首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 552 毫秒
1.
Haemolymph of non-vaccinated Galleria mellonella larvae contains two proteins, LBP-1 (17.2kDa) and LBP-2 (26.0kDa) that:bond to the surfaces of the insect pathogenic bacteria, Xenorhabdus nematophilus;prevented lipid A-binding dye attaching to the lipid A of X. nematophilus endotoxin; andreduced endotoxin activity on the haemocytes.Protein LBP-1 also blocked the inhibition of prophenoloxidase activation by the endotoxins. It is proposed that proteins LBP-1 and LBP-2 are part of the containment responses of the insects to bacteria.  相似文献   

2.
N-beta-Hydroxybutanoyl homoserine lactone (HBHL), the autoinducer of the luminescent system of Vibrio harveyi, has been identified as the first small compound to restore virulence to avirulent mutants of Xenorhabdus nematophilus. HBHL stimulated the level of lipase activity excreted by avirulent X. nematophilus and lowered the phenoloxidase activity in the hemolymph of insects infected with X. nematophilus, parameters that are both associated with insect pathogenesis. Moreover, mortality of the insects infected with avirulent X. nematophilus was restored upon injection with HBHL. Chloroform extraction of medium conditioned with wild-type but not avirulent X. nematophilus led to the isolation of a compound with the same chromatographic mobility as HBHL as well as the ability to stimulate the luminescence of a dim autoinducer-dependent mutant of V. harveyi. Transfer of the V. harveyi lux operon into avirulent and wild-type X. nematophilus generated dim and bright luminescent strains, respectively, which responded to HBHL and an agonist and antagonist in a manner analogous to their effects on the luminescence of dim autoinducer-deficient and bright wild-type strains of V. harveyi, indicating that similar HBHL-dependent regulatory systems exist in these two bacterial species.  相似文献   

3.
The resistance of Galleria mellonella, Dendrolimus pini, and Calliphora vicina larvae against infection by the enthomopathogen Conidiobolus coronatus was shown to vary among the studied species. Exposure of both G. mellonella and D. pini larvae to the fungus resulted in rapid insect death, while all the C. vicina larvae remained unharmed. Microscopic studies revealed diverse responses of the three species to the fungal pathogen: (1) the body cavities of D. pini larvae were completely overgrown by fungal hyphae, with no signs of hemocyte response, (2) infected G. mellonella larvae formed melanotic capsules surrounding the fungal pathogen, and (3) the conidia of C. coronatus did not germinate on the cuticle of C. vicina larvae. The in vitro study on the degradation of the insect cuticle by proteases secreted by C. coronatus revealed that the G. mellonella cuticle degraded at the highest rate. The antiproteolytic capacities of insect hemolymph against fungal proteases correlated well with the insects' susceptibility to fungal infection. The antiproteolytic capacities of insect hemolymph against fungal proteases correlated well with the insects' susceptibility to fungal infection. Of all the tested species, only plasmatocytes exhibited phagocytic potential. Exposure to the fungal pathogen resulted in elevated phagocytic activity, found to be the highest in the infected G. mellonella. The incubation of insect hemolymph with fungal conidia and hyphae revealed diverse reactions of hemocytes of the studied insect species. The encapsulation potential of D. pini hemocytes was low. Hemocytes of G. mellonella showed a high ability to attach and encapsulate fungal structures. Incubation of C. vicina hemolymph with C. coronatus did not result in any hemocytic response. Phenoloxidase (PO) activity was found to be highest in D. pini hemolymph, moderate in G. mellonella, and lowest in the hemolymph of C. vicina. Fungal infection resulted in a significant decrease of PO activity in G. mellonela larvae, while that in the larvae of D. pini remained unchanged. PO activity in C. vicina exposed to fungus slightly increased. The lysozyme-like activity increased in the plasma of all three insect species after contact with the fungal pathogen. Anti E. coli activity was detected neither in control nor in infected D. pini larvae. No detectable anti E. coli activity was found in the control larvae of G. mellonella; however, its exposure to C. coronatus resulted in an increase in the activity to detectable level. In the case of C. vicina exposure to the fungus, the anti E. coli activity was significantly higher than in control larvae. The defense mechanisms of D. pini (species of economic importance in Europe) are presented for the first time.  相似文献   

4.
Fifth instar Acheta domesticus nymphs exhibited a decline in total hemocyte counts during the first hour of exposure to dead Xenorhabdus nematophilus; the bacterial level in the hemolymph also declined during this time. Thereafter bacterial numbers in the hemolymph increased as the level of damaged hemocytes increased. The bacteria lowered phenoloxidase activity in vivo by initially reducing the number of hemocytes containing prophenoloxidase and later by inhibiting enzyme activation. Preincubating X. nematophilus in hemolymph with active phenoloxidase in vitro accelerated the removal of the bacteria from the hemolymph in vivo which may be due to modification of the bacterial surface by serine proteases. Lysozyme activity increased in bacteria-injected insects in parallel with an increase in counts of damaged hemocytes; most of the enzyme was located in hemocytes. Lipopolysaccharides of X. nematophilus caused changes in hemocyte counts and phenoloxidase and lysozyme levels comparable to whole bacteria. Lipopolysaccharides also slowed the removal rate of the bacteria from, and accelerated bacterial emergence into, the hemolymph.  相似文献   

5.
The non-self cellular (hemocytic) responses of Galleria mellonella larvae, including the attachment to slides and the removal of the bacteria Xenorhabdus nematophila and Bacillus subtilis from the hemolymph, were affected by N-formyl peptides. Both N-formyl methionyl-leucyl-phenylalanine (fMLF) and the ester derivative decreased hemocyte adhesion in vitro, and both elevated hemocyte counts and suppressed the removal of both X. nematophila and B. subtilis from the hemolymph in vivo. The amide derivative and the antagonist tertiary-butoxy-carbonyl-methionyl-leucyl-phenylalanine (tBOC) increased hemocyte attachment to glass. The fMLF suppressed protein discharge from monolayers of granular cells with and without bacterial stimulation, while tBOC stimulated protein discharge. The peptide tBOC offset the effects of fMLF in vitro and in vivo. This is the first report implying the existence of formyl peptide receptors on insect hemocytes in which the compounds fMLF and tBOC inhibited and activated hemocyte activity, respectively.  相似文献   

6.
Xenorhabdus spp., entomopathogenic bacteria symbiotically associated with nematodes of the family Steinernematidae, occur spontaneously in two phases. Only the phase I variants of Xenorhabdus nematophilus F1 expressed fimbriae when the bacteria were grown on a solid medium (nutrient agar; 24 and 48 h of growth). These appendages were purified and characterized. They were rigid, with a diameter of 6.4 (plusmn) 0.3 nm, and were composed of 16-kDa pilin subunits. The latter were synthesized and assembled during the first 24 h of growth. Phase II variants of X. nematophilus did not possess fimbriae and apparently did not synthesize pilin. Phase I variants of X. nematophilus have an agglutinating activity with sheep, rabbit, and human erythrocytes and with hemocytes of the insect Galleria mellonella. The purified fimbriae agglutinated sheep and rabbit erythrocytes. The hemagglutination by bacteria and purified fimbriae was mannose resistant and was inhibited by porcine gastric mucin and N-acetyl-lactosamine. The last sugar seems to be a specific inhibitor of hemagglutination by X. nematophilus.  相似文献   

7.
We show that inactivation of envZ, the gene encoding the histidine kinase sensor protein, EnvZ, of Xenorhabdus nematophilus, affected the production of several outer membrane proteins (Opns). X. nematophilus produced five major Opns during exponential growth. Insertional inactivation of envZ led to a decrease in the production of OpnP, the OmpF-like pore-forming protein which constitutes approximately 50% of the total outer membrane protein in X. nematophilus. OpnA production was also reduced, while the remaining Opns were produced normally. During the transition to stationary phase, three new outer membrane proteins, OpnB, OpnS, and OpnX, were induced in the wild-type strain. The envZ-minus strain, ANT1, did not produce OpnB and OpnX, while OpnS was induced at markedly reduced levels. These results suggest that EnvZ was required for the high-level production of OpnP during exponential growth and may be involved in the production of OpnB, OpnS, and OpnX during stationary-phase growth. We also show that ANT1 was more pathogenic than the wild-type strain when as few as five cells were injected into the hemolymph of the larval stage of the tobacco hornworm (Manduca sexta). The larvae died before significant numbers of bacteria were detectable in the hemolymph. These results are discussed in relation to the role of EnvZ in the life cycle of X. nematophilus.  相似文献   

8.
Lysozyme and antimicrobial peptides are key factors of the humoral immune response in insects. In the present work lysozyme and anionic defense peptide (GMAP2) were isolated from the hemolymph of the greater wax moth Galleria mellonella and their antibacterial activity was investigated. Adsorption of G. mellonella lysozyme on the cell surface of Gram-positive and Gram-negative bacteria was demonstrated using immunoblotting with anti-G. mellonella lysozyme antibodies. Lysozyme effectively inhibited the growth of selected Gram-positive bacteria, which was accompanied by serious alterations of the cell surface, as revealed by atomic force microscopy (AFM) imaging. G. mellonella lysozyme used in concentrations found in the hemolymph of naive and immunized larvae, perforated also the Escherichia coli cell membrane and the level of such perforation was considerably increased by GMAP2. GMAP2 used alone did not perforate E. coli cells nor influence lysozyme muramidase activity. However, the peptide induced a decrease in the turgor pressure of the bacterial cell. Moreover, in the samples of bacteria treated with a mixture of lysozyme and GMAP2 the sodium chloride crystals were found, suggesting disturbance of ion transport across the membrane leading to cell disruption. These results clearly indicated the synergistic action of G. mellonella lysozyme and anionic peptide 2 against Gram-negative bacteria. The reported results suggested that, thanks to immune factors constitutively present in hemolymph, G. mellonella larvae are to some extent protected against infection caused by Gram-negative bacteria.  相似文献   

9.
Xenorhabdus nematophilus is a pathogenic bacterium causing insect haemolymph septicemia, which leads to host insect death. To address the fundamental mechanisms underlying this haemolymph septicemia, or the immunodepressive response of the host insects following bacterial infection, we tested a hypothesis that the insect immune-mediating eicosanoid pathway is blocked by inhibitory action of the bacterium. Haemocoelic injection of the bacteria into the fifth instar larvae of Spodoptera exigua reduced the total number of living haemocytes with postinjection time and resulted in host death in 16 h at 25 degrees C. The lethal efficacy, described by the median lethal bacterial dose (LD(50)), was estimated as 33 colony-forming units per fifth instar larva of S. exigua. The lethal effect of the bacteria on the infected larvae decreased significantly with the addition of exogenous arachidonic acid (10 μg), a precursor of eicosanoids. In comparison, injections of dexamethasone (10 μg), a specific inhibitor of phospholipase A(2), and other eicosanoid biosynthesis inhibitors elevated significantly the bacterial pathogenicity. Live X. nematophilus induced the infected larvae to form less nodules than did the heat-killed bacteria, but the addition of arachidonic acid increased the number of nodules formed significantly in response to live bacterial injection. The treatment with dexamethasone and other inhibitors, however, decreased the nodule formation after injection of heat-killed bacteria. These results indicate that eicosanoids play a role in the immune response of S. exigua, and suggest strongly that X. nematophilus inhibits its eicosanoid pathway, which then results in immunodepressive haemolymph septicemia.  相似文献   

10.
Defense peptides play a crucial role in insect innate immunity against invading pathogens. From the hemolymph of immune-challenged greater wax moth, Galleria mellonella (Gm) larvae, eight peptides were isolated and characterized. Purified Gm peptides differ considerably in amino acid sequences, isoelectric point values and antimicrobial activity spectrum. Five of them, Gm proline-rich peptide 2, Gm defensin-like peptide, Gm anionic peptides 1 and 2 and Gm apolipophoricin, were not described earlier in G. mellonella. Three others, Gm proline-rich peptide 1, Gm cecropin D-like peptide and Galleria defensin, were identical with known G. mellonella peptides. Gm proline-rich peptides 1 and 2 and Gm anionic peptide 2, had unique amino acid sequences and no homologs have been found for these peptides. Antimicrobial activity of purified peptides was tested against gram-negative and gram-positive bacteria, yeast and filamentous fungi. The most effective was Gm defensin-like peptide which inhibited fungal and sensitive bacteria growth in a concentration of 2.9 and 1.9 microM, respectively. This is the first report describing at least a part of defense peptide repertoire of G. mellonella immune hemolymph.  相似文献   

11.
Galleria mellonella L. larvae were infected with three species (seven strains) of Steinernema spp. or three species (three strains) of Heterorhabditis spp. Infected larvae were incubated at 22, 27, and 32 degrees C. Larvae were dorsally dissected every 6h over a 48-h period. Hemolymph was collected and streaked on tryptic soy agar plates. Several non-symbiotic bacterial species were identified from infected insect cadavers: Enterobacter gergoviae, Vibrio spp., Pseudomonas fluorescens type C, Serratia marcescens, Citrobacter freundii, and Serratia proteomaculans. At 18-24 h incubation, the nematode-associated symbiont occurred almost exclusively. Bacterial associates generally appeared outside the 18-24 h window. Infective juveniles of Steinernema feltiae (Filipjev) (27), Steinernema riobrave Cabanillas, Poinar, and Raulston (Oscar), or Steinernema carpocapsae (Weiser) (Kapow) were left untreated, or surface sterilized using thimerosal, then pipetted under sterile conditions onto tryptic soy agar plates. Several additional species of associated bacteria were identified using this method compared with the less extensive range of species isolated from infected G. mellonella. There was no difference in bacterial species identified from non-sterile or surface sterilized nematodes, suggesting that the bacteria identified originated from either inside the nematode or between second and third stage juvenile cuticles. Infective juveniles of S. feltiae (Cowles), S. carpocapsae (Cowles), and H. bacteriophora Poinar (Cowles) were isolated from field samples. Nematodes were surface-sterilized using sodium hypochlorite, mixed with G. mellonella hemolymph, and pipetted onto Biolog BUG (with blood) agar. Only the relevant symbionts were isolated from the limited number of samples available. The nematodes were then cultured in the laboratory for 14 months (sub-cultured in G. mellonella 7-times). Other Enterobacteriaceae could then be isolated from the steinernematid nematodes including S. marcescens, Salmonella sp., and E. gergoviae, indicating the ability of the nematodes to associate with other bacteria in laboratory culture.  相似文献   

12.

The bacterial symbionts isolated from the entomopathogenic nematodes were compared for their pathogenicity to last instar larvae of G. mellonella at both Phases I and II. Most bacterial symbionts at Phase I cause 100% mortality within 2-3 days post-injection with 1 times; 10 3 cells/larva. The pathogenicity of Phase I decreased in the following order: Xenorhabdus nematopbilus, Flavimonas oryzihabitans, Photorhabdus luminescens and Xenorhabdus bovienii with LD 50 values of 40, 55, 70 and 170 cells/larva. The injection of Phase II of the bacterial symbionts did not give 100% mortality even after 4 days post-injection. The time mortality response of G. mellonella larvae to both phases of the bacterial symbiont was significantly different usually at the two highest concentrations tested. The significancy in case of Phase I was in the following order from lowest to highest, F . oryzihabitans , X . nematophilus , P. luminescens and X. bovienii . It was 20.57, 23.96, 23.99 and 53.76 h, respectively. Also, F. oryzihabitans gave the lowest LT 50 value for its Phase II form. It was 36.85 h, and this is followed by X. bovienii , X. nematophilus , and P. luminescens , the LT 50 values of which were 69.29, 74.08 and 74.49 h, respectively. The results suggest that there is a direct correlation between toxin concentration and rate of killing the larvae. On the other hand, there is an inverse correlation between the LT 50 values and the injected concentration.  相似文献   

13.
Steinernema carpocapsae is an entomopathogenic nematode associated with a symbiotic bacterium, Xenorhabdus nematophilus. Both components of the complex participate in a pathogenic process in insects. This has raised two questions: how much does each one participate, and what mechanisms are involved? In this paper we compare the virulence of two strains of S. carpocapsae: a high virulent strain (Breton) and a low virulent strain (Az27), both of which are free of symbiotic bacteria. Breton and Az27 strains each one have similar ability to invade Galleria mellonella with median infectious times of 3.9 and 3.2 h, respectively. However, the LD(50) of the Breton and Az27 strains are 48.6 and 894.5 infective juveniles per insect, respectively. Breton strain takes 38 h to kill 100% of exposed insects, whereas Az27 takes three times longer. The lethal time of the low virulent strain in G. mellonella larvae is highly dependent on the number of nematodes which have penetrated the hemocelium, whereas it is not on the high virulent strain. Hemolymph patterns in SDS-PAGE of insects parasitized by the high virulent strain showed important differences in respect to the low virulent strain and control. Secretion/excretion products of the high virulent strain have important proteolytic activity as well as alpha-mannosidase and alpha-fucosidase activities, whereas, in secretion/excretion products of the avirulent strain, proteolytic activity was lower and alpha-mannosidase and alpha-fucosidase activities were undetected.  相似文献   

14.
Infection of Galleria mellonella larvae with the entomopathogenic nematodes Steinernema feltiae (A21 and R strains) and Steinernema glaseri (Dongrae) resulted in several species of bacteria, including the respective bacterial symbiont, Xenorhabdus spp., growing in the infected insect cadavers. These other bacteria were Enterococcus in all three nematode infections studied and Acinetobacter in the S. feltiae infections. The respective populations of these bacteria changed with time. Following infection of G. mellonella larvae with any one of the Steinernema sp., only Enterococcus bacteria were detected initially in the dead larvae. Between 30 and 50h post-infection Xenorhabdus bacteria were detected and concurrent with this Enterococcus population declined to zero. This was probably due to secondary metabolites with antibacterial properties that were produced by Xenorhabdus. In the S. feltiae (both R and A21 strains) infections a third bacterium, Acinetobacter, appeared at about 130h (in S. feltiae A21 infections) or 100h (in S. feltiae R infections) and increased in population size to approximately that of Xenorhabdus. It was demonstrated that Enterococcus, orginating from the G. mellonella digestive tract, was sensitive to the organically soluble antimicrobials produced by Xenorhabdus but Acinetobacter, which was carried by the nematode, was not.  相似文献   

15.
Apolipophorin III (apoLp-III) is an abundant hemolymph protein involved in lipid transport and immune response in insects. We investigated involvement of apoLp-III in the antibacterial response in Galleria mellonella larvae. Immune challenge with Gram-negative (Escherichia coli, Klebsiella pneumoniae) and Gram-positive (Micrococcus luteus) bacteria led to an increase in the level of apoLp-III in G. mellonella hemolymph, 0.5-2h and 8h after treatment, respectively. ApoLp-III purified from larval hemolymph as well as that present in hemolymph extracts adsorbed on the surface of different bacteria. The adsorption capacity of apoLp-III on bacterial cells prompted us to investigate the effect of this phenomenon on bacterial growth. Our results demonstrate antibacterial activity of apoLp-III against selected Gram-positive and Gram-negative bacteria in vitro. Among bacteria tested, Salmonella typhimurium and K. pneumoniae were the most sensitive to apoLp-III. LIVE/DEAD staining of bacteria incubated with purified apoLp-III revealed their growth inhibition; however, neither morphological changes in the cell shape nor formation of cell aggregates was noticed. The results suggest that apoLp-III is a multifunctional protein in G. mellonella hemolymph.  相似文献   

16.
Bacteria of the genus Xenorhabdus are mutually associated with entomopathogenic nematodes of the genus Steinernema and are pathogenic to a broad spectrum of insects. The nematodes act as vectors, transmitting the bacteria to insect larvae, which die within a few days of infection. We characterized the early stages of bacterial infection in the insects by constructing a constitutive green fluorescent protein (GFP)-labeled Xenorhabdus nematophila strain. We injected the GFP-labeled bacteria into insects and monitored infection. We found that the bacteria had an extracellular life cycle in the hemolymph and rapidly colonized the anterior midgut region in Spodoptera littoralis larvae. Electron microscopy showed that the bacteria occupied the extracellular matrix of connective tissues within the muscle layers of the Spodoptera midgut. We confirmed the existence of such a specific infection site in the natural route of infection by infesting Spodoptera littoralis larvae with nematodes harboring GFP-labeled Xenorhabdus. When the infective juvenile (IJ) nematodes reached the insect gut, the bacterial cells were rapidly released from the intestinal vesicle into the nematode intestine. Xenorhabdus began to escape from the anus of the nematodes when IJs were wedged in the insect intestinal wall toward the insect hemolymph. Following their release into the insect hemocoel, GFP-labeled bacteria were found only in the anterior midgut region and hemolymph of Spodoptera larvae. Comparative infection assays conducted with another insect, Locusta migratoria, also showed early bacterial colonization of connective tissues. This work shows that the extracellular matrix acts as a particular colonization site for X. nematophila within insects.  相似文献   

17.
The bacterium, Xenorhabdus nematophilus, is a virulent insect pathogen. We tested the hypothesis that this bacterium impairs insect cellular immune defense reactions by inhibiting biosynthesis of eicosanoids involved in mediating cellular defense reactions. Fifth instar tobacco hornworms, Manduca sexta, produced melanized nodules in reaction to challenge with living and heat-killed X. nematophilus. However, the nodulation reactions were much attenuated in insects challenged with living bacteria (approximately 20 nodules/larva for living bacteria vs. approximately 80 nodules/larva in insects challenged with heat-killed bacteria). The nodule-inhibiting action of living X. nematophilus was due to a factor that was present in the organic, but not aqueous, fraction of the bacterial cultural medium. The nodule-inhibiting factor in the organic fraction was labile to heat treatments. The immunodepressive influence of the factor in the organic fraction was reversed by treating challenged hornworms with arachidonic acid. The factor also depressed nodulation reactions to challenge with the plant pathogenic bacteria, Pseudomonas putida and Ralstonia solanacearum. These findings indicate that one or more factors from X. nematophilus depress nodulation reactions in tobacco hornworms by inhibiting eicosanoid biosynthesis.  相似文献   

18.
We have identified and cloned a novel toxin gene (tccC1/xptB1) from Xenorhabdus nematophilus strain isolated from Korea-specific entomophagous nematode Steinernema glaseri MK. The DNA sequence of cloned toxin gene (3048 bp) has an open reading frame encoding 1016 amino acids with a predicted molecular mass of 111058 Da. The toxin sequence shares 50-96% identical amino acid residues with the previously reported tccC1 cloned from X. nematophilus, Photorhabdus luminescens W14 P. luminescens TTO1, and Yersinia pestis CO92. The toxin gene was successfully expressed in Escherichia coli, and the recombinant toxin protein caused a rapid cessation in mortality of Galleria mellonella larvae (80% death of larvae within 2 days). Conclusively, the heterologous expression of the novel gene tccC1 cloned into E. coli plasmid vector produced recombinant toxin with high insecticidal activity.  相似文献   

19.
The insect parasitic nematodes Heterorhabditis spp. are mutualistically associated with entomopathogenic bacteria, Photorhabdus spp. A novel association has been detected between H. megidis isolate EU17 and the endospore-forming bacterium Paenibacillus nematophilus. P. nematophilus sporangia adhere to infective juveniles (IJs) of H. megidis and develop in insect hosts along with the nematodes and their symbiont. We tested the effects of P. nematophilus on H. megidis. The yield and quality (size, energy reserves, and storage survival) of IJs were not affected by co-culture in insects with P. nematophilus. Dispersal of IJs in sand and on agar was inhibited by adhering P. nematophilus sporangia: fewer than 2% of IJs with P. nematophilus sporangia reached the bottom of a sand column, compared to 30% of the control treatment. Sporangia significantly reduced infectivity of H. megidis for wax moth larvae in sand, but not in a close contact (filter paper) assay. The results suggest that P. nematophilus may reduce the transmission potential of H. megidis through impeding the motility of IJs.  相似文献   

20.
The role of protein kinase A (PKA) in the humoral immune response of the greater wax moth Galleria mellonella larvae to live gram-positive bacteria Micrococcus lysodeikticus and gram-negative bacteria Escherichia coli was investigated. The immune challenge of larvae with both kinds of bacteria caused an increase in fat body PKA activity depending on the injected bacteria. Gram-positive M. lysodeikticus was a much better inducer of the enzyme activity than gram-negative E. coli. The PKA activity was increased about 2.5-fold and 1.5-fold, after M. lysodeikticus and E. coli injection, respectively. The in vivo inhibition of the enzyme activity by a cell permeable selective PKA inhibitor, Rp-8-Br-cAMPS, was correlated with considerable changes of fat body lysozyme content and hemolymph antimicrobial activity in bacteria-challenged insects. The kinetics of changes were different and dependent on the bacteria used for the immune challenge of G. mellonella larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号