首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Temperate phage mv4 integrates its DNA into the chromosome of Lactobacillus delbrueckii subsp. bulgaricus strains via site-specific recombination. Nucleotide sequencing of a 2.2-kb attP-containing phage fragment revealed the presence of four open reading frames. The larger open reading frame, close to the attP site, encoded a 427-amino-acid polypeptide with similarity in its C-terminal domain to site-specific recombinases of the integrase family. Comparison of the sequences of attP, bacterial attachment site attB, and host-phage junctions attL and attR identified a 17-bp common core sequence, where strand exchange occurs during recombination. Analysis of the attB sequence indicated that the core region overlaps the 3' end of a tRNA(Ser) gene. Phage mv4 DNA integration into the tRNA(Ser) gene preserved an intact tRNA(Ser) gene at the attL site. An integration vector based on the mv4 attP site and int gene was constructed. This vector transforms a heterologous host, L. plantarum, through site-specific integration into the tRNA(Ser) gene of the genome and will be useful for development of an efficient integration system for a number of additional bacterial species in which an identical tRNA gene is present.  相似文献   

2.
The region of temperate bacteriophage T12 responsible for integration into the chromosome of Streptococcus pyogenes has been identified. The integrase gene ( int ) and the phage attachment site ( attP ) are found immediately upstream of the gene for speA , the latter of which is known to be responsible for the production of erythrogenic toxin A (also known as pyrogenic exotoxin A). The integrase gene has a coding capacity for a protein of 41 457 Da, and the C-terminus of the deduced protein is similar to other conserved C-terminal regions typical of phage integrases. Upstream of int is a second open reading frame, which is capable of encoding an acidic protein of 72 amino acids (8744 Da); the position of this region in relation to int suggests it to be the phage excisionase gene ( xis ). The arms flanking the integrated prophage ( attL and attR ) were identified, allowing determination of the sequences of the phage ( attP ) and bacterial ( attB ) attachment sites. A fragment containing the integrase gene and attP was cloned into a streptococcal suicide vector; when introduced into S. pyogenes by electrotransformation, this plasmid stably integrated into the bacterial chromosome at attB . The insertion site for the phage into the S. pyogenes chromosome was found to be in the anticodon loop of a putative type II gene for a serine tRNA. attP and attB share a region of identity that is 96 bp in length; this region of identity corresponds to the 3' end of the tRNA gene such that the coding sequence remains intact after integration of the prophage. The symmetry of the core region of att may set this region apart from previously described phage attachment sites (Campbell, 1992), and may play a role in the biology of this medically important bacteriophage.  相似文献   

3.
The temperate actinophage RP3 integrates site-specifically into the chromosome of Streptomyces rimosus R6-554. The phage attachment site attP and the hybrid attachment sites of the integrated prophage--attL and attR--were cloned and sequenced. The 54nt core sequence, common to all RP3 related attachment sites, comprises the 3' terminal end of a putative tRNA(Arg)(AGG) gene. AttB bears the complete tRNA gene which is restored in attL after integration. A 7.5kb HindIII fragment, bearing attP, was used to construct an integrative plasmid to simulate the integration process in vivo and to localize the phage genes necessary for site specific integration. The int and xis genes were sequenced and compared to other recombination genes.  相似文献   

4.
The genetic elements required for the integration of the temperate lactococcal bacteriophage phi LC3 into the chromosome of its bacterial host, Lactococcus lactis subsp. cremoris, were identified and characterized. The phi LC3 phage attachment site, attP, was mapped and sequenced. DNA sequence analysis of attP and of the bacterial attachment site, attB, as well as the two phage-host junctions, attR and attL, in the chromosome of a phi LC3 lysogen, identified a 9-bp common core region, 5'-TTCTTCATG'-3, within which the strand exchange reaction takes place during integration. The attB core sequence is located within the C-terminal part of an open reading frame of unknown function. The phi LC3 integrase gene (int), encoding the phi LC3 site-specific recombinase, was identified and is located adjacent to attP. The phi LC3 Int protein, as deduced from the nucleotide sequence, is a basic protein of 374 amino acids that shares significant sequence similarity with other site-specific recombinases of the integrase family. Phage phi LC3 int- and int-attP-defective mutants, conferring an abortive lysogenic phenotype, were constructed.  相似文献   

5.
The temperate phage mv4 integrates its genome into the chromosome of Lactobacillus delbrueckii subsp. bulgaricus by site-specific recombination within the 3' end of a tRNA(Ser) gene. Recombination is catalyzed by the phage-encoded integrase and occurs between the phage attP site and the bacterial attB site. In this study, we show that the mv4 integrase functions in vivo in Escherichia coli and we characterize the bacterial attB site with a site-specific recombination test involving compatible plasmids carrying the recombination sites. The importance of particular nucleotides within the attB sequence was determined by site-directed mutagenesis. The structure of the attB site was found to be simple but rather unusual. A 16-bp DNA fragment was sufficient for function. Unlike most genetic elements that integrate their DNA into tRNA genes, none of the dyad symmetry elements of the tRNA(Ser) gene were present within the minimal attB site. No inverted repeats were detected within this site either, in contrast to the lambda site-specific recombination model.  相似文献   

6.
The genome of the Streptomyces temperate phage phiC31 integrates into the host chromosome via a recombinase belonging to a novel group of phage integrases related to the resolvase/invertase enzymes. Previously, it was demonstrated that, in an in vitro recombination assay, phiC31 integrase catalyses integration (attP/attB recombination) but not excision (attL/attR). The mechanism responsible for this recombination site selectivity was therefore investigated. Purified integrase was shown to bind with similar apparent binding affinities to between 46 bp and 54 bp of DNA at each of the attachment sites, attP, attB, attL and attR. Assays using recombination sites of 50 bp and 51 bp for attP and attB, respectively, showed that these fragments were functional in attP/attB recombination and maintained strict site selectivity, i.e. no recombination between non-permissive sites, such as attP/attP, attB/attL, etc., was observed. Using bandshifts and supershift assays in which permissive and non-permissive combinations of att sites were used in the presence of integrase, only the attP/attB combination could generate supershifts. Recombination products were isolated from the supershifted complexes. It was concluded that these supershifted complexes contained the recombination synapse and that site specificity, and therefore directionality, is determined at the level of stable synapse formation.  相似文献   

7.
Mx8 is a generalized transducing phage that infects Myxococcus xanthus cells. This phage is lysogenized in M. xanthus cells by the integration of its DNA into the host chromosome through site-specific recombination. Here, we characterize the mechanism of Mx8 integration into the M. xanthus chromosome. The Mx8 attachment site, attP, the M. xanthus chromosome attachment site, attB, and two phage-host junctions, attL and attR, were cloned and sequenced. Sequence alignments of attP, attB, attL, and attR sites revealed a 29-bp segment that is absolutely conserved in all four sequences. The intP gene of Mx8 was found to encode a basic protein that has 533 amino acids and that carries two domains conserved in site-specific recombinases of the integrase family. Surprisingly, the attP site was located within the coding sequence of the intP gene. Hence, the integration of Mx8 into the M. xanthus chromosome results in the conversion of the intP gene to a new gene designated intR. As a result of this conversion, the 112-residue C-terminal sequence of the intP protein is replaced with a 13-residue sequence. A 3-base deletion within the C-terminal region had no effect on Mx8 integration into the chromosome, while a frameshift mutation with the addition of 1 base at the same site blocked integration activity. This result indicates that the C-terminal region is required for the enzymatic function of the intP product.  相似文献   

8.
Temperate Myxococcus xanthus phage Mx8 integrates into the attB locus of the M. xanthus genome. The phage attachment site, attP, is required in cis for integration and lies within the int (integrase) coding sequence. Site-specific integration of Mx8 alters the 3' end of int to generate the modified intX gene, which encodes a less active form of integrase with a different C terminus. The phage-encoded (Int) form of integrase promotes attP x attB recombination more efficiently than attR x attB, attL x attB, or attB x attB recombination. The attP and attB sites share a common core. Sequences flanking both sides of the attP core within the int gene are necessary for attP function. This information shows that the directionality of the integration reaction depends on arm sequences flanking both sides of the attP core. Expression of the uoi gene immediately upstream of int inhibits integrative (attP x attB) recombination, supporting the idea that uoi encodes the Mx8 excisionase. Integrase catalyzes a reaction that alters the primary sequence of its gene; the change in the primary amino acid sequence of Mx8 integrase resulting from the reaction that it catalyzes is a novel mechanism by which the reversible, covalent modification of an enzyme is used to regulate its specific activity. The lower specific activity of the prophage-encoded IntX integrase acts to limit excisive site-specific recombination in lysogens carrying a single Mx8 prophage, which are less immune to superinfection than lysogens carrying multiple, tandem prophages. Thus, this mechanism serves to regulate Mx8 site-specific recombination and superinfection immunity coordinately and thereby to preserve the integrity of the lysogenic state.  相似文献   

9.
The DNA sequence of the int-attP region of the small-isometric-headed lactococcal bacteriophage Tuc2009 is presented. In this region, an open reading frame, int, which potentially encodes a protein of 374 amino acids, representing the Tuc2009 integrase, was identified. The nucleotide sequence of the bacteriophage attachment site, attP, and the sequences of attB, attL, and attR in the lysogenic host Lactococcus lactis subsp. cremoris UC509 were determined. A sequence almost identical to the UC509 attB sequence was found to be present in the plasmid-free Tuc2009-resistant L. lactis subsp. cremoris MG1363. This site could be used for the site-specific integration of a plasmid carrying the Tuc2009 int-attP region in the chromosome of MG1363, thereby demonstrating that the application of chromosomal insertion vectors based on bacteriophage integration functions is not limited to the prophage-cured original host strain of the phage.  相似文献   

10.
Like most temperate bacteriophages, phage Mx8 integrates into a preferred locus on the genome of its host, Myxococcus xanthus, by a mechanism of site-specific recombination. The Mx8 int-attP genes required for integration map within a 2.2-kilobase-pair (kb) fragment of the phage genome. When this fragment is subcloned into a plasmid vector, it facilitates the site-specific integration of the plasmid into the 3' ends of either of two tandem tRNAAsp genes, trnD1 and trnD2, located within the attB locus of the M. xanthus genome. Although Int-mediated site-specific recombination occurs between attP and either attB1 (within trnD1) or attB2 (within trnD2), the attP x attB1 reaction is highly favored and often is accompanied by a deletion between attB1 and attB2. The int gene is the only Mx8 gene required in trans for attP x attB recombination. The int promoter lies within the 106-bp region immediately upstream of one of two alternate GTG start codons, GTG-5208 (GTG at bp 5208) and GTG-5085, for integrase and likely is repressed in the prophage state. All but the C-terminal 30 amino acid residues of the Int protein are required for its ability to mediate attP x attB recombination efficiently. The attP core lies within the int coding sequence, and the product of integration is a prophage in which the 3' end of int is replaced by host sequences. The prophage intX gene is predicted to encode an integrase with a different C terminus.  相似文献   

11.
The nucleotide sequence of a secondary attachment site for bacteriophage lambda was determined in a region near the rrnB gene at 88 min on the E. coli chromosome. The sequence has a 8 base pair interrupted homology GCT TTTTA to the common core of the primary attachment site (attB) and the corresponding phage sequence (attP). The site of crossover during integration lies probably between nucleotides -3 and +1. The flanking regions have no obvious homology to the arms of either attP or attB.  相似文献   

12.
The genome of temperate phage phiFC1 integrates into the chromosome of Enterococcus faecalis KBL 703 via site-specific recombination. In this study, an integration vector containing the attP site and putative integrase gene mj1 of phage phiFC1 was constructed. A 2,744-bp fragment which included the attP site and mj1 was inserted into a pUC19 derivative containing the cat gene to construct pEMJ1-1. E. faecalis KBL 707, which does not contain the bacteriophage but which has a putative attB site within its genome, could be transformed by pEMJ1-1. Southern hybridization, PCR amplification, and DNA sequencing revealed that pEMJ1-1 was integrated specifically at the putative attB site within the E. faecalis KBL 707 chromosome. This observation suggested that the 2,744-bp fragment carrying mj1 and the attP site of phage phiFC1 was sufficient for site-specific recombination and that pEMJ1-1 could be used as a site-specific integration vector. The transformation efficiency of pEMJ1-1 was as high as 6 x 10(3) transformants/microg of DNA. In addition, a vector (pATTB1) containing the 290-bp attB region was constructed. pATTB1 was transformed into Escherichia coli containing a derivative of the pET14b vector carrying attP and mj1. This resulted in the formation of chimeric plasmids by site-specific recombination between the cloned attB and attP sequences. The results indicate that the integration vector system based on the site-specific recombination mechanism of phage phiFC1 can be used for genetic engineering in E. faecalis and in other hosts.  相似文献   

13.
The integrase gene (int) on the genome of φFSW, which is a temperate bacteriophage of Lactobacillus casei strain Shirota (formerly denoted as S-1), and the four attachment sites on the genomes of the phage and its host were characterized by sequencing. The φFSW integrase was found to belong to the integrase family of site-specific tyrosine recombinase. The attachment sites shared a 40bp common core within which an integrative site-specific recombination occurs. The common core was flanked on one side by an additional segment of high sequence similarity. An integration plasmid, consisting of int, the phage attachment site (attP), and a selectable marker, inserted stably into the bacterial attachment site (attB) within the common core, as did the complete prophage genome at a frequency of more than 10(3)/microg of plasmid DNA. This plasmid was used as a test system for a preliminary mutational analysis of int and attP. The attB common core was located within and near the end of an open reading frame that appears to encode a homolog to glucose 6-phosphate isomerase, an enzyme of the glycolytic pathway. It is unlikely that the prophage integration inactivates this protein, since a change of only the C-terminal amino acid is predicted because of the sequence similarity between attP and attB.  相似文献   

14.
CTXphi is a filamentous bacteriophage that encodes cholera toxin and integrates site-specifically into the larger of the two Vibrio cholerae chromosomes. The CTXphi genome lacks an integrase; instead, its integration depends on the chromosome-encoded tyrosine recombinases XerC and XerD. During integration, recombination occurs between regions of homology in CTXphi and the V. cholerae chromosome. Here, we define the elements on the phage genome (attP) and bacterial chromosome (attB) required for CTXphi integration. attB is a short sequence composed of one binding site for XerC and XerD spanning the site of recombination. Together, XerC and XerD bind to two sites within attP. While one XerC/D binding site in attP spans the core recombination region, the other site is approximately 80 bp away. Although integration occurs at the core XerC/D binding site in attP, the second site is required for CTXphi integration, suggesting it performs an architectural role in the integration reaction. In vitro cleavage reactions showed that XerC and XerD are capable of cleaving attB and attP sequences; however, additional cellular processes such as DNA replication or Holliday junction resolution by a host resolvase may contribute to integration in vivo.  相似文献   

15.
The integrase protein of the Rhizobium meliloti 41 phage 16-3 has been classified as a member of the Int family of tyrosine recombinases. The site-specific recombination system of the phage belongs to the group in which the target site of integration (attB) is within a tRNA gene. Since tRNA genes are conserved, we expected that the target sequence of the site-specific recombination system of the 16-3 phage could occur in other species and integration could take place if the required putative host factors were also provided by the targeted cells. Here we report that a plasmid (pSEM167) carrying the attP element and the integrase gene (int) of the phage can integrate into the chromosomes of R. meliloti 1021 and eight other species. In all cases integration occurred at so-far-unidentified, putative proline tRNA (CGG) genes, indicating the possibility of their common origin. Multiple alignment of the sequences suggested that the location of the att core was different from that expected previously. The minimal attB was identified as a 23-bp sequence corresponding to the anticodon arm of the tRNA.  相似文献   

16.
The temperate bacteriophage phi adh integrates its genome into the chromosomal DNA of Lactobacillus gasseri ADH by a site-specific recombination process. Southern hybridization analysis of BclI-digested genomic DNA from six relysogenized derivatives of the prophage-cured strain NCK102 displayed phage-chromosomal junction fragments identical to those of the lysogenic parent. The phi adh attachment site sequence, attP, was located within a 365-bp EcoRI-HindIII fragment of phage phi adh. This fragment was cloned and sequenced. DNA sequence analysis revealed striking features common to the attachment sites of other site-specific recombination systems: five direct repeats of the sequence TGTCCCTTTT(C/T) and a 14-bp inverted repeat. Oligonucleotides derived from the sequence of the attP-containing fragment enabled us to amplify predicted junction fragment sequences and thus to identify attL, attR, and attB. The core region was defined as the 16-bp sequence TACACTTCTTAGGAGG. Phage-encoded functions essential for site-specific insertion of phage phi adh were located in a 4.5-kb BclI fragment. This fragment was cloned in plasmid pSA34 to generate the insertional vector pTRK182. Plasmid pTRK182 was introduced into L. gasseri NCK102 by electroporation. Hybridization analysis showed that a single copy of pTRK182 had integrated at the attB site of the NCK102 erythromycin-resistant transformants. This is the first site-specific recombination system described in lactobacilli, as well as the first attP-based site-specific integration vector constructed for L. gasseri ADH.  相似文献   

17.
Integration of the bacteriophage P2 genome into the Escherichia coli host chromosome occurs by site-specific recombination between the phage attP and E. coli attB sites. The phage-encoded 38-kDa protein, integrase, is known to be necessary for both phage integration as well as excision. In order to begin the molecular characterization of this recombination event, we have cloned the int gene and overproduced and partially purified the Int protein and an N-terminal truncated form of Int. Both the wild-type Int protein and the integration host factor (IHF) of E. coli were required to mediate integrative recombination in vitro between a supercoiled attP plasmid and a linear attB substrate. Footprint experiments revealed one Int-protected region on both of the attP arms, each containing direct repeats of the consensus sequence TGTGGACA. The common core sequences at attP and attB were also protected by Int from nuclease digestion, and these contained a different consensus sequence, AA T/A T/A C/A T/G CCC, arranged as inverted repeats at each core. A single IHF-protected site was located on the P (left) arm, placed between the core- and P arm-binding site for Int. Cooperative binding by Int and IHF to the attP region was demonstrated with band-shift assays and footprinting studies. Our data support the existence of two DNA-binding domains on Int, having unrelated sequence specificities. We propose that P2 Int, IHF, attP, and attB assemble in a higher-order complex, or intasome, prior to site-specific integrative recombination analogous to that formed during lambda integration.  相似文献   

18.
Hosted TJ  Wang T  Horan AC 《Plasmid》2005,54(3):1013-258
pMR2, an 11.1 kb plasmid was isolated from Micromonospora rosaria SCC2095, NRRL3718, and its complete nucleotide sequence determined. Analysis revealed 13 ORFs including homologs of a KorSA regulatory protein and TraB plasmid transfer protein found on other actinomycete plasmids. pMR2 contains att/int functions consisting of an integrase, an excisionase, and a putative plasmid attachment site (attP). The integrase gene contained a high frequency of codons rarely used in high G+C actinomycete coding regions. The gene was codon optimized for actinomycete codon usage to create the synthetic gene int-OPT. pSPRX740, containing an rpsL promoter and the att/int-OPT region, was introduced into Micromonospora halophytica var. nigra ATCC33088. Analysis of DNA flanking the pSPRX740 integration site confirmed site-specific integration into a tRNA(Phe) gene in the M. halopytica var. nigra chromosome. The pMR2 attP element and chromosomal attachment (attB) site contain a 63 bp region of sequence identity overlapping the 3' end of the tRNA(Phe) gene. Plasmids comprising the site-specific att/int-OPT functions of pMR2 can be used to integrate genes into the chromosome of actinomycetes with an appropriate tRNA gene. The development of an integrative system for Micromonospora will expand our ability to study antibiotic biosynthesis in this important actinomycete genus.  相似文献   

19.
Different regions of RF DNA from the filamentous bacteriophage phiLf were cloned in Escherichia coli vectors that can not be maintained in Xanthomonas. After introduction into X. campestris pv. campestris 17 (Xc17), most of these constructs were found to integrate into the host chromosome, either by recA-dependent homologous recombination or recA-independent site-specific integration. Mutations in himA, which codes for the alpha-subunit of the Integration Host Factor, does not affect the integration. Integration occurs into a chromosomal region which harbors a copy of a defective phage (4445 bp) that shares a high degree of identity with the phiLf genome. While various parts of the 4445-bp region are susceptible to homologous recombination, site-specific integration requires the attB sequence on the chromosome and the phage attP. The attB shows a high level of sequence identity (22 out of 28 bp) to the dif site required for E. coli Xer site-specific recombination, including the 6-bp central region, and 8/11 identity in both the left XerC-binding arm and the right XerD-binding arm, with the innermost 5 nt of the arms forming a dyad symmetry that is also present in dif. The attP has the same central region and shows 10/11 identity to the dif site in the left arm, but the sequence of the right arm is less conserved than that of attB. The smallest regions still capable of mediating integration are a cloned 72-bp phiLf attP-containing sequence and a 51-bp Xc17 attB-containing sequence, which was reinserted into the Xc17 chromosome after the 4445-bp region had been deleted, indicating that accessory sequences are not necessary and that the integrase required for site-specific integration is neither specified by the 4445-bp Xc17 chromosomal region nor encoded by the phiLf genome.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号