashi Hasegawa, Miyazaki University, Japan for inserting permanent rumen fistulae in goats. We would like to thank MONBUSHO for the award of a research scholarship to Mamun M. Or-Rashid since 1996–2001. Authors' address: Shaila Wadud, Laboratory of Animal Nutrition and Biochemistry, Division of Animal Science, Miyazaki University, Miyazaki 889-2192, Japan, Fax. +81-985-58-7201, E-mail: rafatkun@hotmail.com  相似文献   

20.
To assess the relative contributions of microbial groups (bacteria, protozoa, and fungi) in rumen fluids to the overall process of plant cell wall digestion in the rumen, representatives of these groups were selected by physical and chemical treatments of whole rumen fluid and used to construct an artificial rumen ecosystem. Physical treatments involved homogenization, centrifugation, filtration, and heat sterilization. Chemical treatments involved the addition of antibiotics and various chemicals to rumen fluid. To evaluate the potential activity and relative contribution to degradation of cell walls by specific microbial groups, the following fractions were prepared: a positive system (whole ruminal fluid), a bacterial (B) system, a protozoal (P) system, a fungal (F) system, and a negative system (cell-free rumen fluid). To assess the interactions between specific microbial fractions, mixed cultures (B+P, B+F, and P+F systems) were also assigned. Patterns of degradation due to the various treatments resulted in three distinct groups of data based on the degradation rate of cell wall material and on cell wall-degrading enzyme activities. The order of degradation was as follows: positive and F systems > B system > negative and P systems. Therefore, fungal activity was responsible for most of the cell wall degradation. Cell wall degradation by the anaerobic bacterial fraction was significantly less than by the fungal fraction, and the protozoal fraction failed to grow under the conditions used. In general, in the mixed culture systems the coculture systems demonstrated a decrease in cellulolysis compared with that of the monoculture systems. When one microbial fraction was associated with another microbial fraction, two types of results were obtained. The protozoal fraction inhibited cellulolysis of cell wall material by both the bacterial and the fungal fractions, while in the coculture between the bacterial fraction and the fungal fraction a synergistic interaction was detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号