首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Fucus populations on rocky shores along 300 km of the coastal waters of southeast Sweden in the Baltic proper have been studied since 1984 at a number of fixed sites as part of monitoring programmes. This paper describes changes in distribution and abundance of F. vesiculosus and F. serratus during the period 1984–2001. Sheltered sites showed a consistent temporal and spatial pattern of Fucus spp. distribution over a coastline of 300 kilometres. The depth penetration and abundance of Fucus spp. increased during the 1980s. Around 1990 the development reversed as a consequence of grazing and in 1997 many sites were almost devoid of Fucus spp. Since 1998 both abundance and depth penetration have increased again, possibly as a result of local measures against eutrophication. Exposed sites, on the other hand, lost their Fucus populations at the beginning of the 1990s, and they have not recovered. Extended field studies lead us to deduce that the fixed sites referred to above were representative of the Fucus populations in the area investigated. Major declines, both at sheltered and exposed sites, are attributed to grazing by the isopod Idotea baltica. The populations of I. baltica may have been favoured by the continuing eutrophication of the Baltic, a series of mild winters in the 1990s, and a contemporary decline in some potential predators.  相似文献   

2.
The macroalgal belt in the southern Baltic Sea may be partly structured by the interaction of physical and biological factors. A field study, spanning the 1990s, describes a rapid decline of the Fucus spp. stands along the wave-exposed Swedish southeast coast. During this period, a relative dominance of Fucus vesiculosus L. shifted to a relative dominance of Fucus serratus L. The decline of F. vesiculosus coincided with observations of large numbers of the grazing isopods Idotea baltica (Pallas) and Idotea granulosa Rathke, or with field observations of frequent grazing marks on Fucus fronds. I. baltica, but not I. granulosa, tended to aggregate in the declining Fucus spp. stands, indicating a strong preference for Fucus spp. In a mesocosm experiment I. baltica, when given a choice, grazed both Fucus species at weak water motion. At strong water motion grazing was concentrated on F. vesiculosus. It is hypothesized that one of the reasons I. baltica preferred F. vesiculosus to F. serratus at strong water motion may have been differences in habitat quality, like width of thallus, influencing the ability to cling to the plant. Smaller thallus, as in F. vesiculosus, thus is the preferred habitat for grazing of I. blatica. We postulate that the existence of F. serratus in the area may be favoured by strong wave action and moderate but not strong grazing by I. baltica, relaxing the interspecific competition from F. vesiculosus.  相似文献   

3.
Berger  Rita  Bergström  Lena  Granéli  Edna  Kautsky  Lena 《Hydrobiologia》2004,514(1-3):243-248
During the last few decades the perennial seaweed Fucus vesiculosus L. has rapidly declined in large parts of the Baltic Sea. Indirect effects of eutrophication, such as increased turbidity, sedimentation, grazing and occurrence of filamentous algae, have generally been suggested as major factors causing the decline. It is only recently, however, that the effects of these factors have been experimentally tested and here we summarise these results in a new conceptual model. In many areas, it might be desirable to enhance the recovery of Fucus artificially, as the natural rate of re-establishment of this important macroalga is limited both in time and space. To be able to optimise and evaluate the potential of restoring Fucus belts in eutrophicated areas, we need to know how eutrophication affects critical steps in its life cycle, such as the attachment, germination and early growth of germlings. We suggest that more attention should be given to the survival of early post-settlement stages in Fucusas they are crucial for the maintenance and re-establishment of populations. We also stress that the two reproductive periods that the species exhibits are included in discussions concerning effects of eutrophication on Fucus, as it is likely that the outcome of reproduction will differ between the two reproductive periods. In the new conceptual model we distinguish between the effects on adult and juvenile life stages and we add the two reproductive strategies of Fucus.  相似文献   

4.
A sediment core, 55 cm long, from station F81 in the Gotland Basin of the Baltic Sea was analysed for diatoms and ebridians. Chrysophyte stomatocysts found in the core were also counted but not identified. The aim was to trace environmental changes, e.g. eutrophication and salinity variations. There is evidence that eutrophication has been increasing in the Baltic Sea in recent decades.Brackish-marine plankton diatoms dominate the entire core and reflect the local planktonic taxa rather well. The dominant taxon is the polyhalobous Actinocyclus octonarius. The main biostratigraphical change within the core analysed takes place at a depth of about 22 cm, where the abundance of diatoms, and especially of Chaetoceros spp., Thalassiosira hyberborea var. pelagica and T. baltica start to increase. This may reflect eutrophication which can be estimated to have started c. 200 years ago.  相似文献   

5.
Ocean acidification and warming (OAW) are occurring globally. Additionally, at a more local scale the spreading of hypoxic conditions is promoted by eutrophication and warming. In the semi-enclosed brackish Baltic Sea, occasional upwelling in late summer and autumn may expose even shallow-water communities including the macroalga Fucus vesiculosus to particularly acidified, nutrient-rich and oxygen-poor water bodies. During summer 2014 (July–September) sibling groups of early life-stage F. vesiculosus were exposed to OAW in the presence and absence of enhanced nutrient levels and, subsequently to a single upwelling event in a near-natural scenario which included all environmental fluctuations in the Kiel Fjord, southwestern Baltic Sea, Germany (54°27 ´N, 10°11 ´W). We strove to elucidate the single and combined impacts of these potential stressors, and how stress sensitivity varies among genetically different sibling groups. Enhanced by a circumstantial natural heat wave, warming and acidification increased mortalities and reduced growth in F. vesiculosus germlings. This impact, however, was mitigated by enhanced nutrient conditions. Survival under OAW conditions strongly varied among sibling groups hinting at a substantial adaptive potential of the natural Fucus populations in the Western Baltic. A three-day experimental upwelling caused severe mortality of Fucus germlings, which was substantially more severe in those sibling groups which previously had been exposed to OAW. Our results show that global (OAW), regional (nutrient enrichment) and local pressures (upwelling), both alone and co-occurring may have synergistic and antagonistic effects on survival and/or growth of Fucus germlings. This result emphasizes the need to consider combined stress effects.  相似文献   

6.
Charophytes are a highly endangered group of algae. In the Baltic Sea, the number of species, distribution area and biomass of charophytes have significantly decreased in recent decades. Although eutrophication triggers their initial decline, the mechanism of the final extinction of charophyte populations is not fully understood. An in situ experiment was performed to study the role of the mesoherbivores Idotea baltica, Gammarus oceanicus and Palaemon adspersus in the decline of charophytes in the north-eastern Baltic Sea. Invertebrate grazing showed a clear seasonality: grazing pressure was low in April, moderate in July, and high in October. Grazing on charophytes by P. adspersus was negligible, whereas I. baltica and G. oceanicus significantly reduced the biomass of charophytes in the field. Low photosynthetic activity (high decomposition rate) of the charophytes favoured grazing. The invertebrates studied preferred Chara tomentosa to C. connivens. Low consumption of C. connivens may reflect its non-native origin. The experiment suggests that, under moderately eutrophic conditions, grazers are not likely to control charophyte populations. However, grazers have the potential to eliminate charophytes in severely eutrophic systems under the stress of filamentous algae.Communicated by H.D. Franke  相似文献   

7.
In the Baltic Sea, abiotic factors are often supposed to explain the distribution of the key species Fucus vesiculosus. Still, in many areas, decline of F. vesiculosus has coincided with mass occurrence of the herbivorous isopod Idotea baltica. The aim of this work was to examine whether, how and at what densities I. baltica can affect the distribution of F. vesiculosus in the central Baltic proper. Both large-scale field surveys and a two-week grazing experiment have been performed.In the field survey there was a correlation between density of I. baltica and reduction in depth penetration of F. vesiculosus. At 80 animals per 100 g F. vesiculosus wet weight, the depth penetration of the F. vesiculosus belt was reduced by 2.5 m within a year. In the grazing experiment there was a correlation between density of I. baltica and loss of F. vesiculosus biomass and meristems. In the controls biomass and number of meristems increased by 50%, while at 20 animals per 100 g of F. vesiculosus there was no net growth of F. vesiculosus. Intensity of grazing did not differ between isopod densities of 20, 40 and 60/100 g. At isopod densities of 80 and 100/100 g though, biomass and meristems decreased by 50%, indicating a threshold for the survival of F. vesiculosus in the experiment. At all densities the isopods preferred younger tissue to older.Our results indicate that grazing by Idotea baltica is an important structuring factor in the Baltic Fucus vesiculosus populations.  相似文献   

8.
We hypothesized that supply from macroalgal propagule banks may influence the relative abundance of annual and perennial algae and that this may alter the effects of grazers and nutrients on species composition. In a factorial field experiment in the Baltic Sea littoral system we tested the effects of manipulating propagule banks, the abundance of crustacean and gastropod grazers, and nutrient supply on recruitment and growth of macroalgae over a year. Moreover, we determined seasonal patterns of macroalgal propagule dispersal at the experimental site and quantified algal abundance and recruitment at 25 locations throughout the Baltic Sea. Experimental manipulations had minor effects on adults of the dominating perennial alga, Fucus vesiculosus. Instead, we found that species composition was determined by processes operating at early life stages. Propagule supply from a propagule bank strongly favored the fast-growing annual alga Enteromorpha spp. which then blocked settlement and recruitment of Fucus. Grazers reduced the abundance of annual algae and indirectly favored Fucus recruitment. There was an apparent trade-off between gains from the propagule bank and losses to herbivory in five of seven colonizing species. Nutrient enrichment overrode grazer control of annual algae and accelerated the decline of Fucus only when annual algae had already achieved high densities through the propagule bank. Corroborating the experimental findings, field surveys across the Baltic showed that Fucus recruit densities can be predicted from the cover of annual algae during the period of Fucus reproduction and settlement. Recruitment inhibition by annual algae, which is driven by the abundance of annuals in the propagule bank, increasing nutrient levels, and declining consumer control, is suggested as a mechanistic explanation of the current decline of perennial algae in the Baltic Sea.  相似文献   

9.
Understanding the effects of environmental change on the distribution and abundance of strongly interacting organisms, such as intertidal macroalgae and their grazers, needs a thorough knowledge of their underpinning ecological relationships. Control of grazer-plant interactions is bi-directional on northwestern European coasts: grazing by limpets structures populations of macroalgae, while macroalgae provide habitat and food for limpets. Scottish shores dominated by the macroalga Fucus vesiculosus support lower densities and larger sizes of limpets Patella vulgata than shores with less Fucus. These patterns may be due to differences in inter-size-class competitive interactions of limpets among shores with different covers of Fucus. To examine this model, densities of small and large limpets were manipulated in plots with and without Fucus. Amounts of biofilm were measured in each plot. The presence of Fucus increased survival but hindered growth of small (15 mm TL) limpets, which were negatively affected by the presence of large limpets (31 mm TL). In contrast, large limpets were not affected by the presence of Fucus or of small limpets. This suggests the occurrence of asymmetric inter-size-class competition, which was influenced by the presence of macroalgae. Macroalgae and increased densities of limpets did not influence amounts of biofilm. Our findings highlight the role of interactions among organisms in generating ecological responses to environmental change.  相似文献   

10.
This study explores: (1) whether the abundance of macroinvertebrates differs between macrophytes differing in both morphological complexity and tolerance to nutrient enrichment; (2) whether the distribution of invertebrates between macrophytes is due to active habitat choice; and (3) whether invertebrates prefer structurally complex to simple macrophytes. Macroinvertebrate abundance was compared between two common soft-bottom plants of the Baltic Sea that are tolerant to eutrophication, Myriophyllum spicatum and Potamogeton pectinatus, and one common plant that is sensitive to eutrophication, Chara baltica. Both field sampling and habitat choice experiments were conducted. We recorded higher total macroinvertebrate abundance on the structurally complex M. spicatum than on the more simply structured P. pectinatus and C. baltica, but found no difference in macroinvertebrate abundance between P. pectinatus and C. baltica. In accordance with the field results, our experiment indicated that the crustacean Gammarus oceanicus actively chose M. spicatum over the other macrophytes. Besides, we found that G. oceanicus actively preferred complex to simply structured artificial plants, indicating that the animal distribution was at least partly driven by differences in morphological complexity between plant species. In contrast, the gastropod Theodoxus fluviatilis did not make an active habitat choice between the plants. Our findings suggest that human-induced changes in vegetation composition can affect the faunal community. Increased abundance of structurally complex macrophytes, for example, M. spicatum, can result in increased abundance of macroinvertebrates, particularly mobile arthropods that may actively choose a more structurally complex macrophyte.  相似文献   

11.
Orav-Kotta  Helen  Kotta  Jonne 《Hydrobiologia》2004,514(1-3):79-85
The isopod Idotea baltica is the most important benthic herbivore in the Baltic Sea. There exists a significant correlation between the distribution of the adult isopod and the belts of bladder wrack Fucus vesiculosus. However, following the eutrophication induced blooms of the filamentous macroalga Pilayella littoralis and the disappearance of F. vesiculosus a notable increase in idoteid abundances has been observed. The aim of this paper was (1) to evaluate experimentally whether F. vesiculosus provides either food, shelter or both to the isopods and (2) to estimate the role of associated filamentous algae in the habitat selection process. Amongst six abundant macroalgal species, about 50% of isopod population was attracted to F. vesiculosuscovered with the filamentous algae P. littoralis. The majority of the remaining part of the population was either swimming freely or attracted to non-epiphytic P. littoralis. When both live algae and artificial substrata were provided, P. littoralis growing on artificial substrata was clearly preferred by the isopods over epiphyte-free F. vesiculosus. In the grazing experiment where I. baltica was allowed to choose between F. vesiculosus and P. littoralis the latter contributed practically 100% of the diet of the isopod. The results indicate the importance of P. littoralis as a food item and F. vesiculosus as a shelter for I. baltica.  相似文献   

12.
Eutrophication in the northern Baltic Sea promotes growth of annual filamentous algae. The algae detach, gather at the bottom and give rise to algal mats of varying size, density, composition and condition. Dense mats of filamentous algae induce anoxia, which in turn leads to faunal mortality. By a set of field experiments, we have studied the fate of the abundant Cladophora glomerata after detaching from the rocky substrate, and the effect of water depth and sediment on its decay. Further, we have studied the importance of common mesograzers (Gammarus and Idotea) on the rate of degradation of C. glomerata and Pilayella littoralis.Our results show that loose algae at shallow sites (8 m) decompose faster than algae in deeper (18 m) areas. Drifting C. glomerata on the sediment is more rapidly broken down and dissolved than algae floating in the water column, which depends on higher microbiological activity. Dominant amphipods (Gammarus spp) colonise near-shore drift algae quickly, and juvenile bivalves (Cerastoderma glaucum) utilise algae in the water column for settling. Moderate natural densities of grazers (Gammarus spp and Idotea baltica) in the drifting algae did not increase the degradation rates of C. glomerata and P. littoralis. C. glomerata was completely decomposed in 4 months.Our experiments demonstrate the effects of position (depth, water/sediment) and grazing on the degradation of drifting filamentous algae. Mass developments of opportunistic algae occur annually in the study area, and information on the destiny of detached drift algae may help us to predict their longevity and the damage they cause, and hence, to decide on long-term measures needed to improve environmental conditions.  相似文献   

13.
Changes in nutrient loading and invasive species are among the strongest human-driven disturbances in freshwater ecosystems, but our knowledge on how they affect the biodiversity of lakes is still limited. We conducted a detailed historical analysis of the mollusc community of Oneida Lake based on our comprehensive lakewide study in 2012 and previous surveys dating back to 1915. In the early 20th century, the lake had a high water clarity, with abundant macrophytes and benthic algae, and hosted the most diverse molluscan community in New York State, including 32 gastropod and 9 unionid species. By the 1960s, lake turbidity increased during a period of anthropogenic eutrophication, resulting in a 38% decline in species richness and a 95% reduction in abundance of native gastropods grazing on benthic algae. Following the invasion of Dreissena spp. in 1991 and subsequent increases in water clarity, native gastropod species richness expanded by 37% and abundance increased 20-fold by 2012. In contrast, filter-feeding unionids were unaffected by increased turbidity during the period of eutrophication but were extirpated by dreissenids. Through contrasting effects on turbidity, eutrophication and Dreissena spp. have likely driven the observed changes in native grazing gastropods by affecting the abundance of light-limited benthic algae. Given the high species richness and ecological importance of benthic grazers, monitoring and managing turbidity is important in preserving molluscan diversity.  相似文献   

14.
The in situ grazing experiments were performed in the shallow water rocky habitat of the northern Baltic Sea during ice-free season 2002. In the experiments the effects of algal species and choice on the grazing of the mesoherbivores Idotea baltica (Pallas) and Gammarus oceanicus Segerstråle were tested. Salinity, temperature, concentration of nutrients in water and macroalgae and net production of macroalgae were considered as random effects in the analysis. The invertebrate feeding rate was mainly a function of the net photosynthetic activity of Pylaiella littoralis (L.) Kjellman and Fucus vesiculosus L. Feeding rate increased significantly with decreasing algal photosynthetic activity. When the two algal species were incubated together invertebrates fed primarily on P. littoralis. Low selectivity towards P. littoralis coincided with its high photosynthetic activity. The presence of F. vesiculosus did not modify the invertebrate feeding on P. littoralis. The results indicated that (1) the grazing on F. vesiculosus depended on the availability of P. littoralis, (2) the photosynthetic activity of algae explained the best the variation in grazing rate and (3) the grazers are not likely to control the early outbreak of filamentous algae in the northern Baltic Sea by avoiding young and photosynthetically active algae. The likely mechanism behind the relationship is that the increased photosynthetic activity of macroalgae coincides with their higher resistance to herbivory.  相似文献   

15.
Effects of stress and disturbance on morphology, reproductive effort, size and sex ratio were studied for Fucus vesiculosus populations from the Baltic Sea at Askö and the North Sea on the west coast of Sweden at Tjäm[otilde]. High morphological variation was found between Fucus populations, with significant differences in length and weight of individuals, thallus breadth, number of branches and receptacles and receptacle weight, not only between Baltic and North Sea populations but also between populations within the same area, differing in wave exposure. With increasing disturbance, individuals in both studied populations were smaller and less branched. Differences were observed in plant size, with longer, broader and more branched plants being found in Askö compared with Tjärnö. Fucus populations at Tjämö allocated more biomass to reproduction and had longer, heavier receptacles than at Askö. Although the observed morphological changes may be partly explained by differences in wave exposure and salinity between the two sites, it is not possible to rule out genetic differences between the Baltic and North Sea populations. However, it is unlikely that the variations observed within the populations and between populations from the same area are genetically determined.  相似文献   

16.
Hemmi A  Jormalainen V 《Oecologia》2004,140(2):302-311
Environmental variation in food resources modifies performance of herbivores, in addition to genetic variation and maternal effects. In marine benthic habitats, eutrophication may modify herbivores diets by changing host species composition or nutritional quality of algae for herbivores. We studied experimentally the effects of diet breadth and nutrient availability for the host algae on fitness components of the herbivorous isopod Idotea baltica. We fed the adult isopods with the brown algae Fucus vesiculosus and Pilayella littoralis and juveniles with the green alga Cladophora glomerata. By using half-sib families, we were able to separate the genetic, environmental and maternal effects on intermolt duration and size of the juveniles. The mothers confined to the diet consisting of both Fucus and Pilayella grew better and produced larger egg mass than those having consumed Fucus alone. Nutrient enhancement of algae did not influence the performance of the adult herbivores. However, the juveniles achieved twice the weight as well as shorter intermolt duration when consuming nutrient-treated C. glomerata. Mothers nutrition, either nutrient enrichment of her food algae or diet breadth, did not affect juvenile survival or growth as such, but we found evidence that the broader diet consumed by the mother mediated offspring performance by further accelerating growth rate of the offspring that fed on nutrient-treated alga. Intermolt duration was a highly heritable trait, but size showed very low heritability. Instead, maternal effects on size were substantial, suggesting that differences among mothers in their egg-provisioning ability strongly affect weight gain of their offspring. A high amount of additive genetic variance in intermolt duration implies potential for quick evolutionary responses in the growth schedule in the face of changes in the selective environment. We conclude that eutrophication, in addition to improving growth and reproduction of I. baltica by enhancing food quality and by providing opportunity for broader, more profitable diets, may act as a selective agent on life-history traits. Eutrophication of coastal waters is thus likely to reflect in herbivore density, population dynamics and eventually, grazing pressure of littoral macroalgae.  相似文献   

17.
The salinity tolerances of Baltic and Atlantic populations ofFucus vesiculosus andChorda filum have been measured using net photosynthesis as an index of tissue damage. AtlanticFucus proved to have a broader salinity tolerance than AtlanticChorda, a result which is consistent with others published on the tolerances of intertidal and sublittoral marine species. The optimum salinity for all Atlantic plants was 11 or 34‰, but that of all Baltic plants was 6‰. BalticFucus andChorda were different in breadth of tolerance, in spite of the fact that they inhabit the same sublittoral habitat. This difference is interpreted in relation to their respective life-forms,Fucus being perennial andChorda annual.Fucus is therefore present as a macrothallus at all times of year, including the critical low-salinity period of the spring ice-melt.Chorda evades damage by existing as a resistent microthallus at this time. It is concluded that the distinctive character of Baltic marine algae deserves nomenclatural recognition at some level below that of the species. The rank of subspecies would appear the most appropriate of those listed in the Code, but none of those available is able adequately to express the patterns of variation now being reported. Paper presented at the XIV International Botanical Congress (Berlin, 24 July-1 August, 1987), Symposium 6-15, “Biogeography of marine benthic algae”.  相似文献   

18.
Discharge from anthropogenic sources may modify both macroalgal growth patterns and resource allocation to carbon based secondary compounds, thereby affecting their susceptibility for herbivory. We tested the effect of eutrophication in terms of nutrient enhancement on growth and phlorotannin concentration of Fucus vesiculosus by conducting manipulative experiments in the field and mesocosms. In the field experiment we utilised fish farms as nutrient sources and in the mesocosm-experiment we manipulated ambient nutrient levels and occurrence of the herbivorous isopod Idotea baltica. Vicinity of a fish farm affected neither growth nor the phlorotannin concentration of Fucus but increased the amount of epiphytes growing on Fucus. Other organisms such as epiphytic filamentous algae and periphyton, which are more capable of quickly utilizing excess nutrients, may restrain the direct effects of nutrient enhancement on Fucus. In a manipulative mesocosm experiment, neither nutrient enrichment nor occurrence of herbivores affected phlorotannin concentration implying lack of induced defences, at least in terms of increasing phlorotannin concentration. Feeding of thallus decreased the growth rate of algae, but the number of reproductive organs, receptacles, was not affected by herbivory. The negative effect of herbivory on the amount of apical tips tended to be stronger under nutrient enriched conditions. We conclude that eutrophication processes, in terms of nutrient enrichment, does not have strong direct effect on growth or phlorotannin production of F. vesiculosus. However, there may be important indirect consequences. First, herbivory may be targeted more to apical parts of the thallus under eutrophicated conditions. Second, the result that Fucus growing close to nutrient sources were smaller than those in control areas may reflect differences in mortality schedules of algae between eutrophicated and control areas.  相似文献   

19.
In the marine littoral, strong grazing pressure selects for macroalgal defenses such as the constitutive and inductive production of defense metabolites. Induced defenses are expected under spatiotemporally varying grazing pressure and should be triggered by a reliable cue from herbivory, thereby reducing grazing pressure via decreased herbivore preference and/or performance. Although induced resistance has frequently been demonstrated in brown macroalgae, it is yet to be investigated whether induced macroalgal resistance shows genetic variation, a prerequisite for evolutionary responses to selection. In addition, consequences of induced resistance on herbivore performance have rarely been tested while the role of brown algal phlorotannins as inducible defense metabolites remains ambiguous. Using preference bioassays, we tested various cues, e.g., natural grazing, waterborne cues or simulated grazing to induce resistance in the brown alga Fucus vesiculosus. Further, we investigated whether there are induced responses in phlorotannin content, genetic variation in induced resistance or incurred performance costs to the mesoherbivore isopod, Idotea baltica. We found that both direct grazing and waterborne grazing cues decreased the palatability of F. vesiculosus, while increasing the total phlorotannin content. Since the sole presence of the herbivore also increased the total soluble phlorotannins, yet failed to stimulate deterrence, we concluded that phlorotannins alone do not explain increased resistance. Induced resistance varied between algal genotypes and thus showed potential for evolutionary responses to variation in grazing pressure. Induced resistance also incurred performance costs for female I. baltica via reduced egg production. Our results show that the induced resistance of F. vesiculosus decreases grazing pressure by deterring herbivores as well as impairing their performance. Resistance may be induced in advance by waterborne cues and spread effectively throughout the F. vesiculosus belt. Through lowering herbivore performance, induced resistance may also reduce future grazing pressure by decreasing the population growth rate of I. baltica.  相似文献   

20.
Species separation in charophytes is primarily based on vegetative morphology, but the taxonomic delineation at species level worldwide is inconsistent. Here we compare ecophysiological characteristics of selected Chara species with vegetative morphological traits and genetic data. Four populations of the Chara baltica-Chara intermedia species cluster from locations along a north-south gradient through Europe were investigated. Physiological differences indicate habitat-specific adaptations. The Baltic Sea population from Hiddensee was found to be separated from a freshwater river population close to Munich with respect to light and salinity acclimation capabilities. However, a population from a brackish Mediterranean pool near Montpellier and one from the continental brackish water lake “Salziger See” near Halle, Germany, show intermediate ecophysiological characteristics, suggesting a continuum. Genetic analyses using AFLP (amplified fragment length polymorphism) match the results of the physiological analyses. The individuals of the Mediterranean and the Salziger See neither cluster to the typical C. baltica from the Baltic Sea nor to the C. intermedia from the freshwater habitat, but instead take an intermediate position. These results are stable against the background of a larger AFLP dataset on charophytes. Morphological analysis revealed no distinct groups and we therefore conclude that the C. baltica-C. intermedia cluster forms a physiological, morphological and genetic continuum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号