首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ventilation was measured directly in the hagfish, Myxine glutinosa L., by means of an electro-magnetic blood flowmeter. Ventilatory flow and frequency increased from 0.86 ± 0.27 ml·min?, and 18.2 ± 5.1·min?, respectively, at 7°C to 1.70 ± 0.20 ml·min?, and 70.1 ± 9.5·min? at 15 ·C.Standard oxygen consumption,V?O2, was measured in non-buried hagfish. V?O2 was 0.57 ± 0.17μl O2·g?1·min?1 at 7°C, and 0.85 ± 0.12μl O2·g?1·min?1 at 15°C.  相似文献   

2.
To evaluate the nutrient removal capabilities of two red macroalgae, apical blades were cultured in the lab for 4?weeks at either 6, 10, or 17°C and nitrate at either 30 or 300?μM, typical of the seasonal range of conditions at a land-based Atlantic halibut farm. Stocking density was 2.0?g?L?1, irradiance 125?μmol?photons?m?2?s?1, photoperiod 16:8 (L:D), and nitrogen to phosphorus ratio 10:1. For both species, the highest growth rate was at 300?μM NO 3 ? with Palmaria palmata growing fastest at 6°C, 5.8%?day?1, and Chondrus crispus growing best at 17°C, 5.5%?day?1. Nitrogen and carbon removal by P. palmata was inversely related to temperature, the highest rate at 6°C and 300?μM NO 3 ? of 0.47?mg N and 6.3?mg C per gram dry weight per day. In contrast, C. crispus removal of N was independent of temperature, with mean removal of 0.49?mgN?gDW?1?day?1 at 300?μM NO 3 ? . The highest carbon removal by C. crispus was 4.4?mgC?gDW?1?day?1 at 10°C and 300?μM nitrate, though not significantly different from either 6 or 17°C and 300?μM nitrate. Tissue carbon:nitrogen ratios were >20 in both species at 30?μM nitrate, and all temperatures indicating nitrogen limitation in these treatments. Phycoerythrin content of P. palmata was independent of temperature, with means of 23.6?mg?gFW?1 at 300?μM nitrate. In C. crispus, phycoerythrin was different only between 6°C and 17°C at 300?μM nitrate, with the highest phycoerythrin content of 12.6?mg?gFW?1 at 17°C. Morphological changes were observed in P. palmata at high NO 3 ? concentration as curling of the fronds, whilst C. crispus exhibited the formation of bladelets as an effect of high temperature.  相似文献   

3.
The growth of Salvinia molesta D.S. Mitchell was studied in a greenhouse using controlled-temperature water-baths at 16, 19 and 22°C and 4 different nitrogen compounds (NO3?, NH4+, NH4NO3 and urea) at levels up to 60 mg N l?1. Little growth occurred at 16°C even if 20 mg N l?1 was supplied together with other nutrients including phosphorus (2 mg H2PO4-P l?1). The highest relative growth rate and total dry matter production occurred at 22°C when plants were supplied with 20 mg NH4-N l?1. At this temperature, the NH4+ ion was superior to the NO3? ion or urea as a nitrogen source (almost doubling the biomass), but was not significantly better than NH4NO3. Over a period of 19 days for plants receiving 0.02 mg NH4-N l?, biomass increased 4-fold at 16°C, 9-fold at 19°C and 10-fold at 22°C. In contrast, for plants receiving 20 mg NH4-N l?1, biomass increased 4-fold at 16°C, 18-fold at 19°C and 38-fold at 22°C.  相似文献   

4.
Photosynthetic and respiratory responses (P–E curves) of Gracilaria parvispora from the southeast Gulf of California were studied at four temperatures (20, 25, 30, 35 °C) and salinity (25, 30, 35, 40 psu) combinations. The alga showed acclimation in its photosynthetic and respiratory responses to tropical temperature as well as to oceanic salinity. A positive effect of temperature on photosynthetic rate (P max) was observed for all salinities. Photosynthetic rates for treatments at 20 and 25 °C were lower (<9.2 mg O2?g dry weight (dw)?1?h?1) than for treatments at 30 and 35 °C (>12 mg O2 g dw?1?h?1). G. parvispora showed limited tolerance to low salinities (25 psu) and low temperatures (20 °C) and the interaction between temperature and salinity was significant (analysis of variance, P?<?0.05). Responses to salinity indicated adaptation to oceanic salinity. Photosynthetic responses were lower at 25 psu than at higher salinities. The lowest P max values (6.2–8.2 mg O2?g dw?1?h?1) were observed at the lowest salinity (25 psu) regardless of temperature. Compensation and saturation irradiances (26–170 and 57–149 μmol photons m?2?s?1, respectively) indicate adaptation to lower irradiances in shallow (1–2 m depth) habitats, where turbidity can be high, and the capacity of shade adaptation has been developed. Results suggest distribution of this species is mainly related to salinity or temperature. The potential mariculture efforts of G. parvispora would be limited by low temperatures in winter, and indicate that this species will probably not be able to spread further due to low temperatures (<15 °C) in the upper part of the Gulf of California.  相似文献   

5.
Uptake of phosphate ions by 1 mm segments of isolated maize root cortex layers was studied. Cortex segments (from roots of 8 days old maize plants) absorb phosphate ions from 1 mM KH2PO4 in 0.2 mM CaSCO4 at the average rate of 34.3 ±3.2 μg Pi g?1 (fr. m.) h?1,i.e. 0.35± 0.02 μmol Pi g?1 (fr. m.) h?1. Phosphate uptake considerably increases after a certain period of “augmentation”,i.e. washing in aerated 0.2 mM CaSO4. This increase is completely blocked by the presence of 10 μg ml?1 cycloheximide. The relation of uptake rate to phosphate concentration in the medium was shown to have 3 phases in the concentration range of 0.02 - 40 mM. Transition points were found between 0.8–1 mM and 10–20 mM. Following Km and Vmax values were found: Km[mM] : 0.37 - 3.82 - 27.67 Vmax[μg Pi g?1 (fr. m.) h?1] : 3.33 - 39.40 - 66.67 We have found no sharp pH optimum for phosphate uptake. It proceeds at almost constant rate till pH 6.0 and then the uptake rate drops with increasing pH. At low phosphate concentrations (1 mM) the lowest uptake rate was found at 5 and 13 °C, while the uptake is higher at 5 °C than at 13 °C at phosphate concentrations higher than 1 mM. At these concentrations uptake rate at 35 °C is lower than at 25 °C. Phosphate uptake considerably decreased in anaerobic conditions. DNP and iodoacetate (0.1 mM) completely blocked phosphate uptake from 1 mM KH2PO4, while uptake from 5 and 10 mM KH2PO4 was left unaffected by these substances. The inhibitors of active - SH groups NEM and PCMB inhibited phosphate uptake: 10?3 M NEM by 81.6%, 104 M NEM by 42% and 10?4 M PCMB by 42%.  相似文献   

6.
Chaetoceros convolutus and C. concavicornis have been implicated in the death of salmon in netpens in the Pacific Northwest by damaging the salmon's gills. To better understand how environmental factors affect the distribution of these two species, the interacting effects of light, temperature and salinity on growth rate were examined by growing these species under a range of temperatures (4–18 °C), light (10–175 μmol photon m−2 s−1) and salinities (10–30‰). For C. convolutus, the growth rate showed a hyperbolic relationship with irradiance at 8, 14 and 18 °C and light saturation occurred at 9, 14 and 20 μmol photon mt s−1 respectively. At 4 °C for C. convolutus and 8 °C for C. concavicornis, cells grew at μmax, even at the lowest irradiances tested (10 μmol photon m−2 s−1). For C. convolutus, the amount of light required to saturate growth rate increased with temperature in an approximately linear fashion. The Q10 was 1.88, calculated by averaging over both species. C. concavicornis was the more euryhaline species growing at salinities as low as 17.5‰, while C. convolutus grew only at 25‰ and above.  相似文献   

7.
The solubilization of rock phosphate (RP) by four yeast strains, Rhodotorula sp., Candida rugosa, Saccharomyces cerevisiae and Saccharomyces rouxii, which were isolated from wheat rhizospheric soils, was investigated in this study. The yeast isolates demonstrated diverse levels of soluble phosphate releasing abilities in modified Pikovskaya liquid medium containing RP as sole phosphate source. C. rugosa was the most effective solubilizer under different conditions, followed by Rhodotorula sp., S. rouxii and S. cerevisiae. Acidification of the broth seemed to be the major mechanism for RP solubilization by the yeast isolates, and the increase in soluble phosphate released was correlated significantly with an increase in titratable acidity and a drop in pH. The optimal composition for the solubilization of RP by the yeast isolates in the broth was 20 g L?1 glucose, 1 g L?1 yeast extract, 0.5 g L?1 (NH4)2SO4, and 5 g L?1 RP, respectively. The yeast isolates were able to solubilize RP at wide range of temperature and initial pH, with the maximum percentage of soluble phosphate released being recorded at 30–35 °C and pH 5–6, respectively.  相似文献   

8.
Optimization of process parameters for phytase production by Enterobacter sp. ACSS led to a 4.6-fold improvement in submerged fermentation, which was enhanced further in fed-batch fermentation. The purified 62 kDa monomeric phytase was optimally active at pH 2.5 and 60 °C and retained activity over a wide range of temperature (40–80 °C) and pH (2.0–6.0) with a half-life of 11.3 min at 80 °C. The kinetic parameters K m, V max, K cat, and K cat/K m of the pure phytase were 0.21 mM, 131.58 nmol mg?1 s?1, 1.64 × 103 s?1, and 7.81 × 106 M?1 s?1, respectively. The enzyme was fairly stable in the presence of pepsin under physiological conditions. It was stimulated by Ca+2, Mg+2 and Mn+2, but inhibited by Zn+2, Cu+2, Fe+2, Pb+2, Ba+2 and surfactants. The enzyme can be applied in dephytinizing animal feeds, and the baking industry.  相似文献   

9.
The gene coding for d-psicose 3-epimerase (DPEase) from Clostridium sp. BNL1100 was cloned and expressed in Escherichia coli. The recombinant enzyme was purified by Ni-affinity chromatography. It was a metal-dependent enzyme and required Co2+ as optimum cofactor. It displayed catalytic activity maximally at pH 8.0 and 65 °C (as measured over 5 min). The optimum substrate was d-psicose, and the K m, turnover number (k cat), and catalytic efficiency (k cat/K m) for d-psicose were 227 mM, 32,185 min?1, and 141 min?1 mM?1, respectively. At pH 8.0 and 55 °C, 120 g d-psicose l?1 was produced from 500 g d-fructose l?1 after 5 h.  相似文献   

10.
Oxygen consumption rates (QO2) of laboratory reared stage one zoeae of Pandalus borealis (Krøyer) at 1.5, 3, 4.5, 6, and 9°C were 1.5, 2.2, 2.6, 3.6 and 4.1μ O2 · mg?1 · h?1, respectively. These values of QO2 correspond to 0.26, 0.38, 0.44, 0.60, and 0.70 μl O2 · individual?1 · h?1. At 10.5 °C oxygen consumption rates decreased suggesting thermally induced respiratory stress.The equation log10QO2 = 0.55 log10T°C + 0.086 describes the relationship between QO2 (μl O2 · mg?1 · h?1) and sea-water temperature between 1.5 and 9°C. Corresponding values of QO2 for an individual (μl O2 · h?1) exhibited the relationship log10QO2 = 0.55 log10T°C ?0.686.The minimum daily metabolic caloric requirements for an individual zoea ranged from 0.04 at 3 °C to 0.07 calories per day at 8 °C. The number of calories ingested daily ranged from 0.4 to 0.5 at 3 to 8 °C.  相似文献   

11.
The oxidation enthalpy of reduced flavin mononucleotide at pH 7.0 in 0.2 m phosphate buffer has been studied by determining the heat associated with the reaction: FMNH2 + 2 Fe(CN)?36 ? FMN + 2 Fe(CN)?46 + 2 H+. (a) (The quinone, semiquinone, and hydroquinone forms of FMN are represented as FMN, FMNH, and FMNH2, respectively.) Calorimetric experiments were performed in a flow microcalorimeter which was modified to prevent sample contamination by oxygen. The enthalpy observed for reaction (a), after correction for dilution and buffer effects, was ?39.2 ± 0.4 kcal (mole FMNH2)?1 at 25 °C. The potential difference, ΔE′, developed by reaction (a) was determined potentiometrically and corresponded to a free energy change, ΔG′, of ?30.3 kcal (mole FMNH2)?1. The resulting entropy change, ΔS′, was thus calculated to be ?29.8 e.u. Reaction (a) was also studied at temperatures of 7 °C and 35.5 °C. ΔCp′ for the reaction was calculated as ?155 ± 18 cal deg?1 (mole FMNH2)?1 at 20 °C. ΔH′ for the reaction (b), FMNH2 ? FMN + H2, (b) was calculated as +14.2 ± 0.7 kcal mole?1 at 25 °C, relative to the enthalpy of the hydrogen electrode being identically equal to zero at all values of pH and temperature. The free energy at pH 7.0 for reaction (b), calculated from the potential was found to be ?9.7 kcal mole?1, which resulted in an entropy for reaction (b) of 80.2 e.u. A thermal titration of reaction (a) was used to calculate the thermodynamic parameters for the formation of semiquinone dimer according to the reaction FMNH2 + FMN ? (·FMNH)2. (c) The free energy, enthalpy, and entropy changes for reaction (c) were estimated to be ?6.1 kcal mole?1, ?7 kcal mole?1, and ?3 e.u., respectively.  相似文献   

12.
This study explores the possibility of producing ethanol using the acid hydrolysate of three abundant agar-containing red seaweeds (agarophytes): Gelidium amansii, Gracilaria tenuistipitata, and Gracilariopsis chorda. The main component in the seaweed samples was agar, which ranged from 20 to 51 % (g g?1 dry weight). After optimizing acid hydrolysis, 100 g of seaweed was hydrolyzed at 130 °C for 15 min with 0.2 M H2SO4. Then, 120 mL of a 1:2 mixture of the hydrolysate broth and basal medium was fermented in a 200-mL bottle at 30 °C for 96 h. Of the three seaweeds, G. amansii had the best ethanol yield, producing 0.23 g g?1 of galactose or 45 % of the theoretical yield. This yield increased to 60 % after detoxification of the hydrolysate with activated carbon.  相似文献   

13.
Rates of net photosynthesis and respiration were determined for Pithophora oedogonia (Mont.) Wittr. acclimatized to 56 combinations of light (7–1200 μE m?2 s?1) and temperature (5–35°C). Conditions for maximum net photosynthesis were estimated to be 26°C and 970 μE m?2 s?1. The rate of net photosyntheses varied considerably with temperature, with the maximum measured value (9.67 mg O2 h?1 g dry wt.?1) occurring at 25°C. Respiration rate increased with temperature and the light received just prior to measurement. The maximum respiration rate (7.05 mg O2 g?1 h?1) occurred at 30°C and 1200 μE m?2 s?1. Exposure of Pithophora to light levels of 600 or 1200 μE m?2 s?1 prior to determination of the respiration rate resulted in significantly elevated levels of oxygen consumption at temperatures ≥ 15°C. The relationship between light, temperature and photosynthesis and respiration were summarized as three-dimensional response surfaces.  相似文献   

14.
2-Deoxy-β-d-arabino-hexopyranose, C6H12O5, is orthorhombic, P212121, with cell dimensions at ?150° [20°], a = 6.484(2) [6.510(3)], b = 10.364(2) [10.427(4)], c = 11.134(3) [11.153(5)] Å, V = 748.2 [757.1] Å3, Z = 4, Dx = 1.457 [1.440], and Dm = [1.455] g.cm?3. The intensities of 1269 reflections were measured by using MoKα radiation. The structure was solved by direct methods, and refined by full-matrix least-squares, with anisotropic, thermal parameters for the carbon and oxygen atoms, and isotropic parameters for the hydrogen atoms. The pyranose has the 4C1(d) conformation, with puckering parameters Q = 0.563 Å, θ = 3.9°, and ? = 350.3°. The departure from ideality is very small, and less than that in β-d-glucopyranose, Q = 0.584 Å and θ = 6.9°. The β-glycosidic, CO bond is short, 1.383(4) Å, and the OCOH torsion angle is ?87°, consistent with the anomeric effect. The hydrogen-bonding scheme consists of infinite chains, with side chains terminating at a ring-oxygen atom.  相似文献   

15.
The xyn10B gene, encoding the endo-1,4-β-xylanase Xyn10B from Thermotoga thermarum, was cloned and expressed in Escherichia coli. The ORF of the xyn10B was 1,095 bp and encoded to mature peptide of 344 amino acids with a calculated MW of 40,531 Da. The recombinant xylanase was optimally active at 80 °C, pH 6.0 and retained approx. 60 % of its activity after 2 h at 75 °C. Apparent K m , k cat and k cat /K m values of the xylanase for beechwood xylan were 1.8 mg ml?1, 520 s?1 and 289 ml mg?1 s?1, respectively. The end products of the hydrolysis of beechwood xylan were mainly oligosaccharides but without xylose after 2 h hydrolysis.  相似文献   

16.
Aims: To investigate the transfer of antibiotic resistance from a donor Salmonella Typhimurium DT104 strain to a recipient Escherichia coli K12 strain. Methods and Results: Mating experiments were conducted in broth, milk and ground meat (beef) at incubation temperatures of 4, 15, 25 and 37°C for 18 and 36 h. Ampicillin‐resistance transfer was observed at similar frequencies in all transfer media at 25 and 37°C (10?4 to 10?5 log10 CFU ml g?1, transconjugants per recipient) for 18 h. At 15°C, transfer was observed in ground meat in the recipient strain (10?6, log10 CFU g?1, transconjugants per recipient), but not in broth or milk. At 4°C, transfer did not occur in any of the examined mediums. Further analysis of the E. coli K12 nalR transconjugant strain revealed the presence of a newly acquired plasmid (21 kbp) bearing the β‐lactamase gene blaTEM. Transconjugants isolated on the basis of resistance to ampicillin did not acquire any other resistant markers. Conclusion: This study demonstrates the transfer of antibiotic resistance in food matrices at mid‐range temperatures. Significance and Impact of the Study: It highlights the involvement of food matrices in the dissemination of antibiotic‐resistant genes and the evolution of antibiotic‐resistant bacteria.  相似文献   

17.
Abstract Effects of temperature on the ionic relations and energy metabolism of Chara corallina were investigated. Measurements were made of the ionic content, tracer ion fluxes, and photosynthetic and dark CO2 fixation in isolated cells, and of O2 exchange in photosynthesis and respiration in isolated shoot apices. The total intracellular concentration of K+, Na+ and Cl? was the same in cells held for 5 days in non-growing medium at 15°C (the growth temperature) as in those held at 25°C or 5°C. The tracer influx in the light of all ions tested (Rb+, Na+, CH3NH3+, Cl? and H2PO4?) was lower at 5°C than at 15°C in experiments in which cells were subjected to 5°C for less than 24 h in toto. The influx at 25°C was greater than that at 15°C for H2PO?4, there was no difference between the two temperatures for Na+, while the influx at 25°C was less than that at 15°C for Cl?, Rb+ and CH3NH3+ For Cl? and H2PO?4 similar results were found in later experiments with cells grown at 20—23°C. Photosynthetic CO2 fixation and O2 evolution, and respiratory O2 uptake, are greater at 25°C, and lower at 5°C, than they are at the growth temperature of 15°C. In longer-term pretreatments at the different temperatures, tracer Cl? influx at 15°C and particularly at 25°C were lower than in short-term experiments, while the influx at 5°C was higher. It was concluded from these experiments, and from previous data on H+ free energy differences across the plasmalemma, that (1) the maintenance of internal ion concentrations involves a close balancing of influx and efflux of K+, Na+ and Cl? at all experimental temperatures; (2) the regulation of the tracer fluxes of the ions is kinetic rather than thermodynamic and (3) that the tracer fluxes at low temperatures are not restricted by the rate at which respiration or photosynthesis can supply energy to them.  相似文献   

18.
The reaction of Ru(XTPP)(DMF)2, where XTPP is the dianion of para substituted tetraphenylporphyrins and X is MeO, Me, H, Cl, Br, I, F, with O2 and CO were studied in DMF. The process was found to be first-order in metalloporphyrin, first-order in molecular oxygen and carbon monoxide, and second-order overall. Second-order rate constants for the CO reaction ranged from 0.170 to 0.665 M?1 s?1 at 25°C, those for the O2 reaction from 0.132 to 0.840 M?1 s?1 at 25°C. Similar activation parameters (ΔHCO± = 87 ± 1 kJ mol?1, ΔSCO± = 22 ± 4 JK?1 mol?1; ΔHO2± = 81 ± 1 kJ mol?1, and ΔSO2± = 11 ± 5 JK?1 mol?1) were found within each series. Reactivities of X substituted metalloporphyrins were found to follow different Hammett σ functions. The CO reactions correlated with σ? following normal behavior; the O2 reactions correlated with σ8° indicating O2 is π-bonded in the transition states. A dissociative mechanism is postulated for the process.  相似文献   

19.
In all larval stages of Carcinus maenas L. oxygen consumption was measured at three temperatures (12,18,25 °C). Values increased during development and were in the range of 0.037 ± 0.01 (zoea-1, 12°C, x? ± 95% CL) to 0.734 ± 0.047 μl O2 · h?1 · ind?1 (megalopa, 25 °C). Growing larvae showed temperature dependent trends in weight specific respiration rates (referred to dry wt; DW), with values between ≈2.4 and 9.4 μl O2· h?1·mg DW?1. Increase in oxygen consumption of megalops did not differ much at temperatures between 18 and 25 °C. This points to an exceptional physiological position of this stage. Fed zoea-1 of C. maenas (18 °C) revealed growth rates in terms of 40% DW, 20% carbon (C), 30% nitrogen (N) and 65% hydrogen (H). At the same time larvae gained individual energy by 13% (J · ind?1), while weight specific energy dropped by ≈ 19% (J · mg DW?1) during the first day and remained constant until the moult. Starved zoea-1 of C. maenas (18 ° C) gained ≈ 20 % in DW through the first day, probably caused by inorganic salts which enter the organism after the moult of the prezoea. DW dropped to ≈ 25 % of initial value, when starvation continued. Single components decreased by ≈50% (C), 54% (N), 57% (J · ind?1). Weight specific energy (J · mg DW?1) decreased by 40% during the first 4 days of starvation, remaining constant thereafter. Individual respiration rate (R) dropped by 61 %, weight specific respiration rate (QO2) by 55 %. Individual energy loss in starved zoea-1 was 0.077 J over a period of 11 days. In this period ≈ 9.3 μl O2·ind?1 were consumed. Thus effective oxygen capacity was lower than in growing larvae. It dropped to 5.3 J·mlO2?1 after 4 days and remained constant if starvation continued, i.e. 65 % of possible energy loss occurred during the first 4 days. Decrease in requirement for oxygen and its effective capacity were both recognized as independent components of survival during starvation. Partitioning of energy through individual larval development of C. maenas was investigated for all five larval stages. The cumulative budget could be calculated: consumption (C) = 28.23 J, growth (G) = 0.92 J, exoskeleton (Ex) = 0.20 J, metabolism (M) = 5.30 J, egestion and excretion (E) = 21.82 J. Mean gross and net growth efficiency were, K1 = 3.3% and K2 = 14.8%, respectively.  相似文献   

20.
A novel halophilic strain that could carry out heterotrophic nitrification and aerobic denitrification was isolated and named as Halomonas campisalis ha3. It removed inorganic nitrogen compounds (e.g. NO3 ?, NO2 ? and NH4 +) simultaneously, and grew well in the medium containing up to 20 % (w/v) NaCl. PCR revealed four genes in the genome of ha3 related to aerobic denitrification: napA, nirS, norB and nosZ. The optimal conditions for aerobic denitrification were pH 9.0, at 37 °C, with 4 % (w/v) NaCl and sodium succinate as carbon source. The nitrogen removal rate was 87.5 mg NO3 ?–N l?1 h?1. Therefore, this strain is a potential aerobic denitrifier for the treatment of saline wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号