首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The genotype composition of a Daphnia population complex during a summer period in Lake Maarsseveen (The Netherlands) was determined by allozyme analysis. The depth distribution, diel vertical migration and several parameters of the total population were measured. Young-of-the-year (0+) perch (Perca fluviatilis) were caught and species and allozyme types of Daphnia in the perch gut were also analysed. During May 1997, the densities of D. hyalina, D. galeata, the back-cross D. g × h — hyalina and the multilocus allozyme genotypes of the hybrid D. g × h decreased, except one multilocus genotype (MMMF). Total population size decreased and the ratio of females with eggs to those without eggs decreased as well. Food limitation during this clear-water phase in the lake is considered responsible. All genotypes, except MMMF, gradually descended in the water column. This drift is thought to be a reaction to the abundantly present 0+ perch or to the kairomones of this fish, although predation on the daphnids was still absent. In June, diel vertical migration started, except again part of the MMMF subpopulation. The other part migrated over a short distance compared with the other taxa and allozyme types. Within two weeks, the upper 5 m of the epilimnion was devoid of Daphnia, and guts of perch were predominantly filled with MMMF. The daphnids in the gut and the lake did not differ in allozyme type composition. By the end of July, population density had increased again. The size and composition of the Daphnia population complex continuously changed during the study period, as did the depth distribution of the components. Different genotypes within the population complex seem to have developed different strategies to cope with starvation and predation and the state at a particular moment can be understood only if past and present factors are considered.  相似文献   

2.
Instar-specific mortalities of Daphnia hyalina and D.cucullatawere studied from May 19 to September 29, 1988 in combinationwith invertebrate predator and phytoplankton abundance. Simultaneouslife-table experiments were conducted under semi-natural conditionsin the laboratory to estimate juvenile mortality in a predator-freeenvironment. Juvenile mortality by predation was calculatedas the difference between juvenile mortality in the field andin the experiments and was the most important factor for thedifferences in abundance of the two species. For D.hyalina juvenilemortality was higher in early summer and probably caused byselective predation by Chaoborus flavicans. Predation by Leptodorakindtii was probably more important during the rest of the summer.Estimated mortality by predation adequately explained juvenilemortality, except for a 3-week period in August. Decreasingflagellate densities in July were accompanied by increased juvenilemortalities of D.hyalina and D.cucullata in the life-table experimentsin August and coincided with a Daphnia population decrease.  相似文献   

3.
In spring and early summer, a small population of the large-bodied Daphnia pulicaria coexists with a much larger population of the medium-sized hybrid Daphnia galeata × hyalina in the epilimnion of Lake Maarsseveen (The Netherlands). When large shoals of juvenile perch (Perca fluviatilis) appear in the open water, both species start to migrate vertically. Since D. pulicaria has a larger body-size than D. galeata × hyalina, and is therefore competitive dominant over the hybrid, it is unlikely that both species interact via their common food resource, but they react both to fish predation. However, since they differ in size, and therefore in vulnerability for fish predation, both species adopt different strategies. The smaller bodied, and less vulnerable D. galeata × hyalina exhibits diel vertical migration ascending to the surface at dusk, and staying there during the night. In this way, benefiting from the higher temperatures of the surface layers. In contrast, the large-bodied, and more vulnerable D. pulicaria selects the deep cold hypolimnion water layers as refuge against fish predation. In this way it benefits from a safe habitat, free from fish predators, but on the other hand suffers from low water temperatures, which decrease its fitness. It is likely that the relatively higher temperature in the upper water layers serves as a proximate factor for the downward migration of D. pulicaria.  相似文献   

4.
Brian MOSS     《Freshwater Biology》1998,39(4):689-697
1. The effects of addition of juvenile perch (Perca fluviatilis) on the microcrustacean and rotifer communities associated with nymphaeid beds were studied, at three different plant densities [high (normal), medium (reduced by a half) and low (reduced to a third of normal)], in eighteen 2 m × 1 m enclosures in a shallow lake. 2. At the low and medium densities of lilies, Daphnia densities were high in the absence of perch but very low in the presence of perch. They increased, even in the presence of perch, to high densities (comparable with those in the absence of perch) at the highest plant density. Body sizes of Daphnia hyalina were consistent with high predation by perch at low and medium plant densities but reduced predation at high plant densities. Patterns of chlorophyll a concentration, in the presence of perch, inversely reflected those of D. hyalina density. 3. At naturally high densities but not at reduced densities, the plants appeared to act as refuges against predation for the Daphnia. Reductions in oxygen concentrations in the plant beds were not responsible for the refuge effect, nor could there be avoidance of the beds by the fish. The mechanism of the refuge effect must therefore lie in frustration of the process of capture of the Daphnia by the fish. 4. Numbers of other small Crustacea and rotifers were mostly unaffected by fish predation. Numbers of Asplanchna sp., Chydorus sphaericus and copepodites were higher in the presence of fish and, although there was no main effect of fish on numbers of Diaphanosoma brachyurum, there was a plant–fish interaction, with this species being less abundant in the presence of fish at low plant densities but more abundant in the presence of fish at medium and high plant densities. Main effects of plants were few, with only Asplanchna sp. and Keratella sp. decreasing in numbers with increasing plant density. Most taxa changed in numbers with time but interaction effects between time and plants, and fish and plants, were few.  相似文献   

5.
Morphological responses to the presence of predator info-chemicals havebeen described for many Daphnia (Cladocera) species, butD. galeata is generally considered to exhibit almost nomorphological changes that could increase its fitness under predation.Therefore, the aim of our study was to examine the nature and magnitude ofmorphological responses of D. galeata to their predatorsindetail and assess their potential role in decreasing the predation threat. Twoclones of Daphnia were exposed to predator info-chemicals(kairomones) from perch, a fish (Perca), and a phantommidge larvae (Chaoborus) an invertebrate, and a kairomone mixture fromboththese organisms. Laboratory life-table experiments were carried out and fiveparameters characterising the body shape of the daphnids were measured: helmetlength, head- and carapace width, eye diameter and body size. The last-namedthree parameters did not differ significantly between the clones or thetreatments. The differences found between the clones were significant for headwidth and helmet length, but only in combination with the treatment effects.Ourresults on genotype-dependent phenotypic plasticity indicated that, althoughphenotypic plasticity is present, the clonal composition of aDaphnia population can be altered by selection on themorphotype. This potential for a change in clonal frequencies is given by thedifferences measured between the two clones in head width and helmet length,altering the curvature of the Daphina body in response tokairomone presence.  相似文献   

6.
1. According to previous field studies in the biomanipulated Bautzen reservoir (Germany), a midsummer decline of the dominating zooplankter, Daphnia galeata, was suggested to be initiated by a simultaneous occurrence of low fecundity of the daphnids and a selective feeding of underyearling fish on mature daphnids. The timing of both processes was assumed to be triggered by spring water temperature. However, the field data were not appropriate for testing whether yearly differences in spring warming are strong enough to control the predation rate of underyearling fish on daphnids.
2. By combining field data on fish growth, feeding and population mortality, the daily uptake of Daphnia by a virtual population of underyearling perch (Perca fluviatilis) was simulated. In addition, the daily predatory mortality of mature daphnids was calculated independently. Scenarios with a warm and a cold spring were compared. Furthermore, the delayed warming of a pelagic zone of a lake versus a littoral one was simulated. Sensitivity of the simulation to changes in five parameters was tested.
3. In both the warm spring scenario and the littoral warming scenario, more daphnids in general and more mature daphnids in particular were eaten, compared with the cold spring and pelagic scenarios. The predatory mortality of mature daphnids was driven by the increasing gape size of growing fish such that in warmer years the fish reach earlier the size at which they can eat mature daphnids.
4. The simulation was most sensitive to changes in daily mortality rate of the fish and to the size at maturity of the daphnids. Since at least the fish mortality is also temperature‐dependent via the growth rates of fish, the predation rate of perch on D. galeata in Bautzen reservoir is substantially increased during a warm spring. This underlines the assumption that even a slight global warming may have a decisive influence on food web processes due to the fine‐scaled patterns of trophic interactions in lakes.  相似文献   

7.
1. When available, Daphnia spp. are often preferred by age‐0 yellow perch and bluegill sunfish because of energetic profitability. We hypothesised that predation by age‐0 yellow perch could lead to a midsummer decline (MSD) of Daphnia spp. and that priority effects may favour yellow perch because they hatch before bluegill, allowing them to capitalise on Daphnia spp. prior to bluegill emergence. 2. Data were collected from 2004 to 2010 in Pelican Lake, Nebraska, U.S.A. The lake experienced a prolonged MSD in all but 1 year (2005), generally occurring within the first 2 weeks of June except in 2008 and 2010 when it occurred at the end of June. MSD timing is not solely related to seasonal patterns of age‐0 yellow perch consumption. Nevertheless, when Daphnia spp. biomass was low during 2004 and 2006–2010 (<4 mg wet weight L?1), predation by age‐0 yellow perch seems to have suppressed Daphnia spp. biomass (i.e. <1.0 mg wet weight L?1). The exception was 2005 when age‐0 yellow perch were absent. 3. Growth of age‐0 bluegill was significantly faster in 2005, when Daphnia spp. were available in greater densities (>4 mg wet weight L?1) compared with the other years (<0.2 mg wet weight L?1). 4. We conclude that age‐0 yellow perch are capable of reducing Daphnia biomass prior to the arrival of age‐0 bluegill, ultimately slowing bluegill growth. Thus, priority effects favour age‐0 yellow perch when competing with age‐0 bluegill for Daphnia. However, these effects may be minimised if there is a shorter time between hatching of the two species, higher Daphnia spp. densities or lower age‐0 yellow perch densities.  相似文献   

8.
The identification of interacting species and elucidation of their mode of interaction may be crucial to understand ecosystem-level processes. We analysed the activity and identity of bacterial epibionts in cultures of Daphnia galeata and of natural daphnid populations. Epibiotic bacteria incorporated considerable amounts of dissolved organic carbon (DOC), as estimated via uptake of tritiated leucine: three times more tracer was consumed by microbes on a single Daphnia than in 1 ml of lake water. However, there was virtually no incorporation if daphnids were anaesthetised, suggesting that their filtration activity was essential for this process. Microbial DOC uptake could predominantly be assigned to microbes that were located on the filter combs of daphnids, where the passage of water would ensure a continuously high DOC supply. Most of these bacteria were Betaproteobacteria from the genus Limnohabitans. Specifically, we identified a monophyletic cluster harbouring Limnohabitans planktonicus that encompassed sequence types from D. galeata cultures, from the gut of Daphnia magna and from daphnids of Lake Zurich. Our results suggest that the epibiotic growth of bacteria related to Limnohabitans on Daphnia spp. may be a widespread and rather common phenomenon. Moreover, most of the observed DOC flux to Daphnia in fact does not seem to be associated with the crustacean biomass itself but with its epibiotic microflora. The unexplored physical association of daphnids with heterotrophic bacteria may have considerable implications for our understanding of carbon transfer in freshwater food webs, that is, a trophic ‘shortcut'' between microbial DOC uptake and predation by fish.  相似文献   

9.
Dense swarms of Daphnia longispina (up to 4000 animals l–1) were recorded along the littoral zone in a lake where Chaoborus flavicans is considered the main predator. D. longispina coexisted with D. pulex, but there were no D. pulex in the littoral swarms. Swarms were less dense at night (about 1/10 the density), and D. longispina exhibited diel horizontal migrations by aggregating in the littoral during the day and spreading out at night. Laboratory experiments showed that Chaoborus capture efficiency on juvenile daphnids was higher in the light compared to darkness, and that Daphnia exhibited a behavioural response to water that had previously contained Chaoborus. We conclude that predation from Chaoborus can be an important factor affecting the distribution patterns of Daphnia observed in this lake. The behavioural experiments indicated that this influence might be partly mediated by chemical agents.  相似文献   

10.
Daphnia size structure,vertical migration,and phosphorus redistribution   总被引:4,自引:4,他引:0  
The timing and magnitude of diel migration in two daphnid assemblages were determined from a series of vertical profiles of daphnid size distribution. Animals were collected concurrently for gut fullness determination. Only large daphnids (> 1.4 mm) migrated, but these animals could account for substantial vertical and diel differences in phosphorus excretion rate. Gut fullness measurements and time courses of diel vertical migration suggested that large Daphnia can cause a net downward flux of phosphorus during summer in thermally stratified lakes.  相似文献   

11.
As part of a research programme on the food chains in Tjeukemeer, the Daphnia hyalina and Daphnia cucullata populations were studied for three successive years. To analyse the factors regulating the production of these two species, their population parameters (density, size distribution, fecundity) and population dynamics (birth rate, mortality rate) were studied and related to environmental factors. Since Daphnia in Tjeukemeer shows continuous recruitment, the population dynamics model INSTAR was developed and used to integrate field data with laboratory data on development rates and length-weight relationships. The dynamics of the Daphnia species are mainly regulated by temperature and fish predation, the latter affects both birth rate and mortality. Total annual Daphnia production was 3.1–6.9 g org. dry wt M–2, and annual P/B ratio ranged from 25 to 40 for D. cucullata and from 45 to 49 for D. hyalina.  相似文献   

12.
Vertical migration of Daphnia represents the best-studied predator-avoidance behaviour known; yet the mechanisms underlying the choice to migrate require further investigation to understand the role of environmental context. To investigate the optimal habitat choice of Daphnia under fish predation pressure, first, we selected the individuals exhibiting strong migration behaviour. The animals collected from the hypolimnion during the daytime were significantly larger, being more conspicuous, and in turn performed stronger diel vertical migration (DVM) when exposed to fish cue. We called them strong migrants. Second, we provided the strong migrant D. pulex with food at high and intermediate (1 and 0.4 mg C l−1, respectively) levels, which were well above the incipient limiting level and of high quality. They traded the benefits of staying in the warm water layer and moved down to the cold water in response to fish cue indicating fish predation. The availability of food allowed the animals to stay in the cold hypolimnion. However, at the low food level (0.1 mg C l−1), which is an additional constraint on fitness, Daphnia moved away from the cold hypolimnion. Poor food condition resulted in strong migrant Daphnia to cease migration and remain in the upper warmer water layer. Although temperature is known to be a more important cost factor of DVM than food, our results clearly show that this is only true as long as food is available. It becomes clear that food availability is controlling the direction of vertical positioning when daphnids experience a dilemma between optimising temperature and food condition while being exposed to fish cue. Then they overlook the predation risk. Thus, the optimal habitat choice of Daphnia appears to be a function of several variables including temperature, food levels and fish predation. Handling editor: S. I. Dodson  相似文献   

13.
Data on two co-existing Daphnia species, D.cucullata (G.O.Sars)and D.hyalina (Leydig), from three neighboring and interconnectedlakes in northern Poland, revealed an extremely confined rangeof population density fluctuations throughout summer in eachof the two species in each of the three lakes, with D.cucullatabeing an order of magnitude more abundant than D.hyalina (meanof 11.5 ind. l–1 for D.cucullata and 1.1 ind. l–1for D.hyalina with 95% confidence limits of ±2.5 and±0.5 ind. l–1, respectively), in spite of markedlychanging fecundity. There was no apparent phase of decline orincrease that could be related to the distinct phases of lowor high fecundity resulting from different food levels. Analysisof the gut contents of roach (Rutilus rutilus), the dominantplanktivore in the three lakes, revealed identical selectivityfor each of the two Daphnia species, suggesting that the lowerdensity of the D.hyalina population was compensated for by thegreater conspicuousness of individuals of this species. It isconcluded that the population density of these Daphnia speciesremains far below the carrying capacity of the habitat and doesnot depend on food levels. Food availability merely sets therate of population increase, while the actual population densityin the lakes studied reflects the species' vulnerability topredation by planktivorous fish.  相似文献   

14.
15.
Ranka Berberovic 《Oecologia》1990,84(3):340-350
Summary In 1986 and 1987 the seasonal course of population density, life history traits and biomass composition (CHN-elemental and ash) of two coexisting Daphnia species from L. Constance (Überlinger See) were studied. The two daphnids are morphologically similar, but demonstrate different seasonal variation of behaviour (i.e. diurnal vertical migration). With the exception of nitrogen content, the mean biomass composition of adults and that of eggs were significantly different: the dry biomass of eggs (adults) contained on average 55.6 (46.1) % C, 7.9 (6.5) % H, 9.7 (9.7) % N, and 10.0 (23.8) % ash. These values were similar to those of other daphnids; it may be concluded that the average daphnid composition is not species specific, but is determined mainly by the position in the life cycle and by the nutritional state of the animal. A distinct seasonal variation in the elemental composition of the biomass of adult daphnids was observed. It related significantly to the concentration of food, as indicated by the epilimnetic chlorophyll-a concentrations and by Secchi depth. From the amplitude of seasonal variation of elemental composition and from the shape of relationships between the elemental composition of daphnids and their food, it can be concluded that in summer the non-migrating D. galeata lives under stronger food limitation than the migrating H. hyalina. In spring, there were no differences in the biomass composition of either species. In summer, the adult fcmales of D. galeata contained significantly less carbon, and hydrogen than those of D. hyalina. In most parameters of biomass (i.e. biomass composition of adults) and of life history (i.e. clutch size, mean adult weight), D. galeata displayed higher coefficients of variation. A tendency in D. galeata to have peaks of population development carlier in the season and in D. hyalina to have them towards autumn was observed. These contrasting responses of the populations development, the seasonal variability of the biomass composition seem to support the view of Geller (1986) who called D. galeata and D. hyalina exploitative and conservative strategists respectively.This research was supported by the Deutsche Forschungsge-meinschaft within the Sonderforschungsbereich Cycling of Matter in Lake Constance (SFB 248), and by scholarship to R.B. from the Deutscher Akademischer Austauschdienst (DAAD)  相似文献   

16.
This study examined the formation of morphological defences by two coexisting Daphnia species, the large-sized D. pulicaria (2 mm) and the small-sized D. mendotae (1.4 mm), in response to the presence of young-of-the-year (YOY) yellow perch (Perca flavescens) and invertebrate predators (Chaoborus, Leptodora) during summer in a mesotrophic lake. We hypothesized that due to differential size-selective predation risk by YOY fish and invertebrates, the large-sized and the small-sized Daphnia species would show different morphological responses to predation threats. We followed changes in two morphological traits (relative length of the tail spine in D. pulicaria and of the helmet in D. mendotae) among different periods during summer according to YOY fish and invertebrate predation. We defined four YOY fish predation periods based on the presence of YOY perch in the pelagic zone of the lake and the relative abundance of Daphnia preys in their gut contents, and two invertebrate predation periods based on exclusive or mutual occurrence of the invertebrate predators. The large-sized (D. pulicaria) and the small-sized (D. mendotae) species showed different morphological responses to YOY fish and invertebrate predators, respectively. The tail spine ratio of the juveniles and adults of D. pulicaria did not change in response to YOY fish predation or to invertebrate predation. A gradual increase in the helmet ratio was observed in the small-sized D. mendotae over the summer period. This change was related to the co-occurrence of the invertebrate predators (Chaoborus and Leptodora) and to YOY fish predation. The warmer temperature cannot be accounted for helmet elongation since it was constant across depths, and not related with the co-occurrence of D. mendotae and YOY perch. Guest editor: Piet Spaak Cladocera: Proceedings of the 7th International Symposium on Cladocera  相似文献   

17.
Spaak  Piet  Ringelberg  Joop 《Hydrobiologia》1997,360(1-3):177-185
During the first few weeks of a recurring seasonalperiod of diel vertical migration in Lake Maarsseveen(The Netherlands), part of the hybrid Daphniagaleata × hyalina population migrated, whileanother part remained in the epilimnion. In theepilimnion, 0+ perch prey upon daphnids duringdaytime. Gradually, the number of adult Daphniain the epilimnion decrease until the epilimnion isnearly devoid of daphnids. The population as a wholemay decrease, as in 1991, or may increase asin 1992. Genotype composition, as determined byallozyme analysis, changed substantially within afortnight in 1992, and one genotype became dominant.Our data are in agreement with the hypothesis thatpredation on different genotypes (clones)occurs during the beginning of a seasonal period ofdiel vertical migration, though our data do not allowto exclude alternativeexplanations.  相似文献   

18.
Daphnia perform diel vertical migration (DVM), a predator-avoidance strategy to migrate towards deeper and colder layers in the water column in the morning and movement to the algae-rich surface layers in the evening. However, individuals performing DVM incur several trade-offs since they might suffer from resource limitation and a slower instantaneous birth rate in deeper depths. DVM patterns may be modified by abiotic factors such as temperature, food concentration, or pH and vary among different Daphnia species and genotypes. Furthermore, Daphnia host a variety of microparasites that might pose an additional factor influencing DVM behaviour. For infected individuals, migration into cooler temperature layers might slow down parasite growth. Moreover, parasites can increase opacity of their hosts. Non-migrating individuals might then be selectively purged from the upper layers by visually hunting predators. With these premises we asked, whether epidemics of the ichthyosporean parasite Caullerya mesnili affect or are affected by the DVM behaviour of Daphnia in Lake Greifensee, Switzerland by analysing the vertical distribution of Daphnia during day and night on two dates. Furthermore, we were interested whether a potential interaction depends on host genotype. We therefore studied the genotypic composition of the integrated population in regular sampling intervals over the course of one year and on a fine-grained vertical resolution during the Caullerya epidemic in late summer. Since Caullerya-infected Daphnia migrated equally well as uninfected ones, the findings of this study suggest that Caullerya epidemics neither affected nor were affected by the DVM behaviour of Daphnia. We observed clonal succession in the lake but could not link this succession to the Caullerya epidemic; all except one of the common multilocus genotypes were under-infected. In addition, outbreak and course of this Caullerya epidemic seemed to rely mainly on environmental cues. Because this first study only provides a snapshot of time, we hope that further studies will be done to verify our results.  相似文献   

19.
1. Climate warming may cause disruption of trophic linkages in aquatic ecosystems and lead to changes in abundance and genetic structure of zooplankton populations. We monitored the community of the Daphnia galeata‐hyalina hybrid complex in the Saidenbach Reservoir (Saxony, Germany) using allozyme electrophoresis for three consecutive years (2005–07), including one (2007) following an unusually warm winter that prevented the formation of ice cover for the first time in the history of the reservoir. 2. Genetic composition during the 2007 season differed substantially from the two preceding years that experienced the usual 3‐month ice period. Three abundance peaks in June, July and October 2007 were dominated by hybrids of Daphnia galeata x hyalina, whereas in the 2005 and 2006 seasons two peaks in June and September were dominated by Daphnia hyalina genotypes. 3. The genetic composition of the pool of diapausing eggs produced in autumn and the rate of change of genotype abundance during the following spring indicate recruitment of the D. hyalina subpopulation from ex‐ephippial animals during the spring population increase. 4. The differing potential to contribute to the overwintering animal pool or to the inoculum from diapausing eggs was confirmed by results from laboratory life‐table experiments. Daphnia galeata clones survived longer and produced parthenogenetic offspring under winter conditions, whereas D. hyalina clones showed a shorter lifespan and produced resting eggs. 5. Our results indicate a profound role of recruitment strategy in the observed shift in genetic composition. Increasing winter temperatures predicted in the context of climate change may thus favour overwintering animals, leading to an increase in the contribution of these genotypes to the population. Such microevolutionary processes may dampen possible seasonal mismatches between daphnid populations and their food or predator populations.  相似文献   

20.
1. The predation impact of underyearling perch (20 mm total length) on the dynamics of Daphnia galeata was studied in three 6.5-m3 enclosures during a 17-day experiment in June 1995. These data were compared with zooplankton succession in three fish-free control enclosures and in the pelagic zone of Bautzen reservoir, Germany. 2. Due to individual growth during the experiment, fish biomass in the enclosures increased from 210 mg wet body mass (w.b.m.) m–3 to 830 mg w.b.m. m–3, equivalent to an increase from 20 kg ha–1 to 75 kg ha–1. 3. In the enclosures with fish, biomass of daphnids decreased steadily to values below 1 mg wet weight (w.w.) l–1 within 17 days, whereas in the fish-free controls and in Bautzen reservoir the Daphnia biomass fluctuated around 8 mg w.w. l–1. Other zooplankton species exhibited little or no change. Approximately 60 kg ha–1 was calculated as the critical underyearling perch biomass which may induce a drastic decline of the Daphnia galeata population in Bautzen reservoir. Comparison with values from other lakes is difficult due to differences in water depths and Daphnia biomasses. 4. Mean individual biomass of daphnids, egg ratio and proportion of adult daphnids were significantly lower in the enclosures with fish compared with the control enclosures at the end of the experiment. This may be explained partly by preferential predation of the large, egg-carrying daphnids by fish. However, no difference was found in clutch size and size at first reproduction, possibly due to the short duration of the experiment. 5. It must be assumed that the ‘summer depression’ of daphnids observed in many waters is not the exclusive effect of direct reduction of daphnids by fish predation. Even the high biomass of underyearling perch stocked in the enclosures did not completely account for Daphnia mortality. Instead, the selective loss of large size classes, combined with low food resources and reduced reproduction rates, may induce the marked declines in daphnids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号