首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
In 1992, we discovered populations of the nonindigenous quagga mussel Dreissena rostriformis bugensis in the middle reaches of the Volga River. The same species was found in samples collected between 1994 and 1997 in the Volga delta and in shallow areas of the Northern Caspian Sea. D. r. bugensis always co-occurred with its more widespread congener, the zebra mussel D. polymorpha (Pallas 1771). The quagga mussel's contribution to total Dreissena abundance increased over time in the middle Volga reservoirs and Volga River delta. D. r. bugensis was common in the Volga portion of Rybinsk Reservoir during 1997 and, by 2000, it was in Uglich, Rybinsk and Gorky Reservoirs on the Upper Volga River. D. r. bugensis was neither found in Ivankov Reservoir, nor in terminal sections of the Volga-Baltic corridor including the eastern Gulf of Finland. Presently, all but the northern-most regions of the Volga River have been colonized by D. r. bugensis. We hypothesize that its introduction into the Volga River and Caspian basin occurred no later than the late 1980s via commercial shipping that utilized the Volga-Don waterway to navigate between the source Black-Azov Sea region and recipient areas on the Volga River. Larval drift likely contributed to establishment of populations at downstream sites, while human-mediated vectors may be responsible for introductions to upstream locations on the Volga River. We anticipate continued northward dispersal in conjunction with shipping activities.  相似文献   

2.
Two invasive freshwater mussels, Dreissena rostriformis bugensis (quagga mussel) and D. polymorpha (zebra mussel), reveal differences in patterns and timing of their invasions in Europe. They belong to different clades in Dreissena phylogenetics: D. rostriformis bugensis genetically is coupled with the brackish water, lacustrine D. r. distincta and the two are believed to represent a single species. As such, the guaqqa mussel has environmental requirements that differ from the congeneric D. polymorpha. D. rostriformis bugensis invasions were confined to reservoirs of the Dnieper, Don and Dniester Rivers of the Black Sea basin. We recorded D. r. bugensis outside the Black Sea basin for the first time between 1992 and 2001, along the Volga River reservoir cascade including the Northern Caspian Sea shallows. This represents a 40-year invasion time lag since an invasion corridor through the Volgo-Don Waterway was established in 1952 (a corridor used extensively by many invertebrate species from the Black Sea region). We attribute the postponed invasion of Europe by D. r. bugensis, including peculiarities in establishment and its absence in fossil records, to its phylogenetically close relationship with D. r. distincta and its recent evolutionary origin. The relatively rapid range expansion of D. r. bugensis in eastern Europe during the past several decades was facilitated by human-mediated ecosystem transformation, notably impoundment of large eastern European rivers, that have allowed this species to utilize newly transformed ecosystems.  相似文献   

3.
In recent years, the quagga mussel, Dreissena rostriformis bugensis, native to the Dnieper and Bug Limans of the northern Black Sea, has been dispersed by human activities across the basin, throughout much of the Volga River system, and to the Laurentian Great Lakes. We used six published microsatellite markers to survey populations throughout its native and introduced range to identify relationships among potential source populations and introduced ones. Mussels from 12 sites in Eurasia, including the central Caspian Sea and one in North America (Lake Erie), were sampled. Field surveys in the Volga River basin suggested that the species first colonized the middle reach of the river near Kubyshev Reservoir, and thereafter spread both upstream and downstream. Evidence of considerable gene flow among populations was observed and genetic diversity was consistent with a larger, metapopulation that has not experienced bottlenecks or founder effects. We propose that high gene flow, possibly due to multiple invasions, has facilitated establishment of quagga mussel populations in the Volga River system. The Caspian Sea population (D. rostriformis rostriformis (=distincta)) was genetically more distinct than other populations, a finding that may be related to habitat differences. The geographical pattern of genetic divergence is not characteristic of isolation-by-distance but, rather, of long-distance dispersal, most likely mediated by commercial ships' ballast water transfer.  相似文献   

4.
The deepwater profunda morph of quagga mussel Dreissena bugensis was found for the first time in the European part of its range. The mussels of this morph were found in the Cheboksary Reservoir situated in the midstream of the Volga River (Russian Federation). Traditional and geometric morphometrics confirm the similarity of studied specimens to profunda mussel described from the Great Lakes of North America. In the Cheboksary Reservoir the deepwater mussels live at depth of 26.5 m on sandy-pebbled substrate at conditions of high water velocity (>0.5 m/s), i. e. in the conditions unusual for American profunda. This fact reflects evident ecological plasticity of this morph. Discovery of the deepwater morph of quagga mussel in the European part of its range indicates that possibility of realization of the deepwater phenotype is inherent to this species. It is suggested that quagga mussel may possess two alternative developmental pathways that could be realized in appropriate conditions. Presumably, certain depth and/or water pressure may serve as signaling factors for activating the “deepwater” developmental pathway. The presence of deepwater and shallow-water morphs is very important adaptive feature for sedentary organisms such as dreissenids that are unable to select habitat actively since this feature allows for successful colonization of both deep and shallow water habitats.  相似文献   

5.
SYNOPSIS. North America's Great Lakes have recently been invadedby two genetically and morphologically distinct species of Dreissena.The zebra mussel (Dreissena polymorpha) became established inLake St. Clair of the Laurentian Great Lakes in 1986 and spreadthroughout eastern North America. The second dreissenid, termedthe quagga mussel, has been identified as Dreissena bugensisAndrusov, 1897. The quagga occurs in the Dnieper River drainageof Ukraine and now in the lower Great Lakes of North America.In the Dnieper River, populations of D. polymorpha have beenlargely replaced by D. bugensis; anecdotal evidence indicatesthat similar trends may be occurring in the lower LaurentianGreat Lakes. Dreissena bugensis occurs as deep as 130 m in theGreat Lakes, but in Ukraine is known from only 0–28 m.Dreissena bugensis is more abundant than D. polymorpha in deeperwaters in Dneiper River reservoirs. The conclusion that NorthAmerican quagga mussels have a lower thermal maximum than zebramussels is not supported by observations made of populationsin Ukraine. In the Dnieper River drainage, quagga mussels areless tolerant of salinity than zebra mussels, yet both dreissenidshave acclimated to salinities higher than North American populations;eventual colonization into estuarine and coastal areas of NorthAmerica cannot be ignored.  相似文献   

6.
The results of our long-term studies of populations of two dreissenid species (Dreisena polymorpha Pallas, 1771 and D. bugensis Andrusov, 1897) in Rybinsk and Gorkii reservoirs have been analyzed. New habitats of D. bugensis have been found in Rybinsk Reservoir.  相似文献   

7.
The quagga mussel Dreissena rostriformis bugensis, native to the Dnieper and the northern Black Sea, has become a major invasive species in both the Volga River and the North American Great Lakes since the early 1990s. Findings in the Netherlands (2006) and Germany (2007) mark the start of its establishment in Western Europe. We investigated the current distribution, time of first arrival and population structure of D. rostriformis bugensis from the rivers Rhine, Main and in the Main-Danube canal in Germany. Two putative sources of the German populations were analysed by genetically comparing these populations to older invasive populations from North America and the southeast Danube. Dreissena rostriformis bugensis was abundant in the Main and in three Rhine harbours, but rare in the actual Rhine river and absent south of the Main-Danube canal. Mussels found in the Rhine harbours were significantly smaller than in the Main. Population genetic analyses found no sign of founder effects and minimal differentiation between German, North American and southeast Danube populations. The genetic data suggest that these invasive populations derive from a common and rapidly expanding source. Based on the non-continuous distribution and shell size differences of Rhine harbour and Main populations, our results indicate that expansion in Germany involved at least two independent settling events, one of which happened before 2005, and most likely was caused by jump dispersal.  相似文献   

8.
We examined trends in expansion patterns and relative abundances of Dreissena bugensis in reservoirs and major river systems in eastern Europe. Based on our own data and data from the literature, it is apparent that trends were variable across river basins and not easily related to environmental conditions. In some cases these did not conform to the patterns typically found for dreissenids. In the early period of expansion beyond its native range in the Dnieper-Bug delta and estuary, D. bugensis rapidly replaced Dreissena polymorpha in the upper Dnieper River system, but increased only gradually and over time became less abundant relative to D. polymorpha in the Don-Manych River system. Contrary to the Dnieper and Don River systems, in the Volga River system considerable spatial variability in relative abundances was apparent, particularly in northern reservoirs. Moreover, even though D. bugensis usually displaces D. polymorpha as the dominant dreissenid, the latter can remain dominant in certain types of habitats where conditions are less favourable for the former. Suggested factors that may be responsible for differences in invasion patterns in the river systems may include differential responses to temperature, or to some other factor(s) associated with geographical latitude, the level of water mineralization, and selective predation by molluscivorous fish. In particular, the northward expansion of D. bugensis seems to be limited by temperature. The lack of long-term data on appropriate scales precludes linking these differences to specific features within the environment, but our comparisons indicate that the expansion of D. bugensis relative to D. polymorpha is more complex than previously believed.  相似文献   

9.
This study tests population genetic patterns across the Eurasian dreissenid mussel invasions of North America—encompassing the zebra mussel Dreissena polymorpha (1986 detection) and the quagga mussel D. rostriformis bugensis (detected in 1990, which now has largely displaced the former in the Great Lakes). We evaluate their source-spread relationships and invasion genetics using 9–11 nuclear microsatellite loci for 583 zebra mussels (21 sites) and 269 quagga mussels (12 sites) from Eurasian and North American range locations, with the latter including the Great Lakes, Mississippi River basin, Atlantic coastal waterways, Colorado River system, and California reservoirs. Additionally, mtDNA cytochrome b gene sequences are used to verify species identity. Our results indicate that North American zebra mussels originate from multiple non-native northern European populations, whereas North American quagga mussels trace to native estuaries in the Southern Bug and Dnieper Rivers. Invasive populations of both species show considerable genetic diversity and structure (zebra F ST = 0.006–0.263, quagga F ST = 0.008–0.267), without founder effects. Most newer zebra mussel populations have appreciable genetic diversity, whereas quagga mussel populations from the Colorado River and California show some founder effects. The population genetic composition of both species changed over time at given sites; with some adding alleles from adjacent populations, some losing them, and all retaining closest similarity to their original composition. Zebra mussels from Kansas and California appear genetically similar and assign to a possible origin from the St. Lawrence River, whereas quagga mussels from Nevada and California assign to a possible origin from Lake Ontario. These assignments suggest that overland colonization pathways via recreational boats do not necessarily reflect the most proximate connections. In conclusion, our microsatellite results comprise a valuable baseline for resolving present and future dreissenid mussel invasion pathways.  相似文献   

10.
Enumeration of benthic (bottom dwelling) and epiphytic (attached to plants) zebra and quagga mussels (Dreissena polymorpha and D. bugensis, respectively) at Lake Erie near-shore sites in fall of 2000 revealed an unexpected prevalence of the zebra mussel on submerged plants. Even at Buffalo, New York, USA, where benthic dreissenids have been 92–100% quagga mussel since 1996, zebra mussels constituted 30–61% of epiphytes numerically. This may reflect a partitioning of settling space consistent with interspecific competition. A seasonal epiphytic refugium might allow the zebra mussel to persist even where the benthos is almost exclusively quagga mussel. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Investigations into the structure of communities of two dreissenid species are presented (native Dreissena polymorpha Pallas, 1771, and invasive D. bugensis Andrusov, 1897) in the Gorky and Rybinsk reservoirs (the Upper Volga basin). Significant interspecific and interpopulational differences in the main quantitative parameters and the fauna of endosymbionts are revealed between these mollusks.  相似文献   

12.
There have been few investigations of the number of founding sources and amount of genetic variability that lead to a successful nonindigenous species invasion, although genetic diversity is believed to play a central role. In the present study, population genetic structure, diversity and divergence patterns were analysed for the zebra mussel Dreissena polymorpha [n=280 samples and 63 putative randomly amplified polymorphic DNA (RAPDs) gene loci] and the quagga mussel D. bugensis (n=136 and 52 loci) from 10 nonindigenous North American and six Eurasian sampling sites, representing their present‐day ranges. Results showed that exotic populations of zebra and quagga mussels had surprisingly high genetic variability, similar to those in the Eurasian populations, suggesting large numbers of founding individuals and consistent with the hypothesis of multiple colonizations. Patterns of genetic relationships indicate that the North American populations of D. polymorpha likely were founded by multiple source populations from north‐western and northcentral Europe, but not from southcentral or eastern Europe. Sampling areas within North America also were significantly divergent, having levels of gene flow and migration about twice those separating long‐established Eurasian populations. Samples of D. bugensis in Lakes Erie and Ontario were significantly different, with the former being more closely related to a native population from the Dnieper River, Ukraine. No evidence for a founder effect was discerned for either species.  相似文献   

13.
Aim Hidden diversity within an invasive ‘species’ can mask both invasion pathways and confound management goals. We assessed taxonomic status and population structure of the monkey goby Neogobius fluviatilis across Eurasia, comparing genetic variation across its native and invasive ranges. Location Native populations were analysed within the Black and Caspian Sea basins, including major river drainages (Dnieper, Dniester, Danube, Don and Volga rivers), along with introduced locations within the upper Danube and Vistula river systems. Methods DNA sequences and 10 nuclear microsatellite loci were analysed to test genetic diversity and divergence patterns of native and introduced populations; phylogenetic analysis of mtDNA cytochrome b and nuclear RAG‐1 sequences assessed taxonomic status of Black and Caspian Sea lineages. Multivariate analysis of morphology was used to corroborate phylogenetic patterns. Population genetic structure within each basin was evaluated with mtDNA and microsatellite data using FST analogues and Bayesian assignment tests. Results Phylogenetic analysis of mitochondrial and nuclear sequences discerned a pronounced genetic break between monkey gobies in the Black and Caspian Seas, indicating a long‐term species‐level separation dating to c. 3 million years. This pronounced separation further was confirmed from morphological and population genetic divergence. Bayesian inference showed congruent patterns of population structure within the Black Sea basin. Introduced populations in the Danube and Vistula River basins traced to north‐west Black Sea origins, a genetic expansion pattern matching that of other introduced Ponto‐Caspian gobiids. Main conclusions Both genetic and morphological data strongly supported two species of monkey gobies that were formerly identified as subspecies: N. fluviatilis in the Black Sea basin, Don and Volga Rivers, and the Kumo‐Manych Depression, and Neogobius pallasi in the Caspian Sea and Volga River delta. Genetic origins of introduced N. fluviatilis populations indicated a common invasion pathway shared with other introduced Ponto‐Caspian fishes and invertebrates.  相似文献   

14.
The review describes the changes in natural reproduction of three important sturgeon species in the Volga–Caspian basin: (a) the beluga (Huso huso Linneaus, 1758), (b) the Russian sturgeon (Acipenser gueldenstaedtii Brandt &Ratzeburg, 1833), and (c) the stellate sturgeon (Acipenser stellatus Pallas, 1771). Since the past 60 years, these species responded to severe influences of natural and anthropogenic factors. On the basis of original and published data, an analysis has been made of (a) the numbers of larvae migrating from spawning sites (according to plankton net survey), (b) fecundity and histological anomalies in gonad development, (c) the numbers of adult sturgeons in the Caspian Sea and of spawners migrating to the Volga River (according to trawl and beach seine survey), and (d) foraging resources for the sturgeons. The results show that their natural reproduction in the Volga–Caspian basin has declined drastically during the past decades under the impact of (a) fluctuations of the Caspian Sea level and flow discharge from the Volga River, (b) blockage of sturgeon migration routes and loss of spawning sites because of dam construction, (c) water pollution in the lower reaches of the Volga River and in the Caspian Sea, and (d) intensive and selective illegal and unreported fishing. The relative significance of these factors has been changing during the study period.  相似文献   

15.
The Black Sea snail Lithoglyphus naticoides (C. Pfieffer, 1828) (Mollusca: Gastropoda: Lithoglyphidae) was first recorded in the Uglich Reservoir in the summer of 2013. By 2015, several new local settlements of the snail had been found in the Uglich and Rybinsk reservoirs, indicating its successful naturalization in the Upper Volga basin. Parasitological studies of L. naticoides from these habitats reveal the parthenitae of three trematode species.  相似文献   

16.
The zebra mussel (Dreissena polymorpha) and its congener the quagga mussel (Dreissena rostriformis bugensis) are both invaders in freshwater, but have very different invasion histories, with zebra mussels attaining substantially faster rates of spread at virtually all spatial scales. However, in waterbodies where they co-occur, D. r. bugensis can displace D. polymorpha. To determine if the mechanisms for this displacement are associated with different survival and growth, we kept mussels in flow-through tanks for 289 days with two temperature regimes that mimicked the natural surface water (littoral zone) and hypolimnion conditions of Lake Erie. For the littoral zone regime, we used water directly from the surface of Lake Erie (range 4–25°C, average 11.9 ± 0.6°C). For the profundal zone treatment, Lake Erie surface water was chilled to about 6°C (range 5–8°C, average 6.2 ± 0.6°C) for the full duration of the experiment. For each of these temperature regimes, we used three replicate tanks with only zebra mussels present and three replicate tanks with only quagga mussels (150 ind./tank each), and three replicate tanks with both species (75 ind./tank of each species). Quagga mussels had higher survivorship and grew more than zebra mussels in all treatments. For both species, the size of the mussel entering the winter was critical for survivorship. Larger mussels had a higher survival over the winter in all treatments. For both species, there was a survivorship and growth tradeoff. In the warmer littoral zone treatment both species had higher growth, but lower survival than in the colder profundal zone treatment. Surprisingly, although quagga mussels outperformed zebra mussels, zebra mussel survivorship was better when they were faced with competition by quagga mussels than with just intraspecific competition. In addition, quagga mussels suffered size-specific mortality during the growing season only when facing interspecific competition with zebra mussels. Further experiments are needed to determine the possible mechanisms for these interspecific effects.  相似文献   

17.
This article analyzes the indices of oxidative stress activity in freshwater bivalve Dreissena polymorpha (Pallas) from areas of the Rybinsk Reservoir with different levels of anthropogenic load. The following indices are studied: activity of catalase (CAT), glutathione reductase (GST), glutathione S-transferase (GST) and content of reduced glutathione (GSH), malondialdehyde (MDA), and carbonyl groups of oxidized proteins (CG). During the study period (July), the indices of oxidative stress of zebra mussel D. Polymorpha did not differ between sexes. Mussels that were collected in the most polluted part of the reservoir, the Sheksna stretch near the industrial complex of the city of Cherepovets, had a higher activity of catalase, glutathione S-transferase, and glutathione reductase and a higher content of malondialdehyde than zebra mussels taken from the relatively clean Volga stretch.  相似文献   

18.
Based on biochemical markers, we studied the nutrition ranges of populations of Dreissena polymorpha and Dreissena bugensis mussels that inhabit the Volga reach of the Rybinsk reservoir and differ in the long-term population dynamics. Features of the nutrition ranges of mussels are regarded as the probable cause of changes in the number of mollusca.  相似文献   

19.
Knowledge about the spatial–temporal dynamics of biological invasions often remains incomplete, because precise information about the invaders’ arrival dates is rare. This applies to the quagga mussel, which has become one of the most successful invasive species in Western European freshwaters. We here used cryogenically stored Dreissena samples from the German Environmental Specimen Bank to reconstruct the colonization history of the quagga mussel in German river systems. Our retrospective genetic analysis significantly improved upon previous findings of when the quagga mussel arrived in Germany and can be used as chronological landmarks to reconstruct its range expansion. The discovery of Dreissena rostriformis in 2004 in the Rhine River near Koblenz presented the first record of this species not only in Germany, but also in Western Europe. Our results show that the quagga mussel had already invaded not only large parts of the Rhine and the Danube, but also the Elbe River. This demonstrates the value of cryobanked biological samples for the retrospective analysis of biological ‘pollution’ through alien invasive species.  相似文献   

20.
Since its appearance in 2006 in a freshwater section of the Rhine–Meuse estuary (Hollandsch Diep, The Netherlands), the non-indigenous quagga mussel has displayed a rapid range expansion in Western Europe. However, an overview characterising the spread and impacts of the quagga mussel in this area is currently lacking. A literature study, supplemented with field data, was performed to gather all available data and information relating to quagga mussel dispersal. Dispersal characteristics were analysed for rate and direction and in relation to hydrological connectivity and dispersal vectors. To determine ranges of conditions suitable for quagga mussel colonisation, physico-chemical characteristics of their habitats were analysed. After its initial arrival in the freshwater section of the Rhine-Meuse estuary and River Danube, the quagga mussel demonstrated a rapid and continued range expansion in Western Europe. Quagga mussels have extended their non-native range to the network of major waterways in The Netherlands and in an upstream direction in the River Rhine (Germany), its tributaries (rivers Main and Moselle) and the River Meuse (Belgium and France). The calculated average quagga mussel dispersal rate in Europe was 120 km year?1 (range 23–383 km year?1). Hydrological connectivity is important in determining the speed with which colonisation occurs. Dispersal to water bodies disconnected from the freshwater network requires the presence of a suitable vector e.g. pleasure boats transferred over land. Upstream dispersal is primarily human mediated through the attachment of mussels to watercraft. The relative abundance of quagga mussel to zebra mussel has greatly increased in a number of areas sampled in the major Dutch rivers and lakes and the rivers Main and Rhine and the Rhine–Danube Canal leading to a dominance shift from zebra mussels to quagga mussels. However, evidence for displacement of the zebra mussel is limited due to the lack of temporal trends relating to the overall density of zebra and quagga mussel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号