首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stimulation of bacterial alkaline phosphatase activity (APA) by inorganic and organic nitrogen compounds was investigated in the southern Baltic Sea monthly between February and August 2001, by adding albumin, casein, leucine, ammonium, nitrate, ammonium + glucose or nitrate + glucose to 0.8 µm filtered seawater. The following questions were addressed: (1) Are there seasonal changes in the stimulation of APA by these substances?; (2) Does nitrogen alone stimulate this activity or only in combination with organic carbon?; (3) Is there a relationship between ambient nutrient concentrations and the degree of stimulation? The addition of the mentioned compounds stimulated the APA in bacteria to a high degree, however, there were seasonal variations. Stimulation was low in February and March but high from May to August when the stimulation, e.g., by ammonium + glucose, was up to 6000-fold higher compared with February. In most experiments, the addition of the amino acid leucine and of inorganic nitrogen alone resulted in an inhibition of the bacterial APA. A relationship between ambient nutrient concentrations and the stimulation of the bacterial APA was only observed for albumin, which correlated negatively with dissolved inorganic nitrogen (DIN) and phosphate concentrations and for casein, which correlated only with DIN. The results indicate that the regulation of bacterial APA and the DOP degradation can be significantly influenced by the availability of nitrogen and organic carbon.  相似文献   

2.
3.
From the observed pattern of aminopeptidase and alkaline phosphatase activities in the Baltic Sea, the question arose whether there is an interaction between the activities of both enzymes. In experiments with 0.8 m filtered seawater, the effects of commercial alkaline phosphatase on bacterial aminopeptidase, the effects of commercial peptidase on bacterial alkaline phosphatase activity (APA), and the effects of proteins, carbohydrates and inorganic nutrients on the activities of both enzymes were investigated.Addition of commercial alkaline phosphatase stimulated bacterial aminopeptidase activity and, similarly, the addition of commercial peptidase increased the APA in bacteria. The proteins, albumin and casein, stimulated aminopeptidase activity and APA simultaneously. Experiments using ammonium and glucose suggested that stimulation of APA by peptidase could be mediated by nitrogen and carbon availability. There were also some indications that stimulation of aminopeptidase activity by alkaline phosphatase functioned by catalysing phosphate release from organic phosphorus compounds.  相似文献   

4.
The uptake of inorganic nutrients by heterotrophic bacteria   总被引:25,自引:3,他引:22  
It is now well known that heterotrophic bacteria account for a large portion of total uptake of both phosphate (60% median) and ammonium (30% median) in freshwaters and marine environments. Less clear are the factors controlling relative uptake by bacteria, and the consequences of this uptake on the plankton community and biogeochemical processes, e.g., new production. Some of the variation in reported inorganic nutrient uptake by bacteria is undoubtedly due to methodological problems, but even so, uptake would be expected to vary because of variation in several parameters, perhaps the most interesting being dissolved organic matter. Uptake of ammonium by bacteria is very low whereas uptake of dissolved free amino acids (DFAA) is high in eutrophic estuaries (the Delaware Bay and Chesapeake Bay). The concentrations and turnover of DFAA are insufficient, however, in oligotrophic oceans where bacteria turn to ammonium and nitrate, although the latter only as a last resort. I argue here that high uptake of dissolved organic carbon, which has been questioned, is necessary to balance the measured uptake of dissolved inorganic nitrogen (DIN) in seawater culture experiments. What is problematic is that this DIN uptake exceeds bacterial biomass production. One possibility is that bacteria excrete dissolved organic nitrogen (DON). A recent study offers some support for this hypothesis. Lysis by viruses would also release DON.While ammonium uptake by heterotrophic bacteria has been hypothesized to affect phytoplankton community structure, other impacts on the phytoplankton and biomass production (both total and new) are less clear and need further work. Also, even though bacteria account for a very large fraction of phosphate uptake, how this helps to structure the plankton community has not been examined. What is clear is that the interactions between bacterial and phytoplankton uptake of inorganic nutrients are more complicated than simple competition.  相似文献   

5.
In aquatic ecosystems, carbon (C) availability strongly influences nitrogen (N) dynamics. One manifestation of this linkage is the importance in the dissolved organic matter (DOM) pool of dissolved organic nitrogen (DON), which can serve as both a C and an N source, yet our knowledge of how specific properties of DOM influence N dynamics are limited. To empirically examine the impact of labile DOM on the responses of bacteria to DON and dissolved inorganic nitrogen (DIN), bacterial abundance and community composition were examined in controlled laboratory microcosms subjected to various combinations of dissolved organic carbon (DOC), DON, and DIN treatments. Bacterial communities that had colonized glass beads incubated in a stream were treated with various glucose concentrations and combinations of inorganic and organic N (derived from algal exudate, bacterial protein, and humic matter). The results revealed a strong influence of C availability on bacterial utilization of DON and DIN, with preferential uptake of DON under low C concentrations. Bacterial DON uptake was affected by the concentration and by its chemical nature (labile versus recalcitrant). Labile organic N sources (algal exudate and bacterial protein) were utilized equally well as DIN as an N source, but this was not the case for the recalcitrant humic matter DON treatment. Clear differences in bacterial community composition among treatments were observed based on terminal restriction fragment length polymorphisms (T-RFLP) of 16S rRNA genes. C, DIN, and DON treatments likely drove changes in bacterial community composition that in turn affected the rates of DON and DIN utilization under various C concentrations.  相似文献   

6.
The concentration of dissolved inorganic nitrogen (DIN) in the porewaters of shallow-water tropical marine sediments can be as high as 50-100 μM, at sediment depths of shallow as 20 cm. These concentrations are at least two-orders of magnitude greater than the DIN concentration in the overlying water. High porewater concentrations, and the resulting concentration gradient, result in substantial efflux of DIN from the sediments to the water column. This sediment-derived DIN may be an important nutrient source for benthic algae. In Kaneohe Bay, Hawaii, a mean ammonium efflux rate of 490 μmolm(-2)day(-1) and a mean nitrate+nitrite efflux rate of 123 μmolm(-2)day(-1) were measured on reef slopes in the habitat occupied by benthic algae. It has been demonstrated that this nutrient source is essential for the growth of at least one abundant alga, Dictyosphaeria cavernosa, and possibly others. The DIN concentrations in Kaneohe Bay sediment porewaters, and the rates of DIN efflux from those sediments, are greater than porewater concentrations and efflux rates reported for other, more pristine tropical sites. The rate of sedimentation of particulate nitrogen is similar to rates reported from other tropical lagoons, and about twice as high as the efflux rate of total dissolved nitrogen. Given the present low nutrient concentrations in the water column of the Bay, these results support the view that nutrient efflux from the benthos is in part responsible for the persistence of D. cavernosa on these reefs. It is possible that efflux of DIN from sediments may be responsible for sustained benthic algal productivity in similar habitats on other tropical reefs.  相似文献   

7.
Nutrient enrichment bioassays, in conjunction with sampling and analysis of surface water chemistry, were conducted in freshwater lakes (kettle ponds) of Cape Cod National Seashore (Massachusetts, USA) to ascertain the importance of nitrogen (N) and phosphorus (P) in regulating the growth of periphyton. Arrays of nutrient diffusing substrata (NDS) were suspended 0.5 m below the water surface in a total of 12 ponds in July and August 2005. Algal biomass developing on each NDS after ~3 weeks of exposure in each month was assessed by quantifying chlorophyll a + phaeophyton pigments. In both July and August, strong responses to N + P and N enrichments were observed in the majority of ponds, while P had no stimulatory effect. These responses correspond well with low atomic ratios (1–18) of dissolved inorganic nitrogen (DIN) to total phosphorus (TP) in ambient surface waters. The results suggest that conditions in the kettle ponds develop whereby nitrogen is the primary limiting nutrient to periphyton growth. While this may be a seasonal phenomenon, it has implications for nutrient management in individual ponds and within the larger watershed.  相似文献   

8.
Seasonal variations of dissolved inorganic nitrogen (DIN) (NO3–N and NH4–N) and dissolved organic nitrogen (DON) were determined in Fuirosos, an intermittent stream draining an unpolluted Mediterranean forested catchment (10.5 km2) in Catalonia (Spain). The influence of flow on streamwater concentrations and seasonal differences in quality and origin of dissolved organic matter, inferred from dissolved organic carbon to nitrogen ratios (DOC:DON ratios), were examined. During baseflow conditions, nitrate and ammonium had opposite behaviour, probably controlled by biological processes such as vegetation uptake and mineralization activity. DON concentrations did not have a seasonal trend. During storms, nitrate and DON increased by several times but discharge was not a good predictor of nutrient concentrations. DOC:DON ratios in streamwater were around 26, except during the months following drought when DOC:DON ratios ranged between 42 and 20 during baseflow and stormflow conditions, respectively. Annual N export during 2000–2001 was 70 kg km−1 year−1, of which 75% was delivered during stormflow. The relative contribution of nitrogen forms to the total annual export was 57, 35 and 8% as NO3–N, DON and NH4–N, respectively.  相似文献   

9.
Nutrient limitation of phytoplankton and periphyton growth in upland lakes   总被引:9,自引:0,他引:9  
SUMMARY 1. Thirty small upland lakes in Cumbria, Wales, Scotland and Northern Ireland were visited three times between April and August 2000. On each occasion water chemistry was measured and phytoplankton bioassays were performed in the laboratory to assess growth‐rate and yield limitation by phosphorus and nitrogen. In addition, yield limitation of periphyton growth was investigated twice, in situ, using nutrient‐diffusing substrata. 2. Over the whole season the percentage frequency of P, N and co‐limitation was 24, 13 and 63%, respectively, for phytoplankton rate limitation and 20, 22 and 58%, respectively, for phytoplankton yield limitation. 3. A clear response of periphyton yield to nutrient additions was found in 75% of all cases and of these, co‐limitation was most common (54%). Average percentage frequency for P and N limitation was 26 and 20%, respectively. 4. Phytoplankton and periphyton showed seasonal changes in nutrient limitation within sites. In particular, co‐limitation became progressively more common as the season progressed. 5. The response of phytoplankton growth rate to ammonium and nitrate addition was identical, but ammonium was a slightly better source of nitrogen than nitrate for phytoplankton yield on 7% and for periphyton yield on 10% of the occasions. However, the magnitude of the effect was small. 6. The concentration of dissolved inorganic nitrogen (DIN) and the molar ratio of DIN to total dissolved phosphorus (TDP), appeared to be the main environmental factors controlling the extent of nitrogen or phosphorus limitation at a given site. Nitrogen limitation was more likely than phosphorus limitation where the DIN was <6.5 mmol m?3 and the ratio of DIN : TDP was <53. Co‐limitation was the most likely outcome at a DIN concentration <13 mmol m?3 and at a DIN : TDP molar ratio <250. Above these values phosphorus limitation was most likely. 7. The relatively high frequency of nitrogen limitation and co‐limitation at higher N : P ratios than previously reported, may result from the inability of nitrogen‐fixing cyanobacteria to thrive in these upland lakes where pH and the concentration of phosphorus tended to be low and where flushing rates tended to be high.  相似文献   

10.
Dissolved organic matter (DOM) and inorganic nutrients may affect microbial communities in streams, but little is known about the impact of these factors on specific taxa within bacterial assemblages in biofilms. In this study, nutrient diffusing artificial substrates were used to examine bacterial responses to DOM (i.e., glucose, leaf leachate, and algal exudates) and inorganic nutrients (nitrate and phosphate singly and in combination). Artificial substrates were deployed for five seasons, from summer 2002 to summer 2003, in a northeastern Ohio stream. Differences were observed in the responses of bacterial taxa examined to various DOM and inorganic nutrient treatments, and the response patterns varied seasonally, indicating that resources that limit the bacterial communities change over time. Overall, the greatest responses were to labile, low-molecular-weight DOM (i.e., glucose) at times when chlorophyll a concentrations were low due to scouring during significant storm events. Different types of DOM and inorganic nutrients induced various responses among bacterial taxa in the biofilms examined, and these responses would not have been apparent if they were examined at the community level or if seasonal changes were not taken into account.  相似文献   

11.
A series of eight watersheds on the Pacific coast of Panama where conversion of mature lowland wet forest to pastures by artisanal burning provided watershed-scale experimental units with a wide range of forest cover (23, 29, 47, 56, 66, 73, 73, 91, and 92 %). We used these watersheds as a landscape-scale experiment to assess effects of degree of deforestation on within-watershed retention and hydrological export of atmospheric inputs of nutrients. Retention was estimated by comparing rainfall nutrient concentrations (volume-weighted to allow for evapotranspiration) to concentrations in freshwater reaches of receiving streams. Retention of rain-derived nutrients in these Panama watersheds averaged 77, 85, 80, and 62 % for nitrate, ammonium, dissolved organic N, and phosphate, respectively. Retention of rain-derived inorganic nitrogen, however, depended on watershed cover: retention of nitrate and ammonium in pasture-dominated watersheds was 95 and 98 %, while fully forested watersheds retained 65 and 80 % of atmospheric nitrate and ammonium inputs. Watershed forest cover did not affect retention of dissolved organic nitrogen and phosphate. Exports from more forested watersheds yielded DIN/P near 16, while pasture-dominated watersheds exported N/P near 2. The differences in magnitude of exports and ratios suggest that deforestation in these Panamanian forests results in exports that affect growth of plants and algae in the receiving stream and estuarine ecosystems. Watershed retention of dissolved inorganic nitrogen calculated from wet plus dry atmospheric deposition varied from 90 % in pasture- to 65 % in forest-dominated watersheds, respectively. Discharges of DIN to receiving waters from the watersheds therefore rose from 10 % of atmospheric inputs for pasture-dominated watersheds, to about 35 % of atmospheric inputs for fully forested watersheds. These results from watersheds with no agriculture or urbanization, but different conversion of forest to pasture by burning, show significant, deforestation-dependent retention within tropical watersheds, but also ecologically significant, and deforestation-dependent, exports that are biologically significant because of the paucity of nutrients in receiving tropical stream and coastal waters.  相似文献   

12.
Growth limitation of planktonic bacteria in a large mesotrophic lake   总被引:4,自引:0,他引:4  
We studied nutrient-limitation of bacterioplankton growth in Lake Constance, a mesotrophic lake, between February and August in 1992. We amended 1-m filtrates with a single nutrient or nutrient combinations at 5 or 10 m final concentration, and the limiting nutrient or nutrient combination was inferred from the assay in which bacterial growth was most stimulated. The following nutrients were added individually or in combination: glucose, amino acids, peptone, and ammonium as C and N sources, and inorganic phosphate. From January until the beginning of the phytoplankton spring bloom in mid-April, C alone was growth-limiting. During the spring bloom a complex growth-limitation pattern occurred; first P was limiting, then for only 1 week C + N together, and thereafter P + C. During the clear-water phase with very low chlorophyll concentrations, P + C together limited bacterial growth again, interrupted by a period when C + N + P shortage caused a triple limitation. Later in the season, P + C were growth-limiting again. The growth efficiency (bacterial biomass produced/substrates used) on the basis of amino acid and carbohydrate used varied between 17 and 35%. The addition of various C and N sources indicated that the growth efficiency strongly depended on the quality of the substrates and the adaptation of the bacterial assemblages, for example, whether C and N originated from amino acids or glucose and ammonium.  相似文献   

13.
Nitrogen and phosphorus additions from anthropogenic sources can alter the nutrient pool of aquatic systems, both through increased nutrient concentrations and changes in stoichiometry. Because bacteria are important in nutrient cycling and aquatic food webs, information about how nutrients affect bacterial communities enhances our understanding of how changes in nutrient concentrations and stoichiometry potentially affect aquatic ecosystems as a whole. In this study, bacterial communities were examined in biofilms from cobbles collected across seasons at three sites along the Mahoning River (Ohio) with differing levels of inorganic nutrient inputs. Members of the alpha-, beta-, and gamma-proteobacteria, the Cytophaga–Flavobacteria cluster, and the Domain Bacteria were enumerated using fluorescent in situ hybridization. Detrended canonical correspondence analysis (DCCA) revealed that stoichiometric ratios, especially the dissolved inorganic nitrogen (DIN):soluble reactive phosphorus (SRP) molar ratio (NO2/NO3 + NH4:soluble reactive phosphorus), were correlated with abundance of the various bacterial taxa. However, the patterns were complicated by correlations with single nutrient concentrations and seasonal changes in temperature. Seasonal cycles appeared to play an important role in structuring the community, as there were distinct winter communities and temperature was negatively correlated with abundance of both alpha-proteobacteria and Cytophaga–Flavobacteria. However, nutrients and stoichiometry also appeared to affect the community. Numbers of cells hybridizing the Domain Bacteria probe were correlated with the DOC:DIN ratio, the beta-proteobacteria had a negative correlation with soluble reactive phosphorus concentrations and a positive correlation with the DIN:SRP ratio, and the Cytophaga–Flavobacteria had a significant negative partial correlation with the DIN:SRP ratio. Abundances of the alpha- or gamma-proteobacteria were not directly correlated to nutrient concentrations or stoichiometry. It appears that nutrient stoichiometry may be an important factor structuring bacterial communities; however, it is one of many factors, such as temperature, that are interlinked and must be considered together when studying environmental bacteria.  相似文献   

14.
Dissolved organic matter (DOM) and inorganic nutrients may affect microbial communities in streams, but little is known about the impact of these factors on specific taxa within bacterial assemblages in biofilms. In this study, nutrient diffusing artificial substrates were used to examine bacterial responses to DOM (i.e., glucose, leaf leachate, and algal exudates) and inorganic nutrients (nitrate and phosphate singly and in combination). Artificial substrates were deployed for five seasons, from summer 2002 to summer 2003, in a northeastern Ohio stream. Differences were observed in the responses of bacterial taxa examined to various DOM and inorganic nutrient treatments, and the response patterns varied seasonally, indicating that resources that limit the bacterial communities change over time. Overall, the greatest responses were to labile, low-molecular-weight DOM (i.e., glucose) at times when chlorophyll a concentrations were low due to scouring during significant storm events. Different types of DOM and inorganic nutrients induced various responses among bacterial taxa in the biofilms examined, and these responses would not have been apparent if they were examined at the community level or if seasonal changes were not taken into account.  相似文献   

15.
The increase in human development in the downstream portion of the Pyramid Lake drainage basin has resulted in increased nutrient loading to the lake. Since this is a deep, terminal lake, concern over nutrient build up and change in trophic status exists. On the basis of lake chemistry which shows consistently high concentrations of total reactive-P (mean = 55 µg P l–1) relative to dissolved inorganic-N (DIN) (mean = 15 µg N 1–1), it has been hypothesized that Pyramid is N-limited. However, no systematic study of nutrient limitation had been undertaken. Nutrient enrichment bioassays conducted throughout an entire year clearly showed that additions of DIN resulted in a 350–600% stimulation of chlorophyll production. Phosphate, when added singly or in combination with DIN, had no effect. This positive response to N-addition was significant at all times of the year except, (1) immediately after complete lake mixing in February when a large pool of hypolimnetic nitrate was injected into the euphotic zone, and (2) during a fall bloom of the nitrogen fixing species Nodularia spumigena. The positive response to N-addition in the bioassay experiments was strong between March and November. However, the seston exhibited only a gradual depletion of nitrogen relative to carbon over this same period. PN:PC ratios suggested no N-deficiency in phytoplankton biomass in February, March and April, moderate N-deficiency in May, June and July and, severe N-deficiency from August until winter turnover. The appearance of nitrogen fixing blue-green algae in September supports the hypothesis of N-limitation in the summer-autumn. In evaluating the nutrient status of a lake, the concepts of nutrient stimulation versus nutrient deficiency versus nutrient limitation must clearly be defined.This paper is dedicated to G. Evelyn Hutchinson who first visited Pyramid Lake in 1933.  相似文献   

16.
研究水体环境因素(温度、光照和pH)、小分子有机碳和有机氮化合物对一株具有高效脱氮潜力的沼泽红假单胞菌(Rhodopseudomonas palustris)CQV97在无机三态氮共存体系中脱除无机三态氮的影响规律。结果显示,该菌株在20~40℃,500~5 000lux,pH 6.0~9.0环境条件下,能够脱除高浓度无机三态氮(其中亚硝氮不低于40mg·L-1),表明该菌株具有较强的适应复杂环境的能力;以乙酸钠/乙醇为唯一碳源时,该菌株能有效地去除无机三态氮,而以葡萄糖为唯一碳源时,能有效去除硝氮,但不能去除氨氮,亚硝氮明显积累,表明环境中小分子有机碳源影响菌体对无机三态氮的去除能力;体系中添加高浓度(120mg·L-1)蛋白胨或尿素时,由于有机氮降解的释氨作用,菌体对氨氮的去除能力受到明显抑制,氨氮积累明显,13d时氨氮去除率仅分别为16%(蛋白胨)和6%(尿素),但硝氮和亚硝氮的去除能力并没有受到明显影响。异位处理实际水体结果表明,菌株可使水体中氨氮含量明显降低、硝氮和亚硝氮被完全去除。综上,沼泽红假单胞菌CQV97菌株环境适应能力强,具有高效脱除水体无机三态氮的应用潜力,这为进一步开发高效脱氮微生物制剂及其合理使用奠定了基础。  相似文献   

17.
Lake Inba is one of the most eutrophic lakes in Japan. In this study, field sampling and nutrient enrichment bioassays were conducted to determine the seasonal patterns of nutrient limitation for phytoplankton growth in this lake. Phytoplankton biomass increased significantly with the additions of phosphorus (P) on almost all sampling dates, indicating P limitation of phytoplankton growth from spring to autumn. However, nitrogen (N) limitation was also observed during summer (i.e., 19 August). On 10 August, a typhoon struck Lake Inba. After this event, dissolved inorganic nitrogen (DIN) and phosphorus concentrations increased, probably because of increased river discharge. At the same time, phytoplankton growth in the control treatment became relatively high, with the addition of neither P nor N stimulating the growth. However, 10 days after the typhoon, the phytoplankton growth rate in the control treatment decreased, with only the addition of N having a significant positive effect on phytoplankton growth. N limitation during summer is caused by the low concentrations of DIN, as well as changes in the N:P ratio due to allochthonous nutrient loads. These results indicate that a reduction of both P and N input is necessary to control phytoplankton blooms in Lake Inba.  相似文献   

18.
The control of nitrate and ammonium concentrations in a coral reef lagoon   总被引:2,自引:0,他引:2  
One Tree Reef lagoon is surrounded by an emergent rim which restricts exchange between lagoonal waters and the surrounding ocean. For this reason, the loss rate of dissolved inorganic nitrogen (DIN) through mixing processes is slow in the central lagoon compared to rates of advective input, uptake, regeneration and loss to the atmosphere. We present some hypotheses concerning the importance of these fluxes to the observed patterns of concentration of nitrate+nitrite and ammonium. A scaling analysis of these fluxes indicates that the relative influence of advection across the windward reef crest on lagoonal concentrations changes with season and differs for the two forms of DIN. Advective flux, dominated by DIN derived from production on the algal pavements of the reef crest, is significant in controlling DIN concentration in the peripheral regions of the lagoon. Loss to the atmosphere is a more important flux from the nitrate+nitrite pool in the centre of the lagoon, particularly in summer. Regeneration is a significant input to the ammonium pool of the central lagoon in winter. The relative magnitudes of all fluxes are more similar to each other in the summer than the winter, indicating the potential for shifts in the dominance hierarchy at small time and space scales. One form of DIN in One Tree Reef lagoonal waters (nitrate+nitrite) is controlled by input and another (ammonium) by recycling as well as input. The relative importance of these fluxes changes as a result of temperature pertubations at the physiological level as well as the rate of water turnover at the system level. It is proposed that the degree of consistency of the seasonal concentration patterns is a function of the period, rather than the amplitude of the temporal oscillations in the fluxes controlling these concentrations. This has important implications for sampling strategies. This paper provides a conceptual framework for hypothesis testing at a manageable scale, in the context of ecosystem function.  相似文献   

19.
Stream bacteria may be influenced by the composition and availability of dissolved organic matter (DOM) and inorganic nutrients, but knowledge about how individual phylogenetic groups in biofilm are affected is still limited. In this study, the influence of DOM and inorganic nutrients on stream biofilm bacteria was examined. Biofilms were developed on artificial substrates (unglazed ceramic tiles) for 21 days in a northeastern Ohio (USA) stream for five consecutive seasons. Then, the developed biofilm assemblages were exposed, in the laboratory, to DOM (glucose, leaf leachate, and algal exudates) and inorganic nutrients (nitrate, phosphate, and nitrate and phosphate in combination) amendments for 6 days. Bacterial numbers in the biofilms were generally higher in response to the DOM treatments than to the inorganic nutrient treatments. There were also apparent seasonal variations in the response patterns of the individual bacterial taxa to the nutrient treatments; an indication that limiting resources to bacteria in stream biofilms may change over time. Overall, in contrast to the other treatments, bacterial abundance was generally highest in response to the low-molecular-weight DOM (i.e., glucose) treatment. These results further suggest that there are interactions among the different bacterial groups in biofilms that are impacted by the associated nutrient dynamics among seasons in stream ecosystems.  相似文献   

20.
Barley plants (Hordeum vulgare L. cv. Mazurka) were grown inaerated solution cultures with 2 mM or 8 mM inorganic nitrogensupplied as nitrate alone, ammonium alone or 1:1 nitrate+ammonium.Activities of the principal inorganic nitrogen assimilatoryenzymes and nitrogen transport were measured. Activities ofnitrate and nitrite reductases, glutamine synthetase and glutamatesynthase were greater in leaves than in roots but glutamatedehydrogenase was most active in roots. Only nitrate and nitritereductases changed notably (4–10 times) in response tothe different nitrogen treatments. Nitrate reductase appearedto be rate-limiting for nitrate assimilation to glutamate inroots and also in leaves, where its total in vitro activitywas closely related to nitrate flux in the xylem sap and wasslightly in excess of that needed to reduce the transportednitrate. Xylem nitrate concentration was 13 times greater thanthat in the nutrient solution. Ammonium nitrogen was assimilatedalmost completely in the roots and the small amount releasedinto the xylem sap was similar for the nitrate and the ammoniumtreatments. The presence of ammonium in the nutrient decreasedboth export of nitrate to the xylem and its accumulation inleaves and roots. Nitrate was stored in stem bases and was releasedto the xylem and thence to the leaves during nitrogen starvation.In these experiments, ammonium was assimilated principally inthe roots and nitrate in the leaves. Any advantage of this divisionof function may depend partly on total conversion of inorganicnitrogen to amino acids when nitrate and ammonium are givenin optimal concentrations. Hordeum vulgare L., barley, nitrate, ammonium, nitrate reductase, nitrite reductase, glutamine synthetase, glutamate synthase, glutamate dehydrogenase, nitrogen transport  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号